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ABSTRACT Due to high hardware costs for digital beamforming, hybrid beamforming (HBF) is widely
employed in millimeter-wave (mmWave) communications systems. However, the number of radio frequency
chains in the analog part of HBF is far less than that of antennas, which causes a serious dimension-deficient
problem. In order to overcome this problem, this paper proposes a compressive sensing algorithm using
an adaptive overcomplete dictionary to estimate the sparse channel in the HBF-based mmWave system.
The algorithm adaptively generates the dictionary by using the received signal to accurately reconstruct the
mmWave channel. The simulation results are presented to demonstrate that the proposed algorithm outper-
forms its traditional counterparts in terms of the normalized mean square error and the spectral efficiency.

INDEX TERMS Sparse channel estimation, hybrid beamforming, adaptive overcomplete dictionary,
compressive sensing.

I. INTRODUCTION
In order to meet the explosive demands of user data
growth, the current spectrum scarcity crisis needs to be
addressed [1]–[3]. Thanks to abundant spectral resources,
mmWave communications are widely studied in the fifth
generation (5G) mobile networks. Although offloading data
to mmWave spectra can improve channel capacity, it is not
without sacrifices. Air is a highly absorptive dielectric with
respect to the mmWave spectra, so the resulting path losses
are very severe, thereby limiting the coverage of a base
station [4]. However, mmWave has shorter wavelengths than
the current LTE band, which means it is capable of packing
more antennas in a limited physical space. The increased
number of antennas will bring about more channel gains
through the use of techniques such as precoding. Therefore,
massive multiple-input multiple-output (MIMO) technology
can be fully utilized in mmWave bands.

For the purpose of overcoming the shortcomings of
mmWave communications and taking advantage of the gains
brought by multiple antennas, digital beamforming (DBF)
technology is widely considered. However, in the number
of antennas, hardware costs become the main bottleneck

with the increase in massive MIMO. Then analog beam-
forming (ABF) is adopted to reduce hardware costs, which
evolves into HBF technology. HBF is adopted by 5G wire-
less communication systems to achieve better beamforming
gains. Because of the use of analog components, HBF usually
cannot attain the same performance of DBF. Nevertheless,
it is proved in [4] that HBF is able to achieve almost the
same performance as DBF in terms of SE, when the num-
ber of RF chains is twice as that of data streams or more.
While the algorithm proposed in [4] focuses primarily on
the single-user scenario. When extended to the scenario
of multiple users, SE will decrease at low signal-to-noise
ratios (SNRs). In [5], the algorithm is extended from the
single-user scenario to the multi-user one, while it pro-
poses a different HBF design method that can maximize
system capacity. To address the problem of multiple users,
a novel algorithm is proposed in [6]. The proposed HBF
matrix for multiple users is not only superior in limited
feedback and training overhead, but also helps achieve an
excellent system performance. However, it is noted that the
HBF performance in [6] is nearly equal to its DBF counter-
part, only when data are transmitted with a single antenna.
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FIGURE 1. Block diagram of the mmWave communications system with full-connection HBF.

System coverage degrades with the increase in the number of
channels.

To address the challenges of channel estimation (CE) in
HBF, an adaptive algorithm is proposed to estimate the angle
of arrival (AoA) and the angle of departure (AoD) for channel
reconstruction in [7]. An algorithm is presented in lieu of the
singular value decomposition (SVD) for channel estimation,
which can reduce the computational complexity and the feed-
back overhead [8]. In [9], an asymmetric beam search scheme
is used to estimate the channel taking into account the sparsity
of the mmWave channel. On one hand, this scheme employs
CS to reduce the training overhead at the transmitter. On the
other hand, the receiver utilizes exhaustive beam training to
ensure a robust performance at low SNRs.

Different from the CS-based method to estimate the AoA
and AoD matrix of channel, Guo et al. [10] present a
two-dimensional multiple signal classification (2-D MUSIC)
algorithm used in the beam space to estimate the directions
of the mmWave channel. It is different from the conventional
MUSIC algorithm used in the element space, which can
only estimate one dimension (i.e. AoA or AoD) at a time
and also does not consider beamforming. While it is stated
in [10] that the beamspaceMUSIC algorithm suffers from the
problem of spectrum ambiguity, which means the quantized
ABF may cause the miss match problem during the process
of finding the extreme point of the directional spectrum.
The 2-D MUSIC algorithm is also studied in [11], where an
efficient 2-D direction-finding MUSIC algorithm based on
the double polynomial root finding procedure is proposed to
estimate the AoA and AoD jointly.

In most cases, the number of RF chains is far less
than that of antennas. Therefore, the received signal does
not contain full channel state information (CSI). This
phenomenon, which is dubbed dimension-deficient, makes
channel estimation in HBF different from conventional

channel estimation. In order to tackle the dimension-deficient
challenge, this paper proposes a CS-based channel estimation
algorithm for uplink single-user MIMO systems. Compared
with conventional channel estimation methods, the proposed
algorithm designs an adaptive overcomplete dictionary to
improve the reconstruction probability at low SNRs, in an
effort to reduce the NMSE.

Contribution: this paper proposes a dictionary-adaptive
compressive sensing channel estimation algorithm to over-
come the dimension-deficient problem in HBF. Compared
with conventional CS channel estimation methods in massive
MIMO systems, the novelty of the proposed algorithm lies
in the construction of an adaptive dictionary to deal with
the dimension-deficient issue, improve the robustness against
noise at low SNRs, minimize the NMSE of channel estima-
tion, and achieve nearly identical SE.
Notation: X, x and x represent a matrix, vector and scalar,

respectively. (∗)T , (∗)H , (∗)−1, (∗)†, vec(∗) and ‖∗‖F denote
the transport, conjugate transport, inverse, pseudo-inverse,
vectorize, and Frobenius norm of a matrix, respectively. ⊗
indicates the Kronecker product operator.

This paper is organized as follows. Section II describes the
system and mmWave channel models. Section III proposes
the CS-based channel estimation scheme to cope with the
dimension-deficient challenge in HBF. Section IV presents
the simulation results of the proposed algorithm, and com-
pares them with those of the conventional channel estimation
algorithms in [8], [10], and [18]. Finally, concluding remarks
are drawn in Section V.

II. SYSTEM MODEL
Consider an mmWave massive MIMO system with a single
UE (SU-MIMO) and gNB in 5G. It is well known that HBF
has two different structures, i.e. fully connected and partially
connected HBF [20], [21]. Each RF chain in full-connection
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HBF is connected to every antenna, so all the antennas can be
optimized jointly and the transceiver have a finer beam with
full beamforming gains. On the other hand, each RF chain
in partially connected HBF is connected to a subset of the
antennas, so this structure has lower hardware complexity
than its fully connected counterpart, while its array gain is
lower and the beam width is rougher. Consequently, this
paper chooses fully connected HBF as shown in Fig.1. Due to
HBF being usually implemented on both uplink and downlink
sides, we will only consider the uplink channel estimation at
the gNB side for simplicity without loss of generality. The UE
is equipped with NT antennas and NRF RF chains, while the
gNB is equipped with NR antennas and NRF RF chains. It is
noted that the numbers of RF chains are generally different for
the UE and gNB. But this fact has no impact on the research
under consideration in this paper, so it is assumed that the
numbers of RF chains at the UE and gNB are the same. The
number of RF chains should be far less than that of antennas,
i.e., NRF � NR.
Considering the sparsity of the mmWave channel, the fol-

lowing channel model that has be widely considered in the
literature is adopted [6]–[9], [16]

H =

√
NTNR
L

L∑
l=1

αlar
(
θ rl
)
aHt
(
θ tl
)
, (1)

where L is the number of channel paths, αl ∼ CN
(
0, σ 2

α

)
is

the channel gain, ar
(
θ rl

)
and at

(
θ tl

)
are the arrival steering

and departure steering vectors, respectively. θ tl and θ
r
l are the

azimuth angles of departure and arrival uniformly distributed
in [0, 2π). Assuming the uniform linear arrays (ULA)
antennas, the steering vectors are shown as ar

(
θ rl

)
=

1
√
NR

[
1, ej

2π
λ
d sin(θ rl ), . . . , ej(NR−1)

2π
λ
d sin(θ rl )

]T
and at

(
θ tl

)
=

1
√
NT

[
1, ej

2π
λ
d sin(θ tl ), . . . , ej(NT−1)

2π
λ
d sin(θ tl )

]T
, where d =

λ
/
2 and λ is the carrier wavelength. Eqn. (1) can be rewritten

in a more compact form as follows

H = ARDαAH
T , (2)

where AR = [ar (θ r1 ), . . . ar (θ
r
L)], AT = [at (θ t1), . . .

at (θ tL)], Dα ∈ CL×L is a square matrix with [α1, . . . αL] in
its diagonal line. As AR and AT is unknown in the channel
estimation process, we use virtual channel representation
in [17] to rewrite the channel model as

H = VRHVVH
T , (3)

where VR and VT are the unitary discrete Fourier trans-
form (DFT) matrices of sizes NR × NR and NT × NT ,
respectively. HV is the virtual channel element matrix of
dimension NR × NT . Virtual channel representation trans-
forms a channel model in the spatial domain into the beam-
space or the wave-number domain. In other words, virtual
representation describes the channel by using fixed virtual
angles which are decided by the spatial resolution (NR×NT )
of the arrays [17]. If it is assumed that the real channel

FIGURE 2. Virtual channel matrix without leakage.

FIGURE 3. Virtual channel matrix with leakage.

matrixH is known, the relationship between the virtual chan-
nel coefficient matrix HV and the real channel matrix can be
written as

HV = VH
RHVT , (4)

since VR and VT are DFT matrices and they share
property that VH

R/TVR/T = I, where I is the identity
matrix.

It should be noted that HV suffers from leakage from
a specific bin to adjacent bins, which means the number
of bins with non-zero values are not L, and the adjacent
bins also have relatively large amplitudes. For instance,
there is a virtual channel transformed from the real chan-
nel with two channel paths (L = 2 in this example) by
using (4). Fig. 2 and 3 compare the difference between the
virtual channels with and without leakage. Fig.2 plots the
virtual channel with two paths without adjacent leakage.
The magnitudes of the two main channel paths are clearly
distinct from adjacent bins which have zero or very small
magnitudes. However, Fig. 3 illustrates the virtual chan-
nel with adjacent leakage. Although the two main chan-
nel paths can be seen clearly, the adjacent bins also have
non-negligible magnitudes. In other words, the adjacent bins
may also contain part of the CSI and should be considered
in channel estimation. Consequently, the sparsity of the vir-
tual channel is generally more than the number of channel
paths.

It should be noted that the adjacent leakage problem
caused by virtual channel representation is different from the
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FIGURE 4. Spectrum ambiguity in 2-D MUSIC.

spectrum ambiguity problem mentioned in [10]. As shown
in Fig. 4, the spectrum ambiguity problem is that the extreme
point of the directional spectrummay bemore than the targets
we look for. So when searching for the poles of the directional
function, the pseudo polemay take the place of the target pole.

For the uplink, the UE transmits the pilot signal
X ∈ CNT×XL to the gNB, where XL is the length of the signal
transmitted over each antenna. Then the received signal can
be shown as

Y = WH
ABFHUABFX+WH

ABFZ

= WH
ABFARDαAH

T UABFX+WH
ABFZ, (5)

whereUABF andWABF are the analog precoding and combin-
ing matrices, respectively. They are obtained from the DFT
codebook. Z is Gaussian white noise with zero mean and
unit variance. Due to the received signal passing through the
ABF receiving matrix, the channel information suffers from
a certain degree of loss. This dimension-deficient property
makes channel estimation in HBF systems more challenging
than traditional channel estimation.

III. ALGORITHM DESIGN
Thanks to its wide-ranging applications in sparse signal pro-
cessing, compressive sensing is widely used in sparse chan-
nel estimation [9], [16], [18], [19]. While CS algorithms may
exhibit the floor effect when used in channel estimation [19],
the floor effect appears when the channel length is close
to or larger than the guard interval (GI). Ding et al. [19]
used the prior known pseudo noise (PN) to replace the cyclic
prefix (CP) and part of the PN is used to estimate the channel.
Consequently, when the channel length (i.e. the maximum
channel delay) is close to or larger than the guard interval
(the length of the PN), there will be limited PN that can be
used to estimate the channel. In other words, the PN during
the channel delay time cannot be used for channel estimation,
since the PN has been contaminated by the inter-block inter-
ferences. So if the channel length is close to or larger than
the GI, there will be no more PN left to estimate the channel.

This scenario arises in digital television/terrestrial multime-
dia broadcasting (DTMB), which is not common in wireless
communication. So, we will only discuss scenarios where the
channel length is smaller than the GI.

As can be seen from Fig. 3, mmWave channels are natu-
rally sparse, which means CS technology is a nature fit for
estimating mmWave channels. The overcomplete dictionary
has a major place in CS algorithms. The overcomplete dic-
tionary of contrast algorithm in Section III-A is constructed
using a universal method, while our proposed algorithm in
Section III-B constructs the dictionary in an adaptive manner.
Compared with the contrast algorithm, the proposed adaptive
algorithm is slightly more complex, but the system perfor-
mance is better, which is shown in Section IV.

A. CONTRAST ALGORITHM
CS channel estimation needs to first construct an overcom-
plete dictionary of the sparse channel. The conventional
overcomplete dictionary 2=8V is composed of a random
measurement matrix8, suh as a Gaussian matrix or a random
±1 matrix, and a basis matrix V [12], [15]. This approach is
of low complexity and fast computation.

Based on the approach above, we propose a simple CS
algorithm for HBF channel estimation as a contrast. As the
arrival and departure steering matrices are unknown, we use
virtual channel representation [16], [17]. It follows from the
property of Kronecker product that the desired receive signal
in (5) can be expressed as

Ydesired = WH
ABFARDαAH

T UABFX

=

(
WH

ABFAR

)
⊗

(
AH
T UABFX

)T
vec (Dα)

=

(
WH

ABFVR

)
⊗

(
VH
T UABFX

)T
hS , (6)

where hS is the vectorization of Dα and a sparse vector
containing the elements of the virtual channel matrix HV .
Then we vectorize the received signal Y as

vec(Y)=GhS + vec
(
WH

ABFZ
)

G =
(
WH

ABFVR
)
⊗
(
VH
T UABFX

)T
.

(7)

Because matrix G ∈ CNRFMt×MrXL does not satisfy
the Restricted Isometry Property (RIP), so G cannot be
used as the dictionary for estimating the channel directly.
Baraniuk [12] show that an M × N i.i.d. Gaussian matrix
can be shown to have the RIP with high probability, if M >
cK log

(
N
/
K
)
with c being a small constant, where K is the

sparsity of the signal to be estimated. If the Gaussian matrix is
multiplied by an orthonormal basis, the product also satisfies
the RIP with high probability. So letting M = NRFNT and
N = NRL, decomposing G using SVD, and ignoring the
noise, (7) can be rewritten as

vec(Y) = U1DVH
1 hS , (8)

where U1 ∈ CM , D ∈ CM×N and V1 ∈ CN . Premultiplying
UH
1 andD† on both sides of (8) removesU1D on the right side.
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D† is the pseudo-inverse matrix of D. VH
1 is an orthonormal

basis, so we premultiply a Gaussian matrix 81 on the both
sides of (8) to obtain

81D†UH
1 vec(Y) = 81VH

1 hS . (9)

Denoting the observation signal by ỹ = 81D†UH
1 vec(Y)

and the overcomplete dictionary by 21 = 81VH
1 , we have

ỹ1 = 21hS . (10)

The reconstruction of hS from ỹ can be done via "l0-norm"
minimization, which can be expressed by

ĥS = argmin
hS
‖hS‖l0

s.t. ỹ1 = 21hS . (11)

B. ADAPTIVE OVERCOMPLETE DICTIONARY CS
In contrast with the CS algorithm above, we propose an adap-
tive overcomplete dictionary for dimension-deficient chan-
nel estimation. In order to satisfy the RIP, there is a new
way to build the overcomplete dictionary. According to [14],
we have the fixed basis matrix V2 = VH

1 . It should be noted
that one can preselect a basis matrix V2 different from this
paper. Thenmatrix82 can be designed to satisfy22

H22 ≈ I,
where 22 = 82V2. We assume that

2H
2 22= VH

2 8
H
2 82V2 ≈ I. (12)

Multiplying VH
2 and V2 on both sides of (12), we have

V2VH
2 8

H
2 82V2VH

2 ≈ V2VH
2 . (13)

If V2VH
2 has the eigenvalue decomposition V2VH

2 =

U23UH
2 , then (13) becomes

U23UH
2 8

H
2 82U23UH

2 ≈ U23UH
2 . (14)

Then letting 0 =82U2, where 0 = [τ 1, · · · , τM ]T and
τ = [τ1, · · · τN ]T , the problem becomes equivalent to
optimizing 0̂

0̂ = argmin
∥∥∥3−30H03∥∥∥2

F
. (15)

Then 82 can be generated from 8̂2 = ˆ0U
H
2 . Conse-

quently, we could obtain the overcomplete dictionary by
using 2̂2 = 8̂2V2.
Let [λ1, · · · λN ] be the eigenvalues of the diagonal

matrix 3, which are ordered in decreasing order, such that
λ1 > λ2 > ... > λN . Then vi can be expressed as the
elements of diagonal matrix 3 multiplied by the ith row
of 0, i.e.,

vi =
[
λ1τi,1, · · · , λN τi,N

]T
. (16)

Defining Ej = 3−
m∑

i=1,i 6=j
vivTi , then (15) can be rewritten

as ∥∥∥∥∥∥3−
m∑

i=1,i 6=j

vivTi − vjvTj

∥∥∥∥∥∥
2

F

=

∥∥∥Ej − vjvTj
∥∥∥2
F
. (17)

Let matrix Ej be eigen-decomposed, i.e., Ej = Bj6jBTj ,

where 6 = diag(ξ1, · · · , ξM ), and B =
[
β1, · · · ,βM

]T .
Obviously, the objective of the optimization is to minimize
the right hand side of (17). So let vj =

√
ξmax,jβmax,j,

where ξmax,j is the maximum eigenvalue of Ej and βmax,j is
the corresponding eigenvector, and thus the primary gap of
Ej − vjvTj can be eliminated. Then τ j =

[
τj,1, · · · , τj,N

]T is
updated as follows[

λ1τ̂j,1, · · · , λN τ̂j,N
]T
=
√
ξmax,jβmax,j. (18)

Then we can obtain the optimal 0̂ using τ j = τ̂j. Further-
more, matrix 8̂2 and dictionary 22 are expressed as

8̂2 = 0̂U
H
2

2̂2 = 8̂2V2. (19)

To construct the newly observed signal according to (19),
the original received signal in (8) can be rewritten as

0̂UH
2 D

†UH
1 vec(Y) = 0̂U

H
2 V2hS

ỹ2 = 2̂2hS , (20)

where ỹ2 = 0̂UH
2 D

†UH
1 vec(Y) and 2̂2 = 0̂UH

2 V2, which
is calculated in Algorithm 1, Part I. Through employing the
compressive samplingmatch pursuit (CoSaMP) algorithm for
CS reconstruction via (20), we obtain the sparse vector hS .
Thus, the estimated channel can be written as

Ĥ = VRĤVVH
T , (21)

where ĤV is the de-vectorization of hS (inAlgorithm 1, hS is
replaced by ĥiK ).

The notation in Part II in Algorithm 1 is explained as
follows. ri is the residual and i is the number of iterations.
�i is the set of indexes (i.e., column numbers). 2i is the
set of columns from 2̂, and the columns are selected by �i.
J0 means the set of 2K indexes selected from each iteration.
This is different from orthogonal matching pursuit (OMP).
In other words, the traditional OMP algorithm chooses only
one maximum value and the corresponding index from each
iteration. By contrast, CoSaMP chooses 2K maximum values
and the corresponding indexes from each iteration. This is an
improvement over OMP, which helps reduce the influence of
accidental errors such as noise.

To summarize, the proposed algorithm consists of the fol-
lowing two steps, which are detailed in Algorithm 1:

(1) Design the overcomplete dictionary 2̂;
(2) Estimate the channel using CoSaMP.
Assuming the number of rows of 2̂ is far less than that

of columns, i.e., M � N , the complexity of Algorithm 1 is
O
(
MN 3

)
≈ O

(
N 3
)

. This complexity is similar to
that in [11].

IV. SIMULATION RESULTS
In this section, the proposed adaptive algorithm is compared
with the ones in [8], [10], and [18]. The UE is equipped with
NT = 32, the gNB is configured with NR = 16 antennas, and
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Algorithm 1 Overcomplete Dictionary Design &
CoSaMP-Based Channel Estimation
Require: G, K , M , ỹ, AT ,AR
Ensure: Ĥ
1: % Part I —Overcomplete dictionary design
2: Basis matrix V2, a random initial matrix 8.
3: Calculate the eigen decomposition V2V2

H
= U23U2

H

; 0 = 8U2.
4: for each i ∈ [1,M ] do
5: Calculate the eigenvalues of Ej
6: Find the maximum eigenvalue ξmax,j and the corre-

sponding eigenvector βmax,j
7: Update the components ofOτ j using (18)
8: end for
9: Calculate the optimal ˆ8 =O0U2

H , 2̂ = ˆ8V2.
10: % Part II —CE-CoSaMP
11: r0 = ỹ, �0 = ∅, 20 = ∅.
12: for each i ∈ [1,K ] do

13: Calculate u = 2̂Hri−1 =
[
θ̂1, · · · θ̂N

]H
ri−1

14: Find the maximum 2K values of u, and let the corre-
sponding column indexes j2K constitute set J0

15: Let �i = �i−1 ∪ J0 , 2i = 2i−1 ∪ θ̂j
(
forall j ∈ J0

)
16: Calculate ĥi = argmin

hi

∥∥ỹ−2ihi
∥∥ = (2T

i 2i
)−1

2T
i ỹ

17: Find the maximum K values of ĥi and let them be ĥiK
; the corresponding K columns of 2i be the 2iK ; the
columns indexes of 2̂ be �iK

18: Update �i = �iK , ri = Qy − 2iK ĥiK = Qy −
2iK

(
2T
i 2i

)−1
2T
i ỹ

19: If ri < 10−15 (which means the residual is small
enough).

20: end for
De-vectorize
21: the ĥiK into ĤV
22: Calculate Ĥ = ARĤVAH

T

the number of chains NRF = 2, . . . , 6. The virtual channel
sparsity is K = L = 6, which means the non-zero value
of HV is 6. We chose the virtual channel without leakage
in our simulation, because the sparsity of the virtual channel
with leakage is much larger than the number of channel paths
(K > L) and usually is not clear. The NMSE is adopted as
the performance metric, which is defined as

NMSE = 10log10

∥∥∥Ĥ−H
∥∥∥2
F

‖H‖2F
. (22)

Fig. 5 depicts the NMSEs of five comparative channel
estimation schemes. The number of RF chains in this sim-
ulation case is fixed to 6. The circle, rhombus, star, inverted
triangle and triangle lines indicate the performances of the CE
algorithm of traditional CS in [18], the 2-DMUSIC algorithm
in [10], the low-complexity algorithm in [8], the contrast
algorithm based upon (10) and the proposed algorithm based

FIGURE 5. NMSEs of the comparative algorithms.

FIGURE 6. SEs of the comparative algorithms versus the baseline with
perfect CSI.

upon (20), respectively. As can be observed from the figure,
the algorithm proposed in this paper outstrips the others in
the sense of the NMSE. The algorithm in [8] has the worst
performance and is almost 15 dB worse than its comparative
counterparts at low SNRs. This is because the algorithm in [8]
estimates the sparse channel coefficient matrix and the two
angle matrices (AOA and AOD) at the same time. The esti-
mation errors caused by noise have greater influence than the
other algorithms, especially at low SNRs. The 2-D MUSIC
and traditional CS algorithms perform very close to the pro-
posed two algorithms in this paper at low SNRs, but the gap
grows when SNR increases. While 2-D MUSIC is slightly
worse than the traditional CS method, because the method
to estimate the path gain used in [10] is least-square (LS).
In other words, the LS algorithm is sensitive to noise and the
estimation results are easily affected by the noise. Further-
more, the results demonstrate that the CS algorithm with the
adaptive dictionary sees a certain improvement inNMSE over
the universal dictionary scheme.

Fig. 6 plots the SE of the five comparative methods and the
baseline with perfect CSI. The results indicate that the five
methods perform nearly identically at high SNRs, while the
method in [8] has a certain gap at low SNRs. This is because
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FIGURE 7. NMSEs of the comparative algorithms versus the number of RF
chains.

the channel estimation results in [8] are not as good as those
of the other methods, which is shown in Fig. 5.

FIGURE 8. SEs of the comparative algorithms versus the number of RF
chains.

Fig.7 and 8 show the effects of the number of RF chains on
the NMSE and the SE at SNR = 10 dB. We do not consider
the traditional CS algorithm in [18] when NRF = 2, because
there are errors in calculating ĥi when NRF = 2. When the
number of RF chains is two, the rank of the ABF matrix
equals two, i.e., rank(UT

ABF ) = rank(WH
ABF ) = 2. Then the

rank of the sensingmatrix rank(8̂) = rank(UT
ABF⊗W

H
ABF ) =

4 < K . Consequently, matrix2i (in Algorithm 1, line 15) is
singular matrix when updating it and the calculation of ĥi will
be wrong because matrix2T

i 2i is not full rank and cannot be
inverted. Fig. 7 indicates that the proposed algorithm reaps
nearly 30 dB gains in NMSE, when the number of RF chains
grows from 2 to 6. While the SE in Fig.8 converges to the
upper band after the number of RF chains becomes more
than 5. This is because the data streams limit the growth of
SE in the network.

V. CONCLUSION
In this paper, we proposed a defective-dimension chan-
nel estimation algorithm based on CS technology. Com-
pared with non-adaptive algorithms, the proposed algorithm

designed an overcomplete dictionary adaptively with the
objective of improving the channel estimation performance
in terms of NMSE. The proposed scheme also shows a better
noise robustness performance than the existing methods, and
the SE is close to the upper bound of perfect CSI. Our future
research will focus on two more challenging scenarios. One
is CS channel estimation for virtual channels with adjacent
leakage, while the other one is when sparsity is not a priori
known.
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