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ABSTRACT The issue of complex-valued time-dependent pseudoinverse often exists in science and
engineering fields. In the existing studies, many models were presented for solving complex-valued time-
dependent pseudoinverse in the noiseless environments. However, the appearance of noise is unavoidable in
practice. In this paper, a novel noise-acceptable zeroing neural network (NAZNN) model is first proposed
for computing complex-valued time-dependent matrix pseudoinverse with different noise situations. For
comparison, the traditional zeroing neural network and the gradient neural network are adopted to complete
the same task. Theoretical analyses prove that the proposed NAZNN model obtains the global exponential
convergence performance. Moreover, the proposed NAZNN is also proven to obtain strong resistance to
various sorts of noise. Finally, the results of numerical experiments further substantiate the theoretical
analysis and indicate the effectiveness and superiority of the proposed NAZNN model for computing
complex-valued time-dependent matrix pseudoinverse in various kinds of noise.

INDEX TERMS Zeroing neural network, time-dependent, complex-valued, noise-acceptable, matrix

pseudoinverse.

I. INTRODUCTION

Pseudoinverse is extended from the inverse of matrices. It is
also known as the Moore-Penrose inverse, generalized from
a rectangular or a singular full rank matrix. As an essen-
tial foundation of solution, pseudoinverse appears frequently
in various mathematical and engineering fields. Its applica-
tion also can be found in optimization [1], robotics [2], [3],
image restoration [4], [S]. In view of its importance, many
researchers put forward a lot of algorithms [6]-[11]. For
instance, Perkovi¢ and Stanimirovi¢ [6] showed that an iter-
ated algorithm can be employed to solve the Moore-Penrose
generalized inverse. Wei et al. [10] put forward Newton iter-
ation to solve the Moore-Penrose generalized inverse of
Toeplitz matrix. Hoyle [8] utilized pseudoinverse to improve
the accuracy of classifiers. Based on the famous Greville
formula, Zhou et al. [11] raised an order-recursive formula
for computing the pseudoinverse of matrix. However, these
existing algorithms are iterative and suitable for static matrix

in real-value domain. These iterative algorithms are of
serial-distributed processing performance, When applied to
solving complex-valued time-dependent issue, which will
fail to complete the calculation within every sampling
period.

Because of the high-speed parallel-distributed processing
performance and the convenient implementation of hard-
ware, neural networks have been used widely in science and
engineering areas [12]-[20]. For instance, Zhang et al. [12]
utilized neural network to obtain near-optimal control of
HJB equations; Arima and Hirose classified complex tex-
ture by complex-valued neural networks in millimeter-wave
active imaging [18]. Thereinto, a lot of recurrent neu-
ral networks (RNNs) have been investigated for solu-
tion of scientific issues (including matrix pseudoinverse)
online [21]-[24]. Zhang designed and investigated an RNN
model for time-dependent matrix inversion [21]. The gradient
neural network (GNN) is a classic RNN. GNN adopts the
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Frobenius norm of error matrix as the performance criterion.
It makes the error matrix norm converge to 0 along with
the negative gradient direction. The GNN works well for
solving the time-independent problems, while generates large
errors for solving the time-dependent problems. Zhang et al.
proposed a novel type of RNN, named zeroing neural net-
work (ZNN), for tracking time-dependent solution [25]-[28].
By utilizing the time derivative of time-dependent parame-
ters, the traditional ZNN (TZNN) tackles the errors of the
GNN in solving time-dependent problems, which is seminal
in neural network field.

In implementation of RNN, we generally assume that
it is used in the noiseless situation. However, noises are
inevitably in the practical environment. The noises may be
fixable or random. Because of the noises, the accuracy of
resolving time-dependent issue is impacted greatly. In some
cases, they cause failure in online computing process. In view
of this, Xiang et al [29] first proposed a noise-resistant
neural dynamics for computing time-dependent lyapunov
equation in real-domain. However, few literatures investigate
complex-valued time-dependent matrix pseudoinverse with
different noise. Therefore, it is urgently needed to improve the
TZNN for computing complex-valued time-dependent matrix
pseudoinverse. The improved neural network should have the
ability to resist inherent noises.

The main contributions of this work are given as follows.

o Based on a new design formula, the NAZNN model
is proposed for complex-valued time-dependent matrix
pseudoinverse with various kinds of noise. Moreover,
there is no literature has investigate the neural networks
for complex-valued time-dependent matrix pseudoin-
verse with noise-acceptable performance.

o Theoretical derivations prove that the proposed NAZNN
model obtain the global exponential convergence per-
formance. In addition, the proposed NAZNN model has
improved performance of anti-noise when it is used to
solve complex-valued time-dependent matrix pseudoin-
verse in different noise situation.

o Numerical experiments demonstrate the efficacy and
advantages of the proposed NAZNN model for
complex-valued time-dependent matrix pseudoinverse
with different noises.

The remaining parts of the paper are composed of the fol-
lowing sections. The relevant formulation and preliminaries
are put forward in Section II. In Section III, a noise-acceptable
ZNN (NAZNN) model is first proposed. For comparison,
the GNN and the TZNN are also adopted and generalized
to solve the same time-dependent problem in noise envi-
ronment in this section. In Section IV, theoretical anal-
yses are presented to demonstrate the convergence prop-
erty of the NAZNN model in the environment of different
types of noise in complex domain. In Section V, numerical
examples to further illustrate the efficiency of the proposed
NAZNN model for computing the complex-valued time-
dependent matrix pseudoinversion. Section VI concludes this
work.
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Il. FORMULATIONS AND PRELIMINARIES
In this section, the formulations and some important prelim-
inaries of the complex-valued time-dependent matrix pseu-
doinverse are presented.

Definition I ~ [30], [31]: Given a time-dependent
complex-valued matrix V(r) € C™", if X(tr) € CY»"
satisfies all the Penrose equations as following:

VOX(V(@) = V@), XOVOX(E) =X(@),
VOX@)! = VOX@), XOVE)! =XV @),

where H denotes the Hermitian transpose of a complex-
valued matrix, X (¢) is termed the complex-valued pseudoin-
verse of V (), denoted with V¥ (¢). It is worth noting that the
pseudoinverse V1 (¢) exists and is unique.

As we know, if the matrix V (¢) € C"™*" is a full rank matrix
at any moment, i.e., rank(V (t)) = min{m, n}, we can obtain
the pseudoinverse of V() from the following lemma.

Lemma 1 [30], [31]: For a time-dependent matrix
V() € C™" if rank(V(t)) = min{m, n}, then the unique
pseudoinverse V() can be given as:

VOV 'VR@), i m>n,
vie = v, if m=n, (1)
VEOW@OVEe)™Y,  if m<n.

In this paper, the full rank complex-valued time-dependent
matrix V(¢) € C™*" (with m > n) is considered. For m < n,
the process of computing pseudoinverse is homoplastical to
that of m > n, and is omitted. Then, we consider the problem
of a complex-valued time-dependent matrix pseudoinverse as

VvEOVOX @) = V@) e CP, 2)

where V() denotes a complex-valued time-dependent singu-
lar matrix, X(¢) is an unknown matrix. The purpose of our
work is to design a ZNN model for solving the unknown
matrix X (¢) in the noisy situations.

1Il. DESIGN OF NAZNN MODEL

This section provides the design process of NAZNN model.
In addition, the TZNN and the GNN are also introduced.
To controlling the process of solving the complex-valued
time-dependent matrix pseudoinverse (2), the corresponding
error-monitoring function is defined as

Q) = VE@OVnxa) — vie) e 3)

For forcing €2(¢) to converge to zero, the evolution of (¢)
is presented as [29]:

t
Q1) = —aQt) — B / Q(s)ds, 4)
0

where « > 0 and B8 > 0 are scaling parameters used to
measure the convergence rate of NAZNN model. By expa-
nding the designed formula (4), the novel complex-valued
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time-dependent NAZNN model can be obtained as follows:

vEOV©OX @) = V@) — (VEove) + VROV ©0))X (1)
—a(VEOV®X (1) — V@)

t
-8 / (VHESV ()X (s) — VH(s))ds. (5)
0

For comparative purpose, the TZNN for computing
complex-valued time-dependent matrix pseudoinverse is pre-
sented directly as [27]:

VEOVOX(@0) = V@) - (VHove + VoV o)X @)
—a(VEOVOX(0) — V). (©6)

The GNN for computing complex-valued time-dependent
matrix pseudoinverse is also presented as [32]:

X(0) = —-aViOVvo(Viovoxe - vim). @)

In order to further investigate the robustness of the pro-
posed NAZNN model (5) in noisy environment, the proposed
NAZNN model (5) with unknown noises is presented as
follows:

VEOVOX (@) = V@) - (VHove + VROV o)X @)
—a(VEOVOX (1) — V@)

t

- B / (VHESV )X (5)—VH(s))ds+W (1),
0

8)

where W(r) € C™ denotes the unpredictable noise. W(r)
is represented in matrix-form, the noises fall into three cat-
egories: the constant noise, the linear noise, the random
noise [29].

It is worth pointing out that the preprocessing of resisting
noises will increase additional time, possibly affecting the
online computation. The proposed NAZNN model (5) can
resist different noises and compute the complex-valued time-
dependent matrix pseudoinverse simultaneously. The relevant
theoretical derivations and results are presented in the ensuing
section.

IV. THEORETICAL DERIVATIONS AND RESULTS

The global and exponential convergence property of
complex-valued time-dependent TZNN have been proven
in [27]. In this section, the pseudoinverse X (¢) generated by
the proposed NAZNN model (5) converges to the theoretical
pseudoinverse VT (¢) globally and exponentially. In addition,
the proposed NAZNN model (5) is proven to be robust with
uncertainty noises.

A. CONVERGENCE OF NAZNN MODEL
Firstly, two theorems are given to investigate the convergence
of NAZNN model (5) in noiseless environment.

Theorem 1: Given a complex-valued time-dependent
matrix V(t) € C™" (with m > n) of full rank, the state
matrix X (¢) generated by NAZNN model (5), from any initial
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state X(0), globally converges to the theoretical pseudoin-
verse V1 (1), i.e., the solution of (2).
Proof: The formula

Q) = —aQt)— B / t Q(s)ds
0

can be rewritten as the following set of n X m neuron’s
dynamic equations

t
wap(1) = —awap(t) — B /0 Wqp(s) ds,
VYae{l,2,..,n} and Vb e {1,2,....,m}, (9)

where w,(t) € C denotes the abth item of Q(¢). For the
equation (9), we define a Lyapunov function as

t t
ean(t) = a0y (1) + B /0 up(s) ds fo Wiy(s)ds, (10)

where, the symbol * denotes complex-valued conju-
gate. As we known, wg(f) can be denoted as x(r) +
YO, x(1), y(t) € R, for X(t) + Y(1)i =[5 wap(s)ds,
then fot wh(s)ds = X(@) — Y(0)i, where X(¢), Y(t) € R,
we have eg (1) = x2(1)+y*(1)+ B(X%(1)+ Y 2(1)). Obviously,
the Lyapunov function e,;() is positive, i.e., egp(t) > 0
for any wap(t) # 0 or [jwap(s)ds # 0, and eq(t) =
0 justfor wg(t) = fot wap(s)ds = 0. Based on Egs.(9)
and (10), we obtain

eab(t) = @ap(1)wy (1) + Wap(t)y, (1)
t t
+ﬁwab(l)/ wzb(s)dsﬁLﬁwa(f)/ wap(s) ds
0 0
= —2awap(Hwy,(t) < 0.

Based on the Lyapunov stability theory, we can conclude that
the abth item of (¢) globally converges to zero, for Va €
{1,2,...,n} and Vb € {1,2,...,m}. Therefore, the error-
monitoring function (¢) globally converges to 0, it means
that, the X (#) generated by NAZNN model (5) globally con-
verges the theoretical pseudoinverse. The global convergence
property of NAZNN model (5) is proven. [ ]

For the convergence speed of the NAZNN model (5),
we have the following theorem.

Theorem 2: Given a full-rank time-dependent matrix
V(t) € C™" (with m > n), the state matrix X(t) € C"*™
generated by NAZNN model (5) exponentially converges to
the theoretical pseudoinverse VT (z) of (2).

Proof: Let R(t) = fol Qup(s) ds, its first-order time
derivative and second-order time derivative are

R(t) = Q) and R(r) = Q1),

wab(t)» rab(t)y
of Q(1), R(),
the formula

Fap(t), —and  Fep(r) are the abth item
R(t), and R(t) respectively. Therefore,

t
Q) = —aQ@t)— B / Q(s)ds
0
can be rewritten as

R(t) = —aR(t) — BR(1). (11)
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the abth item of (11) can be obtained as
Fap(t) = —otiap(t) — Brap(t).

LetA; = 0.5(—a+(a?—4B)%d), and 1y = 0.5(—a+(a®—
4)%3). In view of the initial values r45(0) = 0, and 7;,(0) =
wap(0). According to the solution of the above differential
equation, The solution to the abth item of Eq.(11) is inves-
tigated in below three situations.

1) If o2 —48 > 0,then A1, Ap € R and A; # Ay, we have

wap(0)(eH! — 1)
(@ —4p)05

Fap(t) =

and
wab(0)(A1M" = hpe™')

(@? —4p)05
Therefore, the error-monitoring matrix is derived as
Q(O)(h1eM" — hpe’?)

(Ol2 —4 ’3)0.5
2)If > — 48 =0, then A; = A, = —0.5a, we have

wap(t) = Tap(t) =

Q) =

Tab(t) = wap(0)te ™03,

and
wap(t) = Fap(1) = wap(0)(1 — 0.5cr)e™ ",
Therefore, the error-monitoring matrix is derived as
Q1) = Q0)(1 — 0.5ar)e 3,
3)Ifa®> —48 < 0, then Ay = & +ni, Ay = £ — i, we have

rop(f) = wap(0)sin(nr)et!
a n El
and
wap(t) = wab(O)est(w + cos(nt)).

Therefore, the error-monitoring matrix is derived as

Q) = Q(O)es’(w + cos(nt)).

According to the previous analysis and [33, Proof of
Theorem 1], €2(¢) exponentially converges to 0. It means,
beginning from any initial state X(0), the state matrix X(¢)
exponentially converges to theoretical pseudoinverse. The
proof completes. ]

B. CONVERGENCE OF NAZNN MODEL WITH NOISES
As the previous discussion, the matrix-form W(t) € C**™
in the noise-disturbed NAZNN model (8) is divided into
three categories, i.e., the constant noise, the linear noise,
the random noise. In this section, the convergence of the
noise-disturbed NAZNN model (8) with different noises is
investigated in theory.

Constant Noise : Both the real part and the imaginary part
of W(t) € C"™™ are constants, the matrix-form W(¢) is noted
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with & € C" ie., Yqp = c1 + c2i, where ¢1,¢2 € R, Ygp
noted the abth item of W. the following theorem is presented.
Theorem 3: The state matrix X(¢) generated by the
noise-disturbed NAZNN model (8), with the constant noise
() = W e C™™ converges globally to the theoretical
pseudoinverse V(1) of (2).
Proof: The abth item of the noise-disturbed NAZNN
model (8) can be noted below by adopting Laplace
transform [34].

Twap(T) = wap(0) — dwap(t) — gwab(f) + Yap(T),

that is

T(@ap(0) + Yap(T))

2 +at+ B (12)

wap(T) =

Obviously, 7/(t% + at + B) is the transfer function, and its
poles are 7] = 0.5(—a + (a? —48)%%) and 70 = 0.5(—a —
(@2 —4B)%%). Fora > 0 and B > 0, 7; and 1 locate on
the left half-plane, which means the neural system is stable.
The final value theorem can be applied in this stable system.
Note that Yup(t) = Yap/T as Yap(t) = Ygap adds to a step
single for complex-valued constant matrix W. The final value
theorem [34] is applied to (12), we have

Iim wqp(t) = lim Twep(T)
t—00 7—0

— i @ (©) + Yab/7)
=0 72 +at+ B
=0.

Then, we can conclude that ||Q2(¢)||[r — 0 ast — oo. The
proof is completed. [ ]

Linear Noise: In actual applications, the neural system may
be exposed to linear time-dependent noise, both the real part
and the imaginary part of W(¢) are time linear functions, its
matrix-form is noted with W(¢) = tW, W has been mentioned
in constant situation. For linear time-dependent noise, the the-
orem below demonstrates the convergence of the proposed
noise-disturbed NAZNN model (8).

Theorem 4: The state matrix X(#) generated by
the noise-disturbed NAZNN model (8) with a linear
time-dependent noise W(¢) = W, converges to the theoretical
pseudoinverse VT (¢) of (2). Furthermore, the upper bound of
the steady-state computing error lim;_, o || 2(¢) || is |V ||r/B-
i.e.,as B — 400, the computing error lim,_, || 2(¢)||[g — O.

Proof: The abth item of the noise-disturbed NAZNN
model (8) is transformed as following by employing Laplace
transform [34].

1/fab

72’

Twap(T) = wap(0) — awap(T) — gwab(f) +

ie.,

T2(wap(0) + Vap/T2)
24ar+p

wap(T) = (13)

13835



IEEE Access

Y. Lei et al.: NAZNN for Computing Complex-Valued Time-Dependent Matrix Pseudoinverse

where 5/ 72 is the Laplace transform of . The final value
theorem is used in Eq.(13), we have

Iim wqp(t) = lim Twep(T)
t—00 7—0

i D @an©) + Ya/7?)
= um >

=0 T°4+at+ B
_ wab

5

Then, we can conclude that ||Q2|g — ||V||r/B ast — +o0.
The proof is thus completed. [ |

Random Noise: In practical applications, the noises may
be nonlinear. The nonlinear time-dependent noise can be
deemed as a bounded random noise in real-time computation
process, we have below theorem for investigating the property
of the proposed noise-disturbed NAZNN model (8).

Theorem 5: The computing error ||Q(#)||[r of noise-
disturbed NAZNN model (8) is bounded for the bounded
random noise W(r) = ¢(t) € C", In addition the
steady-state computing estimate error lim;_,||2(?)||lg is
bounded by 2(mn)? supy-,<, [{ap(®)I/(@® — 4)°7 if &® >
48, or 4B(mn)? SUPg<y<; 1Cab(9)| /(4B — a?)07 if ? < 4.
Cap(t) is the abth item of ¢(¢), that means, the upper bound
of lim,_, || 2(¢) || is almost inversely proportional to «, and
the computing error lim,_, || 2(¢) || close to O for B is large
enough with suitable «.

Proof: The noise-disturbed NAZNN model (8) with

random noise can be rewritten as

t
Q1) = —a () - B f Qs)ds + £ (1),
0
its abth item can be expressed as
t
wap(t) = —awgp(t) — B /0 @ab($) ds + Lap(2).  (14)

Based on the values of @ and g, three situation is analyzed.
1) If &% — 48 > 0, the solution to (14) can be gotten as

(@ap(O)(A1 €11 —ay e21)

1) =
@ap(t) M — Ao

t
+ / (1 1079 — 5 2079) ¢ (5) ds),
0

where A1 p = %(—a + (oz2 — 4,3)% ). According to the triangle
inequality, we obtain

(loap(0)(h1 ™1 — 2y 2 1)

t <
|wap(t)] < Py
t
+ / (121 €179 2ap(s)] ds
0

t
+ / |2 €2079)||2ap(s)] ds),
0
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further, we have

lwap(t)] < (loap @)y 1 — 2y €221

Al — Ao
+2 max [Zap(s)])
0<s<t
= (@2 = 4B) "2 (lwap(0)(h1 1 ' — Ag &2 1))

+ 2 max [Lap(s))).
OSSSI

Finally, we obtain

lim ||Q@)[lF < 2(
t—>00

)3 sup ()|
su »(8)].
0‘2_4,3 Ofsgt ¢

2) If «® — 4 = 0, the solution to (14) can be gotten as

1
wap(1) = wap(0)e™ 2% (1 — San
t
-2 / (t = $)e™ 7 gy (s) ds
2 Jo

t
+ / e 200 (5) ds.
0

According to [33, Proof of Theorem 1], existing © > 0,
v > 0, so that

|§|re*%°” < e, (15)

Based on the inequality (15) and the triangle inequality,
we obtain

1
|wap(®)] < |wap(0)e™ 2% (1 — San|
t
+ /0 e[ gap(s)| ds

+ fo e Sy ds,
further, we have
0an(!)] < lwap (@)™ 3 (1 = Jan)] + (& + 2) max [Zas(s)]
Finally, we obtain

. n o 2 1
Am [QO]lF = (— + —)mn)2 sup [Lap(s)]-

0<s<t

3) If «® — 48 < 0, the solution to (14) can be gotten as
wap(1) = wap(0)e (Esin(nt)/n + cos(nt))
4 / ' (Esintntc — e
+ ccfs(na — ) ) zap(s) ds,

where &, nis defined as —« /2, —1/2(48 —az)% respectively.
According to the triangle inequality, we have
|wan(D] < |wap(0)e (Esin(nt)/n + cos(nt))]
VE +n?
TR 1Zab($)]
= |wap(0)e (Esin(n1)/n + cos(nn))|

hid max |Zap(s)|.

- /4B — a2 0=s=t

VOLUME 7, 2019
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Finally, we obtain

sup |Zap(s)]-

0<s<t

lim Q00 < 2y
1—00 F="a4p—a?

V. SIMULATION AND VERIFICATION
In the Section IV, the convergence and robustness prop-
erty of the proposed NAZNN model (5) for comput-
ing complex-valued time-dependent matrix pseudoinverse
are analysed. This section, tests are conducted on two
complex-valued time-dependent matrices to validate the
superiority of the presented NAZNN model (5) for solving
complex-valued time-dependent matrix pseudoinverse in var-
ious noises.

Example 1. The complex-valued time-dependent matrix
V(t) (with full rank) is considered as follow:

isin(2t) icos(2t)
V()= | —icos(2r) isin(2r) | € C3*2, (16)
isin(2t) icos(2t)

According to (1), the theoretical pseudoinverse of (16) can
be gotten as

_ | —isin(21)/2 —isin(2t) —icos(2t)/2 2%3
Vi = |:—isin(2t)/2 —icos(2t) —icos(2t)/2:| € ™.
(17)

Four noise scenarios are considered as following to operate
the simulations for complex-valued time-dependent matrix
pseudoinversion (16).

Zero Noise: The simulation results generated by the pro-
posed NAZNN model (5) for computing complex-valued
time-dependent pseudoinverse of (16) are shown in Fig. 1
and Fig. 2. As displayed in Fig. 1, beginning from random
initial states X(0) € C2*3, the state matrix X(t) € C2*3
synthesized by the proposed NAZNN model (5) converges to
the time-dependent theoretical pseudoinverse (17) accurately

__10 __10
Z 5 Z 5
Radi) = 9
i 4 i 1
o 4Ty 0 o 45 0
imaginary real imaginary real
.Egl(t) 122(1‘)
10 10
Z 5 Z 5
1 — 1 1 — 1
° 44 o O 474 0
imaginary real imaginary real
x31(t) w32(t)
__10 __10
< 5 < 5
- ? + (1)
1 1
0 44 o ° 44 0
imaginary real imaginary real

FIGURE 1. State trajectories of NAZNN model (5) with « = 8 = 10, where
red dash-dotted curves denote theoretical solution pseudoinverse of (16)
and blue solid curves denote the neural-state solution (16).
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and rapidly within a short time. The trajectories of resid-
ual error |Q)|r = IVE@OV©)X () — VHE(@)||g generated
by NAZNN model (5) are shown in Fig. 2. In Fig. 2(a),
the residual error synthesized by NAZNN model (5) with
o = B = 10 diminish to zero with 3 s. Furthermore,
from Fig. 2(b), the residual error synthesized by NAZNN
model (5) with « = 8 = 100 diminish to zero with 0.6 s.
That is, the convergence time can be shorten by increasing
o and f, these results are consistent with the theoretical
proof of Theorem 2. These simulation results illustrate the
efficacy of NAZNN model (5) for computing complex-valued
time-dependent pseudoinverse without noise existing, in the
noise-free situation, the convergence property of TZNN for
computing complex-valued time-dependent matrix pseudoin-
verse has been conducted in [27], the convergence property of
GNN for computing time-dependent matrix inverse has been
investigated in [32].

Constant Noise: For demonstration and comparison,
TZNN (6) and GNN (7) are employed to compute complex-
valued time-dependent matrix pseudoinverse (16). The resid-
ual errors synthesized by NAZNN model (5), TZNN (6) and
GNN (7) with constant noise, the matrix-form noise is set
to be W(r) = [6 + 8i]*%3, the corresponding simulation
results are displayed in Fig. 3. As shown in Fig. 3(a), begin-
ning from random initial states X(0) € €273, the resid-
ual errors ||Q2(¢)||r generated by NAZNN model (5) with
o = B = 10 diminish to zero with 4.5 s, which are
consistent with the theoretical proof of Theorem 3. On the
contrary, the residual errors generated by TZNN (6) and
GNN (7) do not converge to zero. From Fig. 3(b), with
o = B = 100, the residual error of NAZNN model (5)
decrease to zero with 4 s. With o« = 100, the residual errors
generated by TZNN (6) and GNN (7) can not diminish to
zero yet, which is smaller than the situation with o = 10.
These simulation results demonstrate the robust perfor-
mance of NAZNN model (5) for computing complex-valued
time-dependent matrix pseudoinverse with constant noise
situation.

Linear Noise: Linear time-dependent noise is investi-
gated in this section, each element of the matrix-form linear
time-dependent noise is ¢ + #i. The relevant simulation results
of NAZNN model (5), TZNN (6) and GNN (7) are shown
in Fig. 4. From Fig. 4(a), the residual error of NAZNN (5)
with « = B = 10 diminishes toward near zero rapidly and
keeps stable at 0.3 s, while the residual errors of TZNN (6)
and GNN (7) with @ = 10 increase over time and each of
them is over ten times larger than that of NAZNN model (5)
att = 9 s, which substantiates the superiority of the presented
NAZNN model (5). Fig. 4(b) displays the residual errors of
three model with « = 8 = 100, the residual error of NAZNN
model (5) also converges to near zero quickly and keeps stable
at 0.08s. In addition, the residual error of TZNN (6) and
GNN (7) o = 100 also increase over time. Overall, these
simulation results verify Theorem 4.

Random Noise: In this section, we investigate the prop-
erty of NAZNN model (5) in a random noise situation.

13837



IEEE Access

Y. Lei et al.:

NAZNN for Computing Complex-Valued Time-Dependent Matrix Pseudoinverse

25} @) 1

2 0.6 T
0.4

15 E
0.2

1 0 i

0 05 1 15
0.5H / il
t (s)
o . . . \ \ \ |
0 1 2 3 4 5 6 7 8 9 10
(a)

[[€2(0) |
151 A
T 0.2 1
0.1
05 % 05 1 15 1
/ t(s)
0 ‘ \ \ ‘ ‘ \ \ ‘ ‘
0 1 2 3 4 5 6 7 8 9 10

FIGURE 2. Residual errors [|2(t)Ir = |VH(£)V(£)X (t) — VH(t)||r generated by NAZNN model (5) for the pseudoinverse of (16). (a) Residual errors
12(t) ||z of NAZNN model (5) with « = 8 = 10. (b) Residual errors || 2(t) ||z of NAZNN model (5) with « = 8 = 100.

6

s — NAZNN
[[€2)||r = GNN

4r - TZNN 1

sl ]

— NAZNN
1.5F (1926311 we GNN 1
- TZNN

i ,

05} ,
"""""""""""""""""""""""" t (~) rme
0 ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 9 10

FIGURE 3. Residual errors [|2(t)[[r = [VH(¢)V(t)X (t) — VH(t)| generated by NAZNN model (5), TZNN (6) and GNN (7) for the pseudoinverse of
(16) with the constant noise ¥(t) = [6 + 8i]2%3 . (a) With « = 10 for three models and 8 = 10 for NAZNN model (5). (b) With « = 100 for three

models and 8 = 100 for NAZNN model (5).

) e o

1 -,‘x_‘;'-'".‘,:. R :
- T
- L L L L L L L L L
1 2 3 7

0
0 5
(a)

— NAZNN
s ) e o |
=== TZNN
il ]
0.5F i
0
0 1

FIGURE 4. Residual errors |2(t)|Ir = VY (t)V (£)X (t) — VH(t)||r generated by NAZNN model (5), TZNN (6) and GNN (7) for the pseudoinverse
of (16) with the linear time-dependent noise ¥ (t) = [t + t/]2*3 . (a) With « = 10 for three models and 8 = 10 for NAZNN model (5). (b) With

« = 100 for three models and 8 = 100 for NAZNN model (5).

The experimental results of NAZNN model (5), TZNN (6)
and GNN (7) with matrix-form random noise WV (¢) = (¢),
each element ¢,,(t) € [18 + 18i,22 + 22i] are displayed
in Fig. 5, Fig. 5(a) illustrates the residual error of NAZNN
model (5), TZNN (6) and GNN (7) with « = g = 10,
the residual error decreases to zero within 5.5 s and keeps
very stable at 0.01, while the residual errors of TZNN (6) and
GNN (7) have a big gap with zero. Besides, from Fig. 5(b) the
residual error of NAZNN model (5) with « = 8 = 100 also
decreases to zero rapidly and remain stable in 5 s, in contrast,
the residual errors of TZNN (6) and GNN (7) with « = 100
do not diminish to zero as time goes on.
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The above simulation results of Example 1, i.e, Figs.1-5,
have demonstrate the superiority and the effectiveness of
the proposed NAZNN model (5) for solving complex-valued
time-dependent matrix pseudoinverse in the situation of dif-
ferent noise.

Example 2. For further investigation, a more complicated
complex-valued time-dependent matrix is considered.

vit(t)  via(t) Via(t)
Vi) = V2l:(t) szz(t) Vzri(t) com™r (1)
Vi) v (0) Vin(t)
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time-dependent pseudoinverse of matrix (18). (a) Residual errors ||2(t)||z of NAZNN model (5) with noiseless. (b) Residual errors || 2(t)|| of
NAZNN model (5) with matrix-form constant noise W(t) = [6 + 8i]>*®. (c) Residual errors ||2(t)[|r of NAZNN model (5) with matrix-form
time-dependent linear noise ¥ (t) = [t + ti]>*5. (d) Residual errors | 2(t)||x of NAZNN model (5) with matrix-form random noise ¥(t), each

element ¢gp(t) € [18 + 187,22 + 22i].

with vgp(¢) denotes the abth element of V (¢). Thereinto

eZit7 a= b,
vap(t) = Ya+e ¥, a<b,
b+ e 2t a>b.
Due to the large dimensions ( with m = 6 and n = 5 in

this paper) of matrix (18), the theoretical pseudoinversion
is hard to be obtained. Thus, we just present the residual
errors | Q)| = VROV (©)X() — VH(1)||p generated by
NAZNN model (5) with different situations of «? — 48.
That is, with o being 10, g being 20, 25, 30 denote the
situation of a2 — 48 > 0, o2 —48 = 0, o2 — 48 < 0,
respectively. The simulation results of NAZNN model (5) are

VOLUME 7, 2019

shown in Fig. 6. From Fig. 6(a), the residual errors of NAZNN
model (5) setting different values of B decrease to zero rapidly
in noiseless situation. From Fig. 6(b) to Fig. 6(d), the sim-
ulation results are inspiring, the residual errors of NAZNN
model (5) setting different values of 8 also decrease to zero
rapidly in different noises situation, it is worth pointing out
that the residual errors of NAZNN model (5) remain very
stable after converging to zero, which demonstrate excellent
anti-noise performance of NAZNN model (5). In addition,
as shown in Fig. 6, we can observe that the convergence
rate of residual errors ||Q2(¢)||r is accelerated as the value
of B increases with a suitable «. In summary, all these
results the theorems presented in previous section and further
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substantiate the superior anti-noise performance of NAZNN
model (5) for solving the complex-valued time-dependent
matrix pseudoinverse once again.

VI. CONCLUSION

To deal with noises when resolving time-dependent issue in
complex-valued domain, a novel NAZNN model (5) has been
first proposed in this paper. Then, the NAZNN model (5)
has been investigated for computing complex-valued time-
dependent pseudoinverse. For comparison, TZNN (6) and
GNN (7) have been adopted to solve the same task. Besides,
the globally and exponential convergence performance has
been researched in theoretical analyses. Moreover, in differ-
ent noise situation, the proposed NAZNN model (5) has been
proven to possess an superior property. That is, the complex-
valued time-dependent pseudoinverse synthesized by the
NAZNN model (5) converge to the theoretical pseudoinverse,
and it owns strong resistance to various sorts of noise. Finally,
simulation results have illustrated the efficacy and superiority
of the NAZNN model (5) for solving complex-valued time-
dependent matrix pseudoinverse with various kinds of noises.
It is worth pointing out that the novel zeroing neural network
model is firstly proposed for solving complex-valued time-
dependent problem, moreover, it shows superior stability
in the aspect of anti-noise, which is a breakthrough in the
research of ZNN and time-dependent issue resolving.
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