IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 18, 2018, accepted January 12, 2019, date of publication January 22, 2019, date of current version February 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2894167

Analytical Approach of Director Tilting in Nematic
Liquid Crystals for Electronically Tunable Devices

ANTONIO ALEX-AMOR “12 ADRIAN TAMAYO-DOMINGUEZ“2,
ANGEL PALOMARES-CABALLERO'3, JOSE M. FERNANDEZ-GONZALEZ 2,
PABLO PADILLA “3, JUAN VALENZUELA-VALDES?, AND ANTONIO PALOMARES*

I Departamento de Lenguajes y Ciencias de la Computacién, Universidad de Malaga, 29071 Malaga, Spain
2Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain
3Departamento de Teoria de la Sefial, Telematica y Comunicaciones, Universidad de Granada, 18071 Granada, Spain
“Departamento de Matematica Aplicada, Universidad de Granada, 18071 Granada, Spain

Corresponding author: Antonio Alex-Amor (aalex @gr.ssr.upm.es)

This work was supported in part by the Spanish Research and Development National Program under Project TIN2016-75097-P, and in part
by the Ministerio de Economia under Project TEC2017-85529-C3-1-R.

ABSTRACT This paper presents an analytical expression that models the tilt angle of directors in a nematic
liquid crystal (LC), depending on its elastic properties, its dielectric anisotropy, and the quasi-static electric
field applied. The analytical solution obtained is fast and easily computable in comparison with numerical
estimations and is of special interest in radiofrequency; for instance, for the LC modeling in full-wave
electromagnetic simulators in the design process of electronically tunable devices, such as microwave phase
shifters or electronically steerable antennas for satellite communications. Subsequently, a comparison is
made between numerical approaches (self-implemented shooting method) and the analytical formulas when
varying the parameters of the LC, being demonstrated its usefulness. The average LC director is then obtained
and used to form the full permittivity tensor that completely characterizes the electrical properties of the
material. Finally, an electromagnetic simulation is carried out to show the capabilities of the LC as a tunable
phase shifter. It is shown that only 5 cm of a commercial 200-um LC mixture is necessary to achieve 360°

of the maximum variable phase shift at the 30-GHz band.

INDEX TERMS Liquid crystal, nematic phase, analytical expression, microwave, phase shifting.

I. INTRODUCTION

Of the most impacting technologies created over the past
thirty years, mobile communications is one of the most
prominent. The demand for a higher quality of service,
throughput, and efficiency has led to exploring new frequency
ranges, new technologies, and new materials. It has led to
the fifth generation of mobile communications (5G). Con-
trolling the radiation parameters of the antennas is one of
the critical technological challenges that have arisen, since
adaptive beamforming is expected to play an important role
in 5G networks [1]. For this reason, new materials such as
graphene [2], ferroelectrics [3] or liquid crystal (LC) [4] are
beginning to be used for the design of microwave tunable
devices.

The design of devices based on liquid crystal substrates
with electronically controllable permittivity allows their
phase response to be controlled. That property converts
the LC into a substitute for other components, such as

varactors, PIN diodes or ferrites. Electronic phase control
is a key factor in radiofrequency, as it permits control-
ling the propagation direction and reconfiguration of the
main beam in communication systems [5], [6]. For instance,
Perez-Palomino et al. [7] use the dielectric anisotropy of
the liquid crystal to design a reconfigurable reflectarray.
The results show that the prototype operates from 96 to
104 GHz with an astonishing performance. On the other
hand, Karabey et al. [8] present a 2-D electronically steered
phased array antenna based on microstrip patches. The array
is fed through a tunable spiral-shape line suspended on liquid
crystal, which offers a phase shift up to 300° when polarizing
the LC from O to 15 Volts. Hu et al. [9] create a frequency
selective surface (FSS) that implements a 140 GHz tunable
bandpass filter based on the use of a 10 Volts polarized liquid
crystal. They also demonstrate the potential to transform the
FSS into a reflecting structure (a notch filter). As a last
example, new trends are trying to exploit the concepts of
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FIGURE 1. Ridge gap waveguide to exploit the phase shift provided by a
liquid crystal confined between two metallic plates (marked in red). The
electric field appears marked in black.

groove/ridge gap waveguide [10], [11] to design novel phase
shifters that make use of liquid crystal, typically confined
between two parallel plates. Figure 1 depicts more clearly a
possible design, based on the use of ridge gap waveguide. The
ridge progressively confines the electric field into the liquid
crystal and the anisotropy of the LC is used to control the
phase shift in the structure.

The equations that rule the behavior of the liquid crystal
typically lacks an analytical solution. Thus, finite differ-
ence (FDM) and finite element (FEM) methods are com-
monly used to obtain numerical approaches. For instance,
finite difference and Runge-Kutta algorithms are applied
in [12] in order to model the relaxational dynamics of liquid
crystals under applied electric fields. Likewise, the finite
difference method is used in [13] to solve the equations of
the Ericksen-Leslie dynamic theory. On the other hand, 2D
and 3D finite element methods are used in [14] and [15],
respectively, to model the non-uniform electric and director
fields in the liquid crystal. More recent studies have made
use of a finite-difference frequency-domain method [16] and
a finite element method [17] to analyze diffraction effects
and wave propagation through liquid crystal devices. Another
numerical approach to solve boundary problems like this one
makes use of the shooting method (depicted in section IV.C).
Thus, Guan et al. [18] obtain the response times in liquid
crystal displays. A numerical comparison among the use of
the shooting method, the FDM, and the Matlab bvp4c solver
is presented in [19].

In this paper, we propose an analytical expression that
models the behavior of a LC confined between metallic
plates. This analytical expression substantially accelerates
any electromagnetic simulation that makes use of this novel
tunable material. The document is therefore organized as
follows: Sections I and II introduce the main characteris-
tics of the liquid crystal and its use as a tunable device.
Section IIT focuses on simplifying the differential equation
that models the tilt angle of directors in the LC. Section IV
presents the analytical solution and a comparison with a self-
implemented shooting method. Section V describes through-
out an example how to properly use the analytical expres-
sion in practice. Section VI is reserved to study the use
of the liquid crystal as a phase shifter in a full wave elec-
tromagnetic simulator. Finally, conclusions are drawn in
Section VIL.
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FIGURE 2. Director distribution in a nematic liquid crystal enclosed by
two metallic plates.

Il. BASIC PROPERTIES OF A NEMATIC LIQUID CRYSTAL
CONFINED BETWEEN METALLIC PLATES

There exist several phases in which liquid crystal can be
found. One of the most common used in microwave is the
nematic phase, wherein the molecules are oriented in the
same average direction. Therefore, as shown in Fig. 2, from
the definition of the directors 7;, most properties of liquid
crystal can be studied, as for example its dielectric anisotropy.
For its proper characterization, it is especially important to
know how directors are oriented in the liquid crystal along
the direction z, that is, (z). Once determined, its average
director tilt angle 6,, is used to form the full permittivity
tensor & that completely characterizes the material, and allows
to study its properties as a phase-shifting element in a full-
wave electromagnetic simulator.

When the LC is confined between two parallel metallic
plates and an uniform z-oriented quasi-static electric field is
applied on it (E = E,2), the molecules are free to rotate in
the Y-Z plane and the permittivity tensor can be expressed as

_ &1 0 0
e=| 0 e + Accos? () Aesin (6y,)cos (6,) €))
0 Aesin (6,)cos (6) €1 + Aesin® (0,)

where ¢ is the perpendicular permittivity, &/, is the par-
allel permittivity, and Ae = ¢, — e is the dielec-
tric anisotropy [20]-[22]. These parameters are specific to
each material. When an elevated quasi-static electric field
is applied (a high potential drop), the molecules tend to
be oriented perpendicularly to the metallic plates, whereas
when this electric field is reduced or null, the molecules are
oriented parallel to the metallic plates. Additionally, the plates
physically impose the molecules to be placed parallel to them
at their interfaces with the liquid crystal,z =0 and z = d.

The average behavior of molecules in a liquid crystal
confined between metallic plates is modeled according to
differential equation (2), which is presented in section III.
Because there is no analytical expression that satisfies our
requirements, we are forced to perform numerical analysis
in order to obtain the solution sought. This is tedious in this
particular case and may be of relative difficulty.

IIl. THE DIFFERENTIAL EQUATION
The differential equation that models the director variation
in a liquid crystal (LC) in the nematic phase as a conse-
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quence of the application of a uniform quasi-static elec-
tric field (electric-field-induced splay Fréedericksz transi-
tion [23]) was presented in [24] as

2

d-6
2 )
<k11 cos” 0 + k33 sin 9) iz

do\?
+(k33—k11)<d—> sinf cos@ + Bsinfcosd =0 (2)
Z

where k1| and k33 are elastic constants, § = goAcE?, g9 =
8.85 - 10~!2 F/m is the vacuum permittivity, Ae = g/ — &L
is the liquid crystal dielectric anisotropy, E is the module of
the quasi-static electric field applied and 6(z) is the director
tilt angle, in regard to direction z. Note that the fringing
effect [25] is not included in the definition of equation (2),
since an uniform z-oriented electric field (Fig. 2) has been
considered.

Equation (2) is subject to the boundary conditions 8(z =
0) = 6, = 6(z = d), where 6, is named as pretilt angle. It is
a second order strongly nonlinear differential equation that
lacks an analytical solution. The simplest simplification that
can be done consists in linearizing equation (2) considering
only small angles. Therefore, (2) turns into a second-order
linear differential equation, whose solution is a well-known
expression. It is clearly depicted in [24] and [26]. Regretfully,
this analytical solution only offers good results when consid-
ering small tilt angles, which will not be our particular case.

If we divide both terms of (2) by cos?@ and apply the

1 dt we can

change of variable ¢t = tan @, with & = \m/1) @

rewrite (2) in terms of ¢ as

1\ d%
(ku + k33t2) <t2 n 1) prl

2
Fm =k [— V() 4p=0
(12 +1)*) \dz

With the quasi-static assumption (E = V/d), the electric
field is directly related to the bias voltage V, and as V
increases, the molecules tend to be oriented perpendicularly
to the metal plates, that is, 8 = 90°. In most general
cases, we are pretending to work with a high bias voltage,
so 6(z) — 90° and + = tan6 becomes big enough.
In consequence W << ﬁ << t, and therefore
the term (k33 — k11) <m> (%)2 can be neglected from
equation (3). Operating and separating into simple fractions,
the differential equation (3) can be rewritten as

d’t A t(1—a) A
o =- <+—> @

t24a
where A = k% and a = k;—l A particular case appears when
a = 1 (ki1 = k33). That is the situation for a variety of com-
mercial LC substrates. In this case, the term % vanishes

directly. Thus, equation (4) is simplified in the domain of 6(z)
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to

d*0 A
= =2 sin (29) (@)
Under normal circumstances, both elastic constants are very
similar in their values. For example, in the 75-um thick LC-
layer LC GT3-23001 [20] the elastic constants are kj; = 24
pN and k33 = 34.5 pN, which means a = 0.696. On the other
hand, in the LC mixture MCL-6608, used in [26], the elastic
constants k;; = 16.7 pN and k33 = 18.1 pN are even more
similar to each other, giving a value of @ = 0.923.

IV. ANALYTICAL SOLUTION

Once simplified the original differential equation, it would
be desirable to find an analytical solution of its approxima-
tion (5). So, we define a new change of variable w = %, with
d0 '

== W%~ In these terms, equation (5) can be rewritten as

M Lsino) ©)
w— = ——sin

do 2
where the variables w and 6 can be separated from each other.
Integrating both sides of the equation leads to

w = ++v/Acos20 + ¢; @)
Within w = fl—g = +,/Acos? 6 + c|, we can separate again

the variables z and 6. If we integrate both members of the
equation and then operate, we obtain that

1 1
Z4+c == / de ®)
VAtal Ji- posine
2 ’ 1
From [27], we know that F (9 |k ) = A \/TTZ(Z) d¢

is the incomplete elliptical integral of the first kind with
parameter m = k2. Identifying terms, it results that m = k* =

A—Ié_cl . Therefore, (8) is equivalent to
A
+F (0| =@+e)VA+ta )
A + C1

Note that 6 is the inverse function of F (6 |k?) = u, that
is, 0(z) = F~'(u|k?). So, the analytical solution of the
differential equation (5) can be expressed making use of the
Jacobi elliptic functions, in particular

0(z) = &zam <(z+cz) VA+cr | Aiq) (10)

where am (u | k?) is the Jacobi amplitude function, and c
and c; are constants of integration that meet the boundary

conditions #(z = 0) = 6, = *am (szA o1 | 4 ) and

A+cy

O(z=d)= p::I:am((d—i-cz)\/A-i-Cl | /ﬁ)-
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A. PIECEWISE ANALYTICAL FUNCTION
Let us suppose ¢; = 0 in an initial stage. From equation (8),
it is clear that

1 /9 1
\/X ¢=6pcos¢

After evaluating the integral, we obtain

z72(0) = £

d¢ —ca (1)

72(0) = i% [ln (tan 6 + secH) — 9,/,] ) (12)

where 91’, =1In (tan Op + sec Qp). For the case of the positive
sign in (12), +-am (u | kz) is a strictly increasing function in
the range z € [0, d], and the negative sign, —am (u | k?), is
its reflection on the y-axis. Due to the form of both functions,
it seems that +am (u | kz) is the solution of the approximated
differential equation (5) in the interval z € [0, %] and a z-
axis shifted function —am (usniied | k) in the interval z €
[i,d]. Note that the constant of integration ¢, which is
directly related to z in (12), is responsible of moving the
function —am (Mshifted | kz). Separating both solutions with
their respective constants of integration, equation (12) stays
as

In (tan 0 + sec ) — 91’,

- if 0<z<¢
VA ’ 2
7(0) =
In (tan 6 + secd) — 6,
_In( ) P—en if 4<z<d
VA

(13)

According to this, as the first of the boundary conditions
(0(z = 0) = 6,, which is the inverse of z(6 = 6,) = 0) is
applied on z = 0, the constant of integration c>4 must be null.
The second boundary condition z(0 = 8,) = d, referred to
7(0), must be evaluated on the lower term of expression (13),
which leads to cp— = —d. Note that we are interested in
obtaining 6(z), which is the inverse function of (13). In this
particular case, 0(z) can be analytically isolated. After replac-
ing ¢+ and cp— by their calculated values, the analytical
equation that expresses the tilt angle of directors in a nematic
LC is of the form

2 tan_l (eZ\/K—i-Q]/,) _

[SIE]
—_
=
S
IA
™
IA

(ST

0(z) =
2 tan—! (e—(z—d>ﬁ+9;,) _zf

[SIISH
IA
Ia\]
IA
=

(14)

that fulfills the boundary conditions 0(z = 0) = 0, = 0(z =
d), is continuous in the interval z € [0, d], but not derivable at
z= %. Therefore, it cannot be considered as a solution of (5).
Anyway, as will be seen in later figures, it approximates in a
good and easy manner the behavior of, not only the simplified
differential equation (case k11 ~ k33), but also the original
differential equation (2).
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B. ANALYTICAL FUNCTION

The previous expression is not derivable in the central value,
7= %, since it is defined in these two pieces. However, this
can be neglected as the bias voltage is increased. In the case
of needing an accurate characterization at the center of the
material, a new analytical definition can be obtained, at the
expense of the accuracy of the value at the boundaries. This
modification is basically built by adding the two pieces of the
piecewise function and subtracting the maximum value of its
image, Oyax = % That is,

6(z) = 2 tan”"! (ez‘/‘hgl;) +2tan”! (e—(z—d)ﬁ+01;) — 3771

as)

Despite offering good results and being derivable, note
that (15) does not satisfy the boundary conditions. In order
to satisfy them, we replace 37” by a term c in equation (15).
If we impose 6(z = 0) = 6(z = d) = 6, then, the term ¢
must be equal to

c=0,— 2tan™! (e%> —2tan! (edﬂJr%) (16)

which is approximately ¢ =~ —37”. Consequently, equa-
tion (15) is modified to

6(z) = 2tan™! (ez\/X+0,;> +2tan”! (e_(Z—d)«/Z-'r@/z) +e
(17)

The effect of ¢ in equation (17) is to compensate, in any
case, the term of the piecewise function that should not be act-

ing in the wrong interval. That is, 2 tan ™! (ef(zfd)‘/X%P) -5

’
1 ez«//?+9p

inz € [0, %]andZtan_ ( )—%inze[%,d].ltalso

smooths the midpoint %’ and makes the function derivable.

A comparison among the solutions of the initial differ-
ential equation, its approximation without the squared first
derivative (both done with the "bvp4c’ solver implemented in
Matlab), the calculated analytical piecewise function (14) and
the derivable analytical function (17) is represented in Fig. 3.
In most cases, the maximum error in the approach is lower
than 2°on average, which means that the proposed solutions
are acceptable for practical applications. Nevertheless, when
the bias voltage V reaches lower levels, as shown in Fig. 3c,
the error in the middle of the z interval (z = %) is much higher
in the case of the piecewise function.

Fig. 4 shows a comparison between the error of the piece-
wise solution (14) and the derivable analytical function (17),
when comparing them with the original differential equa-
tion (2) and its no squared derivative approximation (4).
As observed in Fig. 4a and Fig. 4b, the error of both ana-
lytical expressions practically overlaps each others when the
applied voltage is high enough. When the potential drop is
under 5 V, the error goes up strongly near the midpoint ‘—é
with the piecewise function, reaching almost 20° when the
polarization voltage is 3 V, which does not happen with the
derivable analytical expression (17). The appendix shows an
alternative manner to validate the analytical approach.
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FIGURE 3. Comparison among the solutions of the original differential
equation (2), its first approximation (both numerically solved with ‘bvp4c’
in MATLAB), the piecewise solution (14) (orange line) and the derivable
analytical function (17) (black line), when V= 15V (a), V= 10 V (b) and
V=5V(c) (Ae = 4.6, ky; =24 pN, k33 = 34.5 pN and 6p = 4°). (a) A set
of different solutions when V = 15 V. (b) A set of different solutions when
V = 10 V. (c) A set of different solutions when V =5 V.

Fig. 5 shows the piecewise and the derivable analytical
expressions as a function of the bias voltage V. The displayed
results are consistent with those provided in [20]. The error
committed by the piecewise function when V is low is much
greater than the one of the derivable function, which makes us
choose the second option as the best approximation. On the
other hand, when the bias voltage is high enough the error
of both analytical expressions seems to converge to the same
value. Apart from that, note also in general that the bigger
V, the bigger is the director tilt angle.

Another parameter of interest, especially when working
with the liquid crystal as a tunable dielectric, is the average
director tilt angle 6,,. In essence, it can be calculated from (17)
as

1 d
O = E/z 0(z)dz (18)

=0
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—Analytical function error (vs original)
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(@)
V=10V, Ac=4.6

5 T

— Analytical function error (vs original)
—Piecewise function error (vs original)
— -Analytical function error (vs no squared derivative)
— -Piecewise function error (vs no squared derivative)

0
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z(pm)
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V=5V, Ae=4.6
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6F A |
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5L 1 A \‘ |
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4 —Piecewise function error (vs original) i

= =Analytical function error (vs no squared derivative)
— -Piecewise function error (vs no squared derivative)
/

80
z(um)

©

FIGURE 4. Comparison between the error of the piecewise solution and
the derivable analytical function, when V = 15 V (a), V = 10 V (b) and
V=5V (c) (Ae = 4.6, ky; =24 pN, k33 = 34.5 pN and ¢p = 4°). (a) Error
of both analytical solutions when V = 15 V. (b) Error of both analytical
solutions when V = 10 V. (c) Error of both analytical solutions
whenV=5V.

which leads to a difficult expression that is function of the
elastic constants and the bias voltage.

In Fig. 6, this value is presented as a function of the bias
voltage for the analytical and piecewise function. Note that
when either the bias voltage V or dielectric anisotropy Ag
increase, 0, rises too. It can also be seen in the graph the
average tilt angle saturates in both traces for high voltage
values, especially when the dielectric anisotropy is high.

C. SELF-IMPLEMENTED SHOOTING METHOD
In general, nonhomogeneous boundary problems like (5) can
have infinite solutions, one, or none (as in our case). The
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FIGURE 5. Analytical solutions for different bias voltages (A¢ = 4.6,
k33 =34.5 pN, 0p = 4°).

=—Ae = 0.6 (analytical)
= ~Ae = 0.6 (piecewise)
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Ae = 10.6 (piecewise)|

1 3 5 7 9 1113 15 17 19 20
V (V)

FIGURE 6. Average director tilt angle, as a function of bias voltage, for
different dielectric anisotropy values (k33 = 34.5 pN, 0p = 4°).

shooting method try to solve these problems looking for a
derivative condition such that boundary conditions are ful-
filled. In this particular problem, maintaining fixed the first
boundary condition 8(z = 0) Op, we will try a first
derivative condition, of the form 8'(z = 0) = s, that meets
the second boundary condition 6(z = d) 0. In this
context, it would be interesting to be able to estimate in what
range does s move. As we already own information about
the solution (Jacobi amplitude function), by derivating it and
particularizing at z = 0, we will estimate 6’(0). The result of
derivating (10) is

0'(z) ==+ (,/A + cl) dn (z\/A +c1+0p | ﬁ) (19)

where dn(u | k?) is the Jacobi delta amplitude function [27].
A property [29]-[31] of the delta amplitude function is that
dn (Olkz) = 1. Since 6, ~ 0, the initial condition on the first
derivate (19) is

9«»:¢(JA+q)m<@|

>w+@@+q)

(20)

A+

where the minus sign has been neglected because we already
known that 6(z) is a increasing function at z = 0, which
implies a positive first derivative. According to this, it seems a
good starting point to search values of s nearby /A. In Fig. 7,
the value of the function 8(z) at z = d has been plotted versus
different values of the first derivative at z = 0, enclosed in the
range [0, 2\/2]. There are three solutions of the differential

14888

Normalized to A"2 (V = 10V, Ac = 4.6)
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00)=s A2

FIGURE 7. The functions 6(z = d) — 6p (black) and ¢’(z = %) (orange) for

different values of ¢’(0) = s, normalized to VA (A¢ = 4.6, k33 = 34.5 pN,
0p=4°,V=10V).

TABLE 1. Normalized values (ﬁ) of the equivalent problem with initial

conditions 6(z = 0) = 6p and ¢’(z = 0) = s, for different bias voltages and
dielectric anisotropies (k33 = 34.5 pN, 6p = 4°).

VV)
Ae 5 10 15
2.6 0.85230 0.995701 0.99770917
4.6 0.96450 0.997593 0.99778182
6.6 0.98691 | 0.99773575 | 0.9978010504

equation in the equivalent problem that satisfy the boundary
condition 6(z = 6)). As expected, only one of them is of our
interest. Note also that all solutions are placed nearby v/A.

Here, it arises the question of how to systematically deter-
mine which is the solution we are looking for. This can be
achieved by imposing another restriction on the function or in
its derivatives. As the analytical and numerical results prove,
the function 6(z) has a critical point (a maximum) at the
midpoint z = %, that is, 8'(z = %) = 0. Therefore, the initial
conditions of the equivalent problem (solved by the shooting
method) that returns us the same solutions are

0z =0) =10,
0(z=0)=s
0'z=9%)=0 @)

(0"c=1%)<0)

The sought solution will be the one whose 6'(z = 0) = s
causes the boundary condition 6(z = 0) = 6, to be satisfied
and at the same time meets 0'(z = %) = 0. That is to say,
we must graph together 6(z = d) — 6, and 0'(z = %) \&
different values of s and find when both coincide and cross
zero. Naturally, we have to verify that the critical point is
effectively a maximum, checking that 6”(z = %) < 0.

As shown in Fig. 7, two of the three possible solutions that
meet the boundary conditions (when V = 10 V) also have a
critical point at %. These ones have been plotted in Fig. 8.
In the first solution (blue line), the midpoint coincides with
a local minimum, while in the second solution (red line),
it coincides with the absolute maximum sought.

In Table 1, we tabulate some normalized values (LA) of
the equivalent initial value problem (5) and (21) that guar-
antee the same results obtained before with analytical and
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V=10V, Ac=4.6

—First Solution
—Second (valid) Solution

o
o
T T T T T T

10 20 30 40 50 60 70 80
z(pum)

FIGURE 8. Both solutions of equation (5) with a critical point at the
midpoint % that fulfills the boundary conditions, after applying the
self-implemented shooting method (Aec = 4.6, k33 = 34.5 pN, 6p = 4°,
V=10V).

Shooting Method

—V =5V, Ac=26
—V =5V, Ac =46

V=5V, Ae =6.6
—V =10V, Ac =26
—V =10V, Ae =4.6

V=10V, Aec = 6.6
—V =15V, Ae =26
—V =15V, Ae =4.6
—V =15V, Ae = 6.6} L L
0 10 20 30 40 50 60 70 80
z(um)

FIGURE 9. Numerical solution, with the self-implemented shooting
method, of the tilt angle of directors in the liquid crystal for different
values of the bias voltage and the dielectric anisotropy.

numerical approaches (check Fig. 3 and Fig. 5). These num-
bers were achieved by applying the commented above, and
they are particularized to three different voltages and three
values of the dielectric anisotropy in the liquid crystal. Note
that the greater the bias voltage is, the greater the number of
solutions which have a critical point in the midpoint ‘—é, and
the greater is the number of decimal digits needed to specify
the correct solution.

Fig. 9 represents the solutions referred to in Table 1. As pre-
viously commented, the bigger the voltage or the dielectric
anisotropy in the LC, the bigger the director tilt angle is. Note
also that the average director tilt angle increases quicker with
the bias voltage than the dielectric anisotropy, because of the

quadratic dependence of the electric field in (5) (A = £ fiE ’ )
rather than the linear of the latter. N

V. EXAMPLE OF THE USE OF THE ANALYTICAL
EQUATION

Let us suppose that the electrical behavior of a given 200 um
liquid crystal (¢;; = 3.3, ¢ = 2.5, Ae = 0.8, kj1 = 10
pN, k33 = 18 pN, 6, = 4°) must be determined. As depicted
in Section II, this is achieved by completing the permittivity
tensor of expression (1). There is an electrical potential dif-
ference of 18 V between the metallic plates in which the LC
is confined. Therefore, the module of the electric field results
E = % = 9. 10* V/m. The average director tilt angle will
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Ac=0.8,k,, =10 pN, k,, =18 pN

90 — —
80+ :
—Matlab bvpdc (V = 18 V)

70F — Analytical Function (V = 18 V) 1

60 Self-Implemented Shooting Method (V = 18 V) 1
o501 - .
40+ L7

30 #”~ = -Matlab bvpdc (V = 5 V) ) .

200 4 - -Analytical Function (V = 5 V) *a. \

104 #° Self-Implemented Shooting Method (V =5 V) \

00 50 100 150 200
z(um)

FIGURE 10. Comparison among the solutions of the differential equation
according to the bvp4c solver implemented in Matlab, the analytical
expression, and the self-implemented shooting method. Blue and yellow
lines overlap each other.

be oriented almost perpendicular to the metallic plates due to
elevated bias voltage applied in the structure.

From 6/ = In (tan Op + sec 91,), it is determined that
9;, = 0.0699. Another parameter that conforms the analytical

sOAsEZ _
k3 T
3.186 - 10° % The remaining parameter, c, is extracted

from equatioﬁ (16), leading to ¢ = —4.7124. Therefore,
the analytical function for this particular case is

0(z) = —4.7124 + 2 tan™" (eZ\/3.186-109+O.0699)

_ (e 10—6 .109
12 tan 1(e (z—200-1075)4/3.186-10 +0.0699>

expression (17) is A, which takes a value of A =

On the other hand, the use of our self-implemented shooting
method shows that the initial condition of the equivalent
problem is LA = 1.33568151. The analytical function and
the numerical solutions (Matlab and the self-implemented
shooting method) are subsequently plotted in Fig. 10. In order
to prove the robustness of the analytical expression, a com-
parison for V.= 5 V has been also included in Fig. 10. Note
that despite using different voltage values and that k1| ~ k33
(a = 0.56), the concordance between the numerical solutions
and the analytical expression is noticeable.

The average director tilt angle 6,, is calculated in the case
where V = 18 V according to the mean value of the analytical
expression. This leads to 8,, = 72.15°. If the average director
is calculated according to the numerical results, it takes a
value of 8, = 74.38°. Therefore, the average error committed
in the approximation is 2.23°(3 %). The average director
tilt angle is finally used to form the permittivity tensor that
fully characterizes the electrical behavior of the liquid crystal.
Making use of equation (1) and the values referred in this
section, the permittivity tensor is

2.50 0 0
0 2.58  0.23
0 023 3.22

™Il
I

The permittivity tensor is the parameter needed by any elec-
tromagnetic simulator to perform a more realistic model of
the structure or to analyze other terms of interest, such as the
phase shift provided by the LC.
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d =200 pm (L) ¥

FIGURE 11. Simulation in CST Microwave Studio of the GT3-23001 liquid
crystal [28] confined between metallic plates when polarized with the
extreme voltages.

VI. ELECTROMAGNETIC SIMULATION

A parallel-plate waveguide filled with a lossy liquid crys-
tal acting as tunable dielectric (the part marked in red of
the device shown in Fig. 1) is tested in CST Microwave
Studio. To this effect, a GT3-23001 liquid crystal mixture
(6/) = 3.3, €L = 2.5, tand;; = 0.0038, tané = 0.0143
@ 19 GHz) [28] of thickness 200 pum is modeled in the
simulator through the permittivity tensor of equation (1).
Note that the parallel permittivity indicates the orientation of
the director 7i in the extreme cases, where the polarization
voltage V can take either an elevated value or zero. The
tensors from both cases only include elements in their main
diagonal. The permittivity tensor when V = 0 is calculated
as

_ &1 0 0
é\/:o = 0 &/ 0 (22)
0 0 el

with the average director oriented in the y-axis (parallel to the
plates). The permittivity tensor when V >> is

. el 0 0
gv=>=| 0 e 0 (23)
0 0 8//

with the average director oriented in the z-axis (perpendicular
to the plates). Figure 11 depicts the simulated structure and its
dimensions. Losses due to the presence of the liquid crystal
have been taken into account in the simulation by means of
the loss tangent diagonal tensor.

The electric field is oriented along the z-axis in the LC.
Since the parallel permittivity is higher than the perpendicular
one, the structure must provide a higher phase shift if the
average director is positioned in the same direction that the
electric field. This is achieved by applying a high potential
difference (V >>) between the metallic plates. On the other
hand, the structure must provide a lower phase shift if the
average director is not oriented in the same axis that the
electric field. This is achieved by applying a low potential
difference. This fact is noticed in Fig. 12, where the continu-
ous black line has a steeper slope along the frequency than
the dashed black line. This means that a high polarization
voltage causes greater phase shift. The same applies to the
2 cm waveguide section.
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FIGURE 12. Transmission coefficient in the parallel-plate waveguide filled
with GT3-23001 liquid crystal. (a) Maximum phase shift. (b) Transmission
loss.
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£ 240 —
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0
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FIGURE 13. Comparison between the maximum phase shift observed at
20 GHz in the GT3-23001 LC mixture and the maximum phase shift
measured in [32]. Both as a function of the bias voltage.

The magnitude and the phase of the transmission coeffi-
cient two parallel-plate waveguide sections of lengths 2 cm
and 5 cm are plotted in Fig. 12. Red and yellow solid lines
in Fig. 12a (they are referred to the right y-axis) mark the
maximum phase shift range that can be achieved in the
structure. The maximum phase shift already covers a entire
turn (360°) at 26.3 GHz in the 5 cm waveguide. However,
the transmission loss is up to 3 dB in this particular case.
Note that the transmission loss is lower in the case of polar-
izing the liquid crystal with a higher bias voltage, since the
parallel tangent loss is lower than the perpendicular one.
On the other hand, a maximum phase shift of 140° can
be obtained at 26.3 GHz in the 2 cm section with losses
under 1.5 dB.
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Fig. 13 presents the maximum phase shift at 20 GHz,
associated to each bias voltage V, that the GT3-23001 LC
mixture can provide. The analytical solution (17) has been
used to obtain the permittivity tensor for each voltage value.
Then, the permittivity tensor is introduced in the simulator
and the phase shift is computed and compared with the results
of [32]. Weil et al. [32] show that a maximum phase shift
of 272° is experimentally achieved at 20 GHz in a 4.8 cm
LC phase shifter. In our particular case, the maximum phase
shift observed in CST Studio at 20 GHz is 266°, very close
to 272°. Even though the maximum phase shift is similar in
both cases, the red line has a steeper slope because of the use
of a liquid crystal of slightly different characteristics in [32].

VIi. CONCLUSION

This paper presents an analytical expression that models the
tilt angle of liquid crystal (LC) directors in the nematic phase
when a quasi-static electric field is applied. First of all, it is
demonstrated that the original differential equation (2) could
be simplified when working with high bias voltages into
an easier expression, (4). A particular case of this equation
arises when k11 = k33 (a = 1), allowing us to reduce terms.
It was proved that (5) has an analytical piecewise solution that
is written by making use of the Jacobi amplitude function.
From the piecewise function, it is found another analytical
expression (17) that models with less error, lower than 2°
on average, the tilt angle of directors in the liquid crystal.
It is clearly seen as the analytical formula greatly simpli-
fies the design process, as opposed to the tedious numerical
methods depicted. Besides that, it is implemented a shooting
method to obtain another numerical solution, different than
the one provided by Matlab, in order to compare results. The
correspondence between the three solutions is remarkable.
Then, the average director tilt angle 8,,, necessary to form
the full permittivity tensor & that characterizes completely
the electrical properties of the liquid crystal, is obtained by
integrating the calculated analytical functions. As expected,
the bigger the bias voltage V or the dielectric anisotropy Ae,
the bigger 6,, is. Finally, an electromagnetic simulation in
CST MWS is carried out to show the capabilities of the LC as
a tunable device. It is depicted that only 5 cm of a commercial
liquid crystal mixture are necessary to obtain a tunable phase
shifter with losses below 3 dB at 26.3 GHz. 360°

APPENDIX. CHECKING THE VALIDITY OF THE
ANALYTICAL APPROACH

A useful test to validate the results shown in the manuscript
is to insert the analytical expression (17) into the original
differential equation (eq. (2)). The result must be zero o very
close to zero. Thus, we name by f(z) to

. de
f(z) = <k11 cos? 6 + k33 sin® 9) d_Z2

do? . .
+ (k33 — k11) e sin@ cos 6 + B sin6 cos 6
z
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FIGURE 14. Norm of the function f(z).

The norm of the function f, ||f(z)||2, gives us an image of
how good the analytical solution is. The more closer to zero,
the better the analytical approach is. Subsequently, we replace
the analytical expression (17) into f(z) and numerically cal-
culate the value of the norm for different voltage and elastic
constant values. Results are depicted in Fig. 14. The solid
black line represents the norm of the analytical function for
the case presented in Section V. The dashed black curve
presents a similar approach, but with the elastic constants k1
and k33 being identical. The norm of both black curves is near
to zero, which validates the analytical solution proposed in
the manuscript. Concretely, note that the norm of the dashed
black curve is practically zero. It is even lower than the solid
black line, which makes sense as the analytical approach is
defined in the manuscript for cases where k1| =~ k33 (k11 =
kz3 = 18 pN). Besides, the norm is very high in those cases
where 6(z) is not a solution of the differential equation (2).
The blue and red curves represents the functions 6(z)= %z
and 0(z)= g—eez/ d_ respectively. Since z is enclosed between
0 and d, the range of both functions is in the interval [O,%],
as in the analytical approach. Both functions are put into
scene to demonstrate that the norm quickly moves away from
a null value if the considered function is not a valid solution.
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