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ABSTRACT To improve the total efficiency of the drive system and the driving safety of distributed
electric drive vehicles, this paper proposes a multi-objective optimization method based on torque allocation
optimization. First, in the vehicle nonlinear dynamics model, the response surface method is used to perform
regression analysis on the test data of the drive motor to obtain the drive motor efficiency function. Second,
based on the demand torque value of the distributed electric drive system, the objective functions that
characterize the optimization of the drive system efficiency and the optimization of the vehicle driving
safety are established. Moreover, the linear weighting method with adaptive weight coefficients is used to
transform the solution of the above two objective functions into a multi-objective optimization problem
under constraint conditions. Furthermore, the second-generation nondominated sorting genetic algorithm
(NSGA-II) and the hybrid genetic Tabu search algorithm (HGTSA) are used to solve the above multi-
objective optimization problem to obtain the optimal torque distribution of the distributed electric drive
system. Finally, the NEDC operating conditions were selected to verify NSGA-II, the HGTSA and the
commonly used average distribution method. The simulation test results show that NSGA-II and the HGTSA
can improve the driving efficiency and vehicle driving safety of distributed electric drive systems relative to
the average distribution method. In particular, the optimization effect of the HGTSA is more prominent, and
stability is more quickly achieved.

INDEX TERMS Multi-objective optimization, NSGA-II, Tabu search, torque distribution.

I. INTRODUCTION
With energy conservation and environmental protection
becoming the theme of modern times, the development of
electric vehicles has entered a new era [1], [2]. Hybrid elec-
tric vehicles and pure vehicles have become areas of active
research [3], mainly involving the study of batteries and
engines in the field of pure electric vehicles. Energy manage-
ment is the main research direction of hybrid vehicles [4], [5].
However, there are few studies on vehicle dynamics con-
trol. Pure electric vehicles rely on the drive system to meet
driving needs, and the quality of the drive system has a
great impact on the performance of the entire vehicle. There
are two types of electric vehicle driving methods: central-
ized driving and distributed driving. The distributed elec-
tric drive vehicle does not require mechanical transmission

components, which improves the space utilization efficiency
of the entire vehicle. Most importantly, this vehicle breaks
the fixed-torque distribution mode of the traditional vehicle
and arbitrarily distributes the wheel torque to driving motor
according to the actual road conditions and the driving state
of the vehicle. Although distributed electric drive vehicles
have many advantages as described above, they also face an
urgent problem that needs to be solved: how to reasonably
distribute the demand torque into each drive wheel to improve
the efficiency, the driving safety and the steering stability of
the entire vehicle drive system.

The driving motor is the only power source on the pure
electric vehicle, and its performance directly affects the econ-
omy and power of the electric vehicle. To improve the work-
ing efficiency of the drive motor and make it work in the
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high-efficiency range as much as possible, the single-motor-
drive vehicle mainly adopts the economic shift schedule in
advance and then applies this rule to the vehicle model to
carry out the standard working condition simulation exper-
iment. According to the results, the pre-established shifting
rules are corrected to obtain the final economic shifting
curve [6]. Thismethod improves the working efficiency of the
motor to a certain extent, but the predetermined shifting rules
are too complex and are not applicable to general working
conditions. Multimotor driven vehicles have the advantage of
independently controlling driving and braking torque. More-
over, the wheel torque can be arbitrarily distributed according
to the actual road working conditions and the running state of
the vehicle, thereby realizing the control of the longitudinal
dynamic safety and energy saving of the electric vehicle.
At present, multimotor driven vehicles optimize the torque
distribution to improve the motor working efficiency by the
following three methods: drawing the motor efficiency map
according to the motor data, using the polynomial fitting
method to obtain the motor efficiency function and establish-
ing the driving motor loss model.

Scholars have obtained the map of motor speed, demand
torque and motor efficiency and have adopted the off-line
optimization calculation method to obtain the front-axle
torque distribution coefficient of the drive system changewith
the motor speed and demand torque. Furthermore, the two-
dimensional lookup-table method is used to optimize the
torque distribution and carry out the standard working con-
dition simulation experiment. It is concluded that when the
demand torque of the vehicle is small, a single-axis drive
should be used; when the demand torque is large, four-wheel
drive is better. Optimizing torque distribution according to the
motor efficiency map can reduce energy consumption to a
certain extent but requires accurate motor data for support.
Moreover, the accuracy of the front-axle torque distribution
coefficient depends heavily on the difference method used to
plot the motor efficiency map [7]–[9]. Chen et al. [10], [11]
obtained a simplified relationship between motor efficiency
and demand torque by fitting the motor data, but they did not
consider the influence of wheel speed, resulting in unreason-
able torque distribution under certain operating conditions.
Some scholars [12], [13] have proposed to establish a drive
motor loss model for distributed electric drive vehicles to
improve motor drive efficiency. The results show that the
highest drive system efficiency can be obtained by using
the torque average distribution method under straight-line
driving conditions. However, this approach does not consider
the motion state of the vehicle because the acceleration of
the vehicle has a great influence on the drive mode switch-
ing. In terms of longitudinal dynamics safety control, many
scholars have conducted a significant number of research
studies. Hartani et al. [14] considered the difference between
the front and rear wheelbases of the vehicle and found that
the wheel load changes with the longitudinal acceleration
of the body. Therefore, an optimized torque distribution
strategy based on the load ratio is proposed. Although the

load-based proportional distribution strategy can adjust the
torque assigned to the drive wheels in real time according
to the wheel load change, the adhesion limit of the tire
is neglected, resulting in slipping or skidding of the tire
when the vehicle speed is higher [15]. Lu et al. [16] and
Xiong et al. [17] used hierarchical control to optimize torque
distribution. These researchers took the minimum sum of
the tire load rate as the objective function and proposed a
linear quadratic regulator with gaining, and then, they used
the weighted quadratic programming method to optimize the
demand torque. The results showed that the longitudinal force
output reserve of the tire can be greatly improved, thereby
improving the longitudinal driving safety of the vehicle.

However, these scholars considered only the torque distri-
bution under the single objective function. While distributed
electric drive vehicles are a highly complex coupled nonlin-
ear time-varying system, the torque optimization distribution
control strategy should consider multiple objective functions
to meet various vehicle performance metrics. Considering
the efficiency of the driving system of the vehicle and the
driving safety, De Novellis et al. [18] proposed four objective
functions: the minimization of the overall input motor power,
the minimization of the standard deviation of longitudinal tire
slip with respect to the average slip of the four wheels, the
minimization of the total longitudinal slip power loss, and the
minimization of the sum of the tire force coefficients. How-
ever, the authors do not consider the four objective functions
to be integrated into the torque distribution and do not provide
the online optimization method. Guo et al. [19] considered
three objective functions: energy consumption, tire utilization
and torque variation. These researchers set the wheel speed to
a constant value to obtain the motor efficiency as a function
of demand torque. In addition, the weight coefficients of the
three objective functions are fixed values, which makes it
impossible to adjust the priority of the objective function in
real time according to the road conditions to optimize the
effect of torque distribution.

At present, there are many algorithms for dealing with
multi-objective optimization problems: the model predic-
tive control (MPC) algorithm, dynamic programming (DP)
algorithm, multi-objective genetic algorithm (NSGA), multi-
objective particle swarm optimization (MOPSO) [20], multi-
objective evolutionary algorithm (MOEA) [21] and so on.
In [22], the MPC algorithm is used to obtain the optimal
solution under three objective functions. However, if the
gradient and the Hessian matrix of the objective function
are too complex, the computational burden of the MPC will
increase, and the simulation time will be prolonged. In [19],
the improved particle swarm optimization (APSO) algorithm
for optimizing torque distribution was shown to achieve ideal
results, but it satisfies the accuracy requirement at the expense
of increased computation time. In [23], the second genera-
tion nondominated sorting genetic algorithm (NSGA-II) was
used to address multi-objective optimization problems, and
the output from the five standard-difficulty test problems
was compared with that of PAES and SPEA, two other
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multi-objective optimization algorithms. The results showed
that in most problems, NSGA-II can find the optimal solu-
tion near the Pareto frontier, and the convergence effect is
better. According to these studies, the demand torque can
be allocated to the driving wheels through the optimization
algorithm under various constraints to improve the driving
system efficiency and driving safety. However, the different
road conditions of the vehicle cause the priority of the objec-
tive function to change in real-time as well.

To improve the efficiency of the drive system and the
longitudinal driving safety of distributed drive vehicles, this
paper presents the following work. First, in the vehicle non-
linear dynamics model, the response surface method is used
to perform regression analysis on the test data of the drive
motor to obtain the drive motor efficiency function. Second,
based on the demand torque value of the distributed electric
drive system, the objective functions that characterize the effi-
ciency optimization of the drive system and the optimization
of the driving safety of the vehicle are established. The linear
weighting method with adaptive weight coefficient is used to
transform the solution of the above two objective functions
into a multi-objective optimization problem that can adjust
the priority of the objective function in real time according to
road conditions and vehicle body state under constraint con-
ditions. Furthermore, NSGA-II and the hybrid genetic tabu
search algorithm (HGTSA) are used to solve the above multi-
objective optimization problem to obtain the optimal torque
distribution of the distributed electric drive system. Finally,
using NEDC working conditions, NSGA-II, the HGTSA and
commonly used average distribution methods are compared
and verified on the MATLAB/Simulink software platform.

The structure of this paper is as follows. Vehicle dynam-
ics modeling and motor efficiency function modeling are
presented in the second section. The third section proposes
a multi-objective optimization algorithm based on torque
allocation optimization. The fourth section selects the NEDC
operating conditions for simulation experiments. The study’s
conclusions are presented in the fifth section.

II. ESTABLISHING THE MODEL
A. VEHICLE DYNAMIC MODELING
To comprehensively study the kinematic characteristics of
the vehicle, the magic formula tire model [24] was selected.
A seven-degree-of-freedom vehicle model, as shown in
Fig. 1, was established, including three degrees of freedom
of the longitudinal, lateral and yaw of the vehicle body and
the rotational degrees of freedom of the four wheels.

Where u, ν, andωr represent the vehicle longitudinal veloc-
ity, lateral velocity, and yaw rate, respectively. δfl is the front
wheel angle. a and b represent the distance from the front
axle and rear axle to the center of gravity (C.G.), respectively.
lx is the wheelbase between the left and right wheels. Fxi
and Fyi(i=fl,fr,rl,rr) represent the longitudinal tire force and
lateral tire force on the vehicle coordinate frame (o-xyz),
respectively.

FIGURE 1. Seven-degree-of-freedom vehicle model.

According to Figure 1 and Newton’s second law,
the dynamics analysis of the vehicle can obtain the balance
equation of the longitudinal force, lateral force and yaw
torque as follows:

m(u̇− νωr ) =
(
Fxfl + Fxfr

)
cos δfl −

(
Fyfl + Fyfr

)
sin δfl

+Fxrl + Fxrr (1)

m(nu̇+ uωr ) =
(
Fxfl + Fxfr

)
sin δfl +

(
Fyfl + Fyfr

)
cos δfl

+Fyrl + Fyrr (2)

IZ ω̇r = (Fxfl sin δfl + Fyfl cos δfl)a

− (Fxfl cos δfl − Fyfl sin δfl)
lx
2

+ (Fxfrδfl + Fylr cos δfl)a

+ (Fxfr cos δfl − Fyfr sin δfl)
lx
2

− (Fxrl + Fxrr )b+ (Fxrr − Fxrl)
lx
2

(3)

where m is the mass of the entire vehicle. Iz represents the
moment of inertia of the vehicle around the Z-axis.

The equation of motion of the wheel is
Iω
•
ωfl = Tdfl − Tbfl − RWFxfl

Iω
•
ωfr = Tdfr − Tbfr − RWFxfr

Iω
•
ωrl = Tdrl − Tbrl − RWFxrl

Iω
•
ωrr = Tdrr − Tbrr − RWFxrr

(4)

where Iω represents the wheel inertia. Tdi and Tbi represent
the driving torque and braking torque of the four wheels,
respectively. Rw is the rolling radius of the wheel.

B. MOTOR EFFICIENCY FUNCTION MODELING
Tomeet the vehicle performance requirements, the maximum
speed is 160 km/h, and the maximum grade is 40%. The
motor is selected with a peak torque of 320 Nm and a peak
power of 25 kW. The external characteristic curve of each
in-wheel motor is shown in Fig. 2:

The map shown in Fig. 3 is drawn based on the motor
experiment data.

The motor efficiency can be determined simply by know-
ing the motor speed and the required torque. Therefore,
the response surface method is used to perform regression
analysis on the motor data. To obtain an accurate functional
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FIGURE 2. Motor external characteristic curve.

FIGURE 3. Motor efficiency map.

relationship between the response variable and the design
variable, the motor efficiency Y is described by a fourth-order
regression equation with cross terms [25], which is expressed
as follows:

Y =
4∑
i=0
j=0
i+j≤4

βijx i1x
j
2 + ε (5)

whereβ is the regression coefficient and x1 and x2 represent
the design variables: the motor speed and demand torque,
respectively. ε is a random error vector.
The response function model can be described in matrix

form and written as

Y = Xβ + ε (6)

where X is the design variable combination matrix, β is the
regression coefficient matrix, and ε is the random error vector
matrix.

The regression coefficient matrix is estimated by the least
squares method; that is, the sum of squared errors of equa-
tion (6) is minimized.

The least squares function L is

L =
n∑
i=1

ε2i = ε
′ε = (Y − Xβ)′(Y − Xβ) (7)

where ε′ is the transposed matrix of ε.
The least squares function is minimized with respect to

the regression coefficient. The least squares estimator β̂ must
satisfy

∂L
∂β

∣∣∣∣
β̂

= −2X ′Y + 2X ′X β̂ = 0 (8)

Thus, the least squares estimator and the fitted regression
model can then be obtained as

β̂ = (X ′X )−1X ′Y (9)

Ŷ = X β̂ (10)

According to the calculation method of the above formula
(5)-(10), the coefficient vector β of the fourth-order regres-
sion equation of Y is obtained as
β=[2.4637e-04, 0.0026, 0.0113, 4.4833e-06, 8.94445e-

06, 9.2713e-05, 3.2682e-09, 6.6470e-09, 4.5393e-08,
2.9895e-07, 8.5545e-13, -1.7241e-12, 1.3175e-11, 6.4230e-
11, 3.4565e-10]

Therefore, the functional relationship between motor effi-
ciency, motor speed, and demand torque can be expressed as

η = 2.4637 ∗ 104 + 0.0026n+ 0.0113T − 4.4833

∗ 106n2-8.94445 ∗ 106n ∗ T − 9.2713 ∗ 105T 2

+ 3.2682 ∗ 109n3 + 6.6470 ∗ 109n2 ∗ T+ 4.5393

∗108n ∗ T2
+ 2.9895 ∗ 107T 3

− 8.5545 ∗ 1013n4

− 1.7241 ∗ 1012n3 ∗ T-1.3175 ∗ 1011n2

∗T2
− 6.4230 ∗ 1011n ∗ T3

− 3.4565 ∗ 1010T4 (11)

To test the accuracy of the fourth-order model, the scatter
plot of the motor speed, demand torque, and motor efficiency
based on the fourth-order function of motor efficiency and the
data-based scatter plot are shown in Fig. 4.

FIGURE 4. Motor efficiency scatter plot.
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Equation (11) is used to calculate each estimated value Ŷ of
the response variables in Figure 4, and the remaining standard
deviations can be calculated from

SY |1,2,...O =

√√√√ h∑
i

(Yi − Ŷi)2

h− o− 1
(12)

where h is the number of motor data point, and o is the
number of independent variables. The remaining standard
deviation is 0.0208, which shows that the fourth-order motor
efficiency function obtained from the regression analysis can
well represent the relationship between motor speed, demand
torque and motor efficiency.

III. TORQUE OPTIMIZATION ALLOCATION STRATEGY
A. CONTROL STRATEGY
A flowchart of the torque optimization allocation strategy
proposed in this paper is shown in Fig. 5.

FIGURE 5. Control strategy flowchart.

At the upper level of the controller, the demand torque
moment can be calculated from the driver’s intention and
the vehicle sensor data together with the wheel speed as an
input to the torque distribution execution layer. In the lower
layer of the controller, objective functions that characterize
the optimization of the drive system and the optimization
of the driving safety of the vehicle are established. Then,
the linear weighting method with adaptive weight coeffi-
cient is used to transform the solution of the above two
objective functions into a multi-objective optimization prob-
lem that can adjust the priority of the objective function
in real time according to the road conditions and vehi-
cle body state under constraint conditions. Furthermore,
NSGA-II and the HGTSA are used to solve the above multi-
objective optimization problem to obtain the optimal torque
distribution of the distributed electric drive system. Finally,
using NEDC working conditions, NSGA-II, the HGTSA
and commonly used average distribution methods are com-
pared and verified on the MATLAB/Simulink software
platform.

B. OBJECTIVE FUNCTION
1) DRIVE SYSTEM EFFICIENCY OBJECTIVE FUNCTION
The driving efficiency of the system is equal to the output
power divided by the input power.

ηSystem =
Td · n

Tdfl ·nfl
ηfl
+

Tdfr ·nfr
ηfr
+

Tdrl ·nrl
ηrl
+

Tdrr ·nrr
ηrr

(13)

To improve the driving efficiency of the system, it is
necessary to reduce the input power of the entire vehicle.
Therefore, the minimum input power of the vehicle is used
as the objective function to characterize the drive system
efficiency:

J1 = min(
Tdfl · nfl
ηfl

+
Tdfr · nfr
ηfr

+
Tdrl · nrl
ηrl

+
Tdrr · nrr
ηrr

)

(14)

where ηi (i=fl,fr,rl,rr) can be calculated from the motor effi-
ciency function (11).

Assume that the left and right wheel torques and speeds are
equal:

J1 = min(
2 · Tdfl · nfl

ηfl
+

2 · Tdrr · nrr
ηrr

) (15)

The constraints that correspond to the objective function
are ∑

Tdi = Td
Tdim in ≤ Tdi ≤ Tdim ax (16)

2) DRIVING SAFETY OBJECTIVE FUNCTION
The output reserve of the longitudinal force of the tire can be
expressed by the tire load rate γ :

γi =
Fxi
µFzi

i = fl, fr, rl, rr (17)

where µ is the road surface adhesion coefficient and
Fxi and Fzi represent the longitudinal force and vertical
force of each tire, respectively. The longitudinal force can be
obtained from the tire torque:

Fxi =
Tdi
R
i = fl, fr, rl, rr (18)

When the tire load rate γ is large, the longitudinal force
accounts for a larger proportion in the friction ellipse, and the
proportion of the lateral force decreases accordingly. When
γ =1, the longitudinal force that the tire can provide at this
time has reached the adhesion limit, and the lateral force is
equal to 0, whichmeans that the vehicle’s operational stability
and driving safety are relatively poor. Therefore, it is desirable
for the tire load rate γ to remain as small as possible to
increase the longitudinal force output reserve and the vehicle
stability margin. When the tire load rate γ is small, the lateral
force margin increased and the driving safety is improved,
and the motor input power is small, which can improve
the driving efficiency of the vehicle to a certain extent.
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Based on this condition, the objective function J2 that char-
acterizes driving safety is determined as follows:

J2 = min
∑

γi = min
∑ Tdi

/
R

µFzi
i = fl, fr, rl, rr (19)

3) MULTI-OBJECTIVE OPTIMIZATION FUNCTION
Many scholars use the linear weighting method, geomet-
ric weighting method, adaptive weight coefficient and other
methods to transform the multi-objective optimization prob-
lem into a single-objective optimization problem:{

min f (x)
S.tx ∈ X

(20)

where f(x) is the transformed single-objective function and X
is the corresponding constraint.

Because the linear weighting method has the advantages
of simplicity and high efficiency, the adaptive weighting
coefficient can change the weighting coefficient in real time
according to the actual situation to obtain the optimal result.
Therefore, this paper uses the linear weighting method with
adaptive weight coefficients to transform the above two
objective functions into a single-objective optimization func-
tion. First, the two objective functions are unified by the max-
min normalization method.

fi (x) =
fi (x)max − fi (x)

fi (x)max − fi (x)min
i = 1, 2 (21)

In the case of low speed and good road conditions, the effi-
ciency of the drive system is improved to obtain satisfactory
economical driving performance of the vehicle. However,
in the case of high speed or poor road conditions, the safety
of the vehicle should be ensured first. The adaptive weight
coefficient ω value is a segmentation function of the road
surface adhesion coefficient µ and the speed u:
ω=(ω1max−ω1min)·sin(

u
umax

)+ω1min if 0.7 ≤ µ ≤ 1

ω=(ω2max−ω2min)·sin(
u

umax
)+ω2min if µ < 0.7

(22)

where ω1max, ω1min, ω2max\andω2min represent the maximum
and minimum of the weighting coefficients of the first objec-
tive function on the high-adhesion and low-adhesion road
surfaces, respectively.

Thus, the optimized objective function J is

J = ω1J1 + ω2J2 (23)

The corresponding constraints are∑
Tdi = Td

Tdim ax ≤ Tdi ≤ Tdim ax (24)

C. OPTIMIZATION ALGORITHM
1) SECOND-GENERATION NONDOMINATED
SORTING GENETIC ALGORITHM
This paper studies the nonlinear multi-objective optimization
problem with constraints. At present, there are two solutions.
One is to use the weight coefficients proposed in the previous
section to weight each objective function as a single objective
function. The other is to simultaneously optimize multiple
target functions to generate a set of Pareto optimal solutions
and then determine which solution is optimal.

The nondominated sorting genetic algorithm (NSGA) was
originally proposed by Srinivas and Deb [26]. Although it can
effectively address multi-objective optimization problems,
it also has some disadvantages: computational complexity,
lack of elitism and the need to develop shared parameters.
To address the deficiencies of the NSGA, Deb et al. [23]
proposed NSGA-II. The advantages of NSGA-II over NSGA
are as follows: fast nondominated sorting operator design,
individual crowding distance operator design, and elite strat-
egy selection operator design.

The main steps of NSGA-II are as follows:

a: POPULATION INITIALIZATION
Randomly generate the initial population, set the number of
objective functions and variables, and set constraints.

b: NONDOMINATED SORTING
The initialized population is sorted according to nondomina-
tion using the following pseudocode.

c: CROWDING DISTANCE
After nondominated sorting, the rank ordering Fronti of each
individual is obtained. To perform selective sorting within
individuals of the same rank, it is necessary to calculate the
crowded distance of the individual. The crowded distance of
the individual i is the distance between the two individuals
i+1 and i−1 adjacent to i in the target space. By preferentially
selecting individuals with large crowding distances, the cal-
culation results can be uniformly distributed in the target
space to maintain the diversity of the population.

d: SELECTION AND RECOMBINATION
The generated children population is reorganized with the
parent population, retaining elite individuals in their respec-
tive populations and passing them on to the next generation.
Based on nondominated sorting and individual crowding dis-
tances, inferior individuals are eliminated until the current
population size is met.

(5) Crossover and mutation
Simulated binary crossover is shown below.

c1,k =
1
2

[
(1− βk) p1,k + (1+ βk) p2,k

]
(25)

c2,k =
1
2

[
(1+ βk) p1,k + (1− βk) p2,k

]
(26)
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where ci,k is the ith child’s kth component and pi,k is the
selected parent. βk (≥0) is calculated as follows:

p (β) =
1
2
(ηc + 1) βηc , if 0 ≤ β ≤ 1 (27)

p (β) =
1
2
(ηc + 1)

1
βηc+2

, if β > 1 (28)

where ηc is the distribution index for crossover. If u is
between (0,1),

βu = (2u)
1

(η+1) (29)

βu =
1

[2 (1− u)]
1

(η+1)

(30)

and simulated binary crossover is complete. Next, carry out
polynomial mutation:

ck = pk +
(
puk − p

l
k

)
δk (31)

where ck is the child, pk is the parent, and puk and pik are
the upper bound and lower bound of the parent component,
respectively. δk is a small variation, which is calculated from
a polynomial distribution by using

δk = (2rk)
1

ηm+1 − 1, if rk < 0.5 (32)

δk = 1− [2 (1− rk)]
1

ηm+1 , if rk ≥ 0.5 (33)

where rk is a uniformly sampled random number within (0,1)
and ηm is the mutation distribution index.
To obtain the compromise solution of the objective func-

tion from the Pareto optimal solution output by NSGA-II,
the following membership function [27], [28] is established:

µi (k) =


1 Fi (k) ≤ δi

Fimax − Fi (k)
Fimax − δi

δi < Fi (k) < Fimax

0 Fimax < Fi (k)
i = 1, 2 and k = 1, 2 · · ·P

δi = Fimax − θi (Fimax − Fimin) 0 ≤ θi ≤ 1 (34)

where Fimax and Fimin represent the maximum and minimum
values of the two objective functions, respectively. P is the
number of Pareto optimal solutions, and µi is the member-
ship value of each solution corresponding to the objective
function.
θi can be adjusted in real time according to the speed of the

vehicle and the actual working conditions of the road. At the
same time, the selection of the θi value affects the choice of
the compromise solution. When θ1 = 1, θ2 = 0, choose the
compromise solution with the minimum input power; when
θ1 = 0, θ2 = 1, choose the compromise solution with the
minimum tire load rate; when θ1 = 1, θ2 = 1, choose
a compromise solution with the minimum input power and
minimum tire load rate.

µT (k) =
µ1 (k)+ µ2 (k)
P∑
i
(µ1 (i)+ µ2 (i))

k = 1, 2 · · ·P (35)

The above formula is an aggregate function of two member-
ship functions; the µT value of each Pareto optimal solution
is calculated, and the largest µT value is selected as the
compromise solution.

Assume that the initial speed of the vehicle is 50 km/h and
that the acceleration is 0.1 g. The relationship between the two
objective functions when driving on a favorable road surface
is shown in Fig. 6.

FIGURE 6. Best compromise solution of the Pareto-optimal solution in
the example.

Where f(1), f(2) represent the objective functions that char-
acterize the optimization of the drive system efficiency and
the optimization of the vehicle driving safety, respectively.
The red point represents the best compromise solution of the
objective functions because the value of the sum function of
the two objective functions is the largest at this point.

2) HYBRID GENETIC TABU SEARCH ALGORITHM
a: GENETIC ALGORITHM
The GA [29] is a parallel, efficient, global search method that
simulates the genetic and evolutionary processes of biological
systems in the natural environment. It uses only the fitness
function values transformed from the objective function val-
ues to determine further search directions and search ranges
without the need for other auxiliary information, such as the
derivative value of the objective function. Relative to con-
ventional optimization algorithms, the obstacle of function
derivation is avoided, which makes the genetic algorithm
highly advantageous. In recent years, with the rise of artificial
intelligence, the development of GAs has been very rapid,
particularly in the field of multi-objective optimization. The
algorithm starts with a randomly generated population, and
the individuals in the population are described by two-level
strings. The number of binary strings mj is calculated by the
following formula:

2mj−1 < (bj − aj)× 10i ≤ 2mj − 1 (36)

where aj and bj represent the upper and lower bounds of the
individual constraint range, respectively, and i is the required
precision.
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The decimal value of the individual pj is returned from the
binary string using the following formula:

pj = aj + decimal(substringj)×
bj − aj
2mj − 1

(37)

where decimal(substringj) represents the decimal value of the
individual pj.

The evaluation objective function is determined, and the
objective function value is converted into the fitness value.
In addition, a selection operator is used to select superior
individuals from the current population to carry over to the
next generation. ‘‘Roulette wheel selection,’’ one of the ear-
liest selection methods used in the genetic algorithm, was
proposed by Holland. Because it is simple and practical, it is
widely used. This is a ratio-based choice, and the selection
probability of each individual can be expressed by the fol-
lowing equation:

pj =
fj

NP∑
j=1

fj

(j = 1, 2 · · · ,NP) (38)

where NP is the size of the population and fj is the fitness of
individual j.

Furthermore, all individuals in the group are randomly
paired off; each pair exchanges part of their chromosomes
with a predetermined crossover probability to obtain a new
individual that combines the superior characteristics of the
parents, and the search capability of the genetic algorithm is
greatly improved. Furthermore, each individual in the group
changes a certain gene value with a predetermined mutation
probability to obtain a new individual. As the evolution pro-
gresses, the individuals with lower fitness gradually phase
out until the termination condition is met, and the optimal
individual is the optimal solution.

b: TABU SEARCH (TS) ALGORITHM
The TS algorithm [30] is an intelligent search algorithm that
simulates human thinking. That is, people will not search the
key location immediately but rather search other locations.
If not found, then they search the locations that have been
visited. This technique can accommodate any type of objec-
tive function and optimization problems under corresponding
constraints. Relative to genetic algorithms, TS has flexible
memory functions and contempt criteria. By setting a tabu
table, the algorithm can be prevented from revisiting the
solutions that have been accessed during the most recent
iterations, thus preventing loops. In addition, this approach
can help algorithms avoid local optimal solutions and turn
to other regions of the solution space, thereby increasing the
probability of obtaining a better global optimal solution. The
specific steps are as follows:

1. Given the tabu search algorithm parameters, the initial
solution is randomly generated, and the tabu table is set to an
empty set.

Algorithm 1 Nondominated Sorting Algorithm
for each q∈M
Sp = Ø
np = Ø
for each q ∈M
if p < q

Sp=Sp∪{q}
else if q < p:
np =np+1

if np = 0
prank = 1

F1 =F1∪{p}
i=1
while Fi 6=Ø
Q =Ø

for each p∈Fi
for each q∈Sp

np= np − 1
if np=0

qrank = i+1
Q=Q∪{q}

i=i+1
Fi=Q

2. Determine whether the algorithm condition is satisfied:
if yes, the algorithm ends and outputs the optimal solution;
otherwise, it continues.

3. The neighborhood function of the current solution is
used to generate several neighborhood solutions, and several
candidate solutions are determined therefrom.

4. It is evaluated whether the candidate solution satisfies
the contempt criterion: if yes, the best state y satisfying the
contempt criterion is used instead of x as the new current
solution, that is, x=y. Then, the tabu object that entered the
tabu table is replaced with the tabu object corresponding to y,
which replaces the optimal state with y, and we go to step (6);
otherwise, we continue.

5. Determine the tabu attribute of each object correspond-
ing to the candidate solution, select the best state correspond-
ing to the non-tabu object in the candidate solution set as the
new current solution, and replace the tabu object that entered
the tabu table with the tabu object corresponding thereto.

6. Determine whether the algorithm termination condition
is satisfied: if yes, the algorithm ends to output the optimal
solution; otherwise, the process proceeds to step 3.

c: HYBRID GENETIC TABU SEARCH ALGORITHM
Based on the group search strategy and simple genetic
operators, the genetic algorithm has powerful global search
ability, information processing parallelism and application
robustness. However, a large number of practices and stud-
ies have shown that genetic algorithms have poor local
search ability, exhibit a ‘‘premature’’ phenomenon, move
around in the vicinity of the optimal solution, and exhibit
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Algorithm 2 Hybrid Genetic Taboo Search Algorithm
Initialize the parameters, set the maximum evolution alge-
bra G, randomly generate the initial population P of N
individuals, establish a fitness function, and empty the
taboo table (TT).
for i=1:G
for j=1:N

Calculate the fitness values of individual individuals
in the population.
end
Perform copy, cross, and mutate operations
end
Output the optimal solution as the current solution (CUS)
and best-so-far solution (BS) of the taboo search algorithm.
g=1
while g<G
for i=1:ca
generate neighborhood solutions (NSs) and determine

several candidate solutions (CASs).
end
if fCAS ≤fCUS
CUS=CAS, update the TT.
g=g+1

else
if fCAS≥fCUS
the improved solution (IS) of CAS is assigned to

the CUS; update the TT.
BS=IS

g=g+1
else

if IS/∈TT
CUS=CAS; update the TT.

g=g+1
else

NS=CUS
end
end

end
end

slow convergence. The tabu search algorithm has strong local
search ability. By setting the length of the tabu table reason-
ably, the loop can be escaped to find the optimal solution.
However, there is a strong dependence on the initial solution.
A satisfactory initial solution can make the TS search find a
better solution in the solution space, while a poor initial solu-
tion reduces the convergence speed of the tabu search. In this
paper, the advantages of the genetic algorithm and tabu search
algorithm are combined, and the HGTSA is proposed. First,
the global search ability of the genetic algorithm is used to
conduct a global search. The search result is used as the
initial solution of the tabu search algorithm, and then the tabu
search algorithm is used for a local search to find the optimal
solution. The pseudocode is as follows:

IV. SIMULATION AND TEST VALIDATION
In this section, according to the 7-degree-of-freedom vehicle
model established in the second section, a simulation analysis
is performed on the MATLAB/Simulink software platform
to validate the effectiveness of the proposed control strategy.
The vehicle parameters used are shown in Table 1:

TABLE 1. Basic parameters of the vehicle.

A. HIGH-ADHESION ROAD SURFACE NEDC
CONDITION SIMULATION
The road surface adhesion coefficientµ is 1, and initial speed
of the vehicle is 50 km/h. The NEDC speed mode simulation
experiment is performed.

FIGURE 7. Speed response.

Figure 7 shows the speed response, which can be found
on the high-adhesion road; the three distribution methods can
well track the desired speed.

Figure 8 shows the torque response; when the car is driving
at a constant speed, it is mainly driven by the rear axle.
By using the HGTSA and the NSGA-II algorithm to opti-
mize the torque distribution, the single-axle drive and the
four-wheel drive can be switched according to the demand
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FIGURE 8. Torque response.

torque, but the front and rear wheel torques distributed by the
two optimization algorithms are not much different.

Figure 9 shows the energy efficiency response, indicating
that the results of the HGTSA and NSGA-II algorithm to
optimize the torque distribution, front- and rear-axis motor
efficiency and system drive efficiency are almost the same
and are much higher than the average distribution. Figure 9d
shows that the energy consumption of the optimized vehicle
after distribution is less than the average distribution.

Figure 10 shows the distribution of the motor operating
points, and Figure 10a shows a distribution diagram of the
average distributed motor operating point. Most of the oper-
ating points fall within the motor efficiency range of 0.6-0.8,
and the motor working capacity is not fully utilized.
Figure 10b and 10c present a distribution diagram of the
operating point of the motor using the NSGA-II and HGTSA
algorithms to optimize the torque distribution. The propor-
tion of the front-axle motor and the rear-axle motor falling
within the range of the motor efficiency greater than 0.8 is
greatly increased. Both optimization algorithms fully exploit
the working potential of the motor to improve the efficiency
of the drive system.

FIGURE 9. Energy efficiency response.

The performance indicators on the high-adhesion road sur-
face coefficient experiment are shown in Table 2.

According to the results of Table 2, the ratio of the
motor efficiency that is greater than 0.8 after the torque
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FIGURE 10. Motor operating point distribution diagram. (a) Average.
(b) NSGA-II. (c) HGTSA.

distribution using the HGTSA is 94.27%, which is only
0.04% above the ratio of 94.23% after the torque distribution
using the NSGA-II algorithm. This value is much larger
than the ratio of the average distributed motor efficiency,
which is 16.13%. There is almost no difference in the vehicle
consumption after the two optimization algorithms perform
torque distribution. The energy consumed by the HGTSA for

TABLE 2. Performance indicators on high-adhesion roads.

FIGURE 11. Tire load rate.

torque distribution is reduced by 150.94 kJ relative to the
average allocated energy consumption, which is only 1.34 kJ
less than the energy consumed by the NSGA-II algorithm for
torque distribution.

Figures 11 and 12 show the tire load rate and wheel slip
rate, respectively. The results of torque distribution using the
HGTSA optimization algorithm are close to those obtained
using NSGA-II for torque optimization. However, from the
front-wheel load factor and the rear-wheel load rate of
Figures 11a and 11b, when the car is running at a constant
speed, the front- and rear-wheel load rates are smaller than
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FIGURE 12. Wheel slip rate.

the average distribution. The longitudinal safety margin of
the car is higher. As shown in Figure 12a, the front wheel is
always in a slip-and-roll state and is only in a slip-and-move
state when the car accelerates. Although Figure 12b shows
the rear wheel slipping in a slip-and-move state at constant
speed and acceleration, the slip ratio does not exceed 1.5%.

B. LOW-ADHESION ROAD SURFACE NEDC
CONDITION SIMULATION
The road surface adhesion coefficient µ is 0.4, and the initial
vehicle speed is 30 km/h. The NEDC working condition
simulation experiment is carried out.

Figure 13 shows the speed response. On low-adhesion
roads, the three distribution methods also track the desired
speed very well.

Figure 14 shows the torque response, which optimizes
the torque distribution convergence on the low-adhesion
road using the NSGA-II algorithm. When the car acceler-
ates or decelerates, it frequently switches between single-axis
drive and four-wheel drive, which affects the ride comfort to
some extent.

Figure 15 shows the energy efficiency response. The
HGTSA is better than the NSGA-II algorithm for optimizing

FIGURE 13. Speed response.

FIGURE 14. Torque response.

the torque distribution. Moreover, according to the vehicle
energy consumption curve of Figure 15d, the energy con-
sumption of the torque distributed by NSGA-II is larger than
the average distribution due to the frequent switching of the
operating mode of the motor.

Figure 16 shows the motor operating point distribution,
and Figure 16b shows a motor operating point distribution
that optimizes torque distribution using NSGA-II. The motor
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FIGURE 15. Energy efficiency response.

has more operating points than the average distribution and
optimization of torque distribution using the HGTSA because
the simulation uses a variable step size. Figure 16c uses the

FIGURE 16. Motor operating point distribution. (a) Average. (b) NSGA-II.
(c) HGTSA.

HGTSA to optimize torque distribution. Fast convergence is
achieved, and most of the operating points fall within the
range where the motor efficiency is greater than 0.8.

The performance indicators on the low-adhesion-
coefficient road surface experiment are shown in Table 3.

According to the comparison of the results in Table 3,
the ratio of motor working efficiency greater than 0.8 after
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TABLE 3. Performance indicators in a low-adhesion setting.

using the HGTSA to optimize torque distribution is 49.38%,
which is 8.48% higher than using NSGA-II. The torque dis-
tribution is increased by 35.96% over the average value.

FIGURE 17. Tire load rate.

Figures 17 and 18 show the tire load rate and wheel
slip rate, respectively. From Figure 17a, when the vehi-
cle is running at a constant speed, the front-axle load rate
after optimizing the torque distribution using NSGA-II and

FIGURE 18. Wheel slip rate.

FIGURE 19. Tire load rate.

the HGTSA is always lower than the average distribution.
Nevertheless, the rear-axle load rate is increased, particu-
larly when the car accelerates or decelerates in Figure 17b.
Figure 18a shows the front-wheel slip rate, which slips only
when the car is accelerating. However, the rear-wheel slip
ratio as shown in Figure 18b, although always in a slip
state, does not exceed 4%. On the low-adhesion road surface,
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FIGURE 20. Road adhesion coefficient.

FIGURE 21. Torque response.

the HGTSA is used to optimize the torque distribution to
improve the efficiency of the drive system and ensure driving
safety at the same time. Relative to NSGA-II, the oscillation
is small near the optimal distribution torque value, and the
convergence effect is satisfactory.

C. NEDC CONDITION SIMULATION UNDER A
CHANGING-ADHESION ROAD SURFACE
The road surface adhesion coefficient µ is variable, and the
initial vehicle speed is 50 km/h. The NEDC working condi-
tion simulation experiment is carried out.

FIGURE 22. Energy efficiency response.

Figure 19 shows the speed response, which indicates that
the three distribution methods can also well track the desired
speed on the road with changing adhesion.
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FIGURE 23. Motor operating point distribution. (a) Average. (b) NSGA-II.
(c) HGTSA.

Figure 20 shows the road adhesion coefficient has a
step when time is 50 seconds. The road surface adhesion
coefficient µ is 0.4 before 50 seconds; after 50 seconds,
the road adhesion coefficient is 1.

Figure 21a and 22c show that using the HGTSA is better
than using the NSGA-II algorithm to optimize the torque
distribution when the road adhesion coefficient changes from
0.4 to 1. In addition, when the vehicle is driving on the

FIGURE 24. Tire load rate.

high-adhesion or low-adhesion road surface, the simula-
tion results are the same as those of experiment A and
experiment B.

As shown in Figure 23b and 23c, the result of using
NSGA-II and the HGTSA to optimize the torque distribution
are the same because the simulation time is too short and
the data sampling points are too small. However, both of the
optimization algorithms fully exploit the working potential of
the motor than average distribution.

The performance indicators on the changing-adhesion-
coefficient road surface experiment are shown in Table 4.

There is almost no difference in the vehicle consumption
by using two optimization algorithms to optimize torque
distribution. However, the ratio of the motor efficiency is
greater than 0.8, which is far greater than average distribution.
In addition, the energy consumed by the HGTSA for torque
distribution is reduced by 74.6 kJ relative to the average
allocated energy consumption.

Figures 24 and 25 show the tire load rate and wheel
slip rate, respectively. When the road adhesion coefficient
changes from 0.4 to 1, as shown in Fig. 24a, the front wheel
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FIGURE 25. Wheel slip rate.

TABLE 4. Performance indicators under low-adhesion conditions.

tire road rate after optimizing the torque distribution using the
HGTSA is smaller than that using NSGA-II and the average
distribution. As shown in Fig. 25a, the front wheel slip rate is
also the smallest by using the HGTSA to optimize the torque
distribution.

V. CONCLUSIONS
This paper proposes a multi-objective optimization method
based on torque allocation optimization, which improves
the longitudinal driving safety and driving system efficiency
of distributed electric drive vehicles. The key contributions
include the following:

1) The response surface method is used to perform regres-
sion analysis on the test data of the drivemotor to obtain
the drive motor efficiency function.

2) The optimal torque distribution of the distributed elec-
tric drive system is obtained, and the HGTSA and
NSGA-II are proposed to solve the multi-objective
optimization problem.

3) The NEDC operating conditions are selected to verify
NSGA-II, the HGTSA and commonly used average
distribution methods. The simulation results show that
NSGA-II and the HGTSA can improve the driving
efficiency and vehicle driving safety of distributed elec-
tric drive systems relative to the average distribution
method. In particular, the optimization effect of the
HGTSA is more prominent, and stability is achieved
more quickly.
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