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ABSTRACT Service-based systems resource allocation in cloud computing is a key method of meeting
service requests because service request workloads and resource demands change over time. When coping
with dynamic fluctuating service requests and resource demands, adaptive resource allocation to ensure the
quality of service (QoS) with the lowest resource consumption becomes challenging. In cloud computing,
services share the same resource pool and compete for critical resources, such as CPU and memory
resources. Because services need arbitrary resource combinations, focusing on a single resource may lead
to excessive or deficient resource allocations or even service request failures. Due to the shared nature of
cloud computing, QoS may be impacted by interference with co-hosted services. In this paper, we propose
an adaptive control approach for resource allocation that adaptively reacts to dynamic request workloads and
resource demands. The multivariable control is adopted to allocate multiple resources for multiple services
according to the dynamic fluctuating requests and considers the interference between co-hosted services,
thereby ensuring QoS even if the resource pool is insufficient. The comparative experiments show that the
proposed approach can meet service requests and can improve resource utilization regardless of whether the
resource pool is sufficient.

INDEX TERMS Adaptive resource allocation, cloud computing, multivariable control, QoS.

I. INTRODUCTION
The emergence of cloud computing has had a large impact
on the Information Technology (IT) industry [1], and many
enterprises are competing to provide more powerful, reliable
and cost-efficient cloud services including large companies
such as Google, Amazon, Microsoft and Alibaba. In addi-
tion, IT enterprises are striving to reshape their business
services to gain more benefits from cloud computing [2].
In a cloud computing environment, service providers manage
cloud resources according to an on-demand pricing scheme,
and the service providers must ensure their own profits while
providing good QoS and maximum user satisfaction. There-
fore, resource allocation plays an important role in cloud
computing [3] and affects the QoS, the performance of the
whole system and SLA (Service Level Agreement), which
indicates the level of user satisfaction [4].

User requirements may change over time, and at different
times, many or a few users may try to concurrently access
the server. For example, Alibaba has exceeded its single-day

record as sales cross 25 billion dollars, and the amount of
users accessing the servers is 43 million per second at peak
times [5]. The provider must supply sufficient resources to
ensure QoS; otherwise, unexpected loads may cause poor
QoS that violates SLA.Amazon reported a loss of 245million
dollars because of an increase in response time of 100 ms
[6]. To avoid such situations and ensure QoS, an effective
dynamic resource allocation scheme is required.

Reactive approaches [7]–[15] solve this challenge mainly
by increasing or decreasing resources according to predefined
thresholds. However, the metrics and parameters must be
specified, and upper and lower thresholds are difficult to
obtain. Proactive approaches [16]–[24] predict future work-
load variations before their occurrence to react to the dynamic
resource allocation. For example, time-series [17], [18],
reinforcement learning [16], [19], [20], and queuing the-
ory [21], [22] cope with the challenge by predicting and
adapting to fluctuating workloads [25]. However, these exist-
ing approaches have shortcomings. Time-series relies too
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FIGURE 1. Decomposed MIMO control system structure.

heavily on historical data, reinforcement learning consumes
considerable time for learning, and queuing theory must
rebuild the model when the workload changes. To over-
come these limitations, feedback mechanisms are increas-
ingly applied as they enable complex computing systems to
cope with fluctuating workloads or operating conditions [26].

Control theory provides principled feedback loops to man-
age unpredictable changes, uncertainties and disturbances
in systems. In [27], single-input and single-output (SISO)
control is used to allocate a single type of resource to ser-
vices. However, processing service requests requires different
types of resource combinations (e.g., CPU and memory). For
example, if two users request different services with different
resource demands but have similar SLAs, the provider may
allocate insufficient memory and excessive CPU resources
to the services that need considerable memory but limited
CPU resources, thereby causing an SLA violation. However,
most studies [28]–[33] have not fully addressed such char-
acteristics, and users are usually only considered based on
their SLAs. To cope with the multiple resource combination
issue, multivariable control [34] has been applied for resource
allocation problems.

Multivariable control provides a multi-input and multi-
output mechanism to generate combinatorial resource allo-
cation. As shown in Fig. 1, several studies [35]–[39] have
allocated multiple resources to types of services by decom-
posing the multi-input and multi-output (MIMO) control
system to multiple simple, independent SISO control sys-
tems. However, the QoS may be impacted by interactions
and competition with co-hosted services, and ignoring these
interferences may lead to SLA violations. The interactions
cannot be precisely decoupled by decomposing the MIMO
system to multiple SISO systems.

To resolve such problems, we use the coordinated MIMO
control system [40] shown in Fig. 2. This system central-
izes all inputs and outputs, and each output is impacted by
all inputs. The system enables each type of resource allo-
cation to be constrained by other co-hosted services, and
thus coordinated resource allocation occurs according to the
workloads of the services. This system considers the interac-
tions between services and ensures QoS by coordinating the
resource allocation of services.

In this paper, we propose an adaptive multivariable control
resource allocation approach for SBS in cloud computing that
can allocate multiple types of resources to multiple virtual
machines (VMs), thus improving resource utilization and

FIGURE 2. Coordinated MIMO control system structure.

ensuring QoS. The main contributions of this paper are as
follows:

(1) We propose an adaptive multivariable control strategy
for resource allocation in cloud computing systems.
Our proposed approach provides a powerful mech-
anism to manage unpredictable changes and uncer-
tainties, performs combinatorial resource allocation
according to the various characteristics of different
services, and considers interference between co-hosted
services.

(2) We compare the reactive approach, proactive approach,
SISO control approach and decomposed MIMO con-
trol approach with our coordinated MIMO control
approach under sufficient and insufficient resource
pool situations. The comparative experimental results
show that our approach allows reduced operating costs
and increases resource utilization while simultane-
ously ensuring QoS, especially under the insufficient
resource pool situation.

(3) The proposed control theoretic approach facilitates
management of the challenges of resource allocation
in cloud computing systems, saves operating costs
and increases resource utilization while simultaneously
ensuring QoS by adaptively reacting to the open envi-
ronment full of interference and addressing unpre-
dictable resource demands in real time.

The rest of the paper is organized as follows: Section II
discusses novel dynamic resource allocation. An overview of
our approach is described in Section III. We introduce the
details of our resource allocation controller in Section IV.
The experiments are shown in Section V. We compare our
approach with related research efforts and analyze the results
of the comparison in Section VI. Future work is introduced
in Section VII, and conclusions are provided in Section VIII.

II. RELATED WORKS
Many studies have sought approaches for resource allocation
in dynamic environments such as clouds. These approaches
are divided into two categories: reactive approaches and
proactive approaches. Reactive approaches increase and
decrease resources based on whether predefined thresholds
are reached. Proactive approaches anticipate the amount of
resources to react to future workload fluctuations. In the fol-
lowing section, we discuss previous research in resource allo-
cation. A comparison of related efforts is provided in Table 1.
We classify these efforts in terms of approaches, underlying
models, metrics and issues related to resource allocation.
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TABLE 1. Comparison of related works.

We design eight dimensions for the classification as shown
in Table 1. The first dimension is related to the approach
types: reactive and proactive. The second dimension concerns
whether the proposed approach in a reference is based on
control theory. The third dimension is related to the structure
of the controller employed if the proposed approach is based
on control theory. If a controller is single input and single
output, then the reference is marked as ‘‘SISO’’; otherwise,
if a controller is multi-input and multi-output, then the refer-
ence is marked as ‘‘MIMO’’. The fourth dimension concerns
whether an approach enables prediction of the requested
workload or future resource demand; if it enables prediction
of future demands, it is marked as ‘‘3’’, otherwise, it is
marked as ‘‘−’’. The fifth dimension concerns whether an
approach allows multiple types of resource allocation. If it
only allocates a single type of resource, then it is marked as
‘‘−’’; otherwise, it is marked as ‘‘3’’. The sixth dimension
concerns whether an approach allows combinatorial resource
allocation, as processing service requests requires different
types of resource combinations. If an approach considers
this issue, then it is marked as ‘‘3’’; otherwise, it is marked
as ‘‘−’’. The seventh dimension concerns resource interfer-
ence, which indicates whether the proposed approach con-
siders the interference between services. Because services in
cloud computing share the public resource pool, QoS can be
impacted by possible interactions and competition with co-
hosted services. Ignoring this interference may lead to failed
service requests. To avoid SLA violation, inferences should
be considered. If interference is considered, then the approach
is marked as ‘‘3’’; otherwise, it is marked as ‘‘−’’. The eighth

dimension involves the approaches and technologies used to
achieve resource allocation. For example, some studies use
VM migration to minimize the number of physical machines
(PMs), and some studies increase or decrease the computing
resources of VMs. Finally, each prior effort is classified based
on the above eight dimensions. The classification results are
shown in Table 1.

As shown in Table 1, due to the dynamic charac-
teristics of resource allocation in cloud computing, sev-
eral studies [7]–[15] tackle this challenge through reactive
approaches, which increase or decrease resources based on
performance metrics and predefined thresholds. However,
the metrics and parameters must be specified, and the upper
and lower thresholds are difficult to obtain. In addition, as
shown in Table 1, most of the reactive approaches do not have
prediction mechanisms. Therefore, they may not able to react
in time to unpredictable bursts in workloads.

Proactive approaches [16]–[24] anticipate future workload
fluctuations using time-series analysis [17], [18], reinforce-
ment learning [16], [19], [20], queuing theory [21], [22],
access control [23], [24] and control theory techniques.
They predict the behavior of the system and deter-mine the
reconfiguration actions accordingly. However, each proac-
tive approach has limitations. For example, the time-series
approach in [17] and [18] is highly dependent on histor-
ical data; some approaches using machine learning [16],
[19], [20] require considerable time for learning [48]; the
approaches using queuing theory in [21] and [22] require
recalculation of the model when the workload changes; and
some approaches adopting access control [23], [24] must
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process a large amount of data. Therefore, such approaches
usually require considerable time and cannot sufficiently
react when fluctuations occur frequently.

Many researchers [27]–[39] use control theoretic
approaches for automatic resource allocation. Control theory
provides an adaptive means of designing feedback loops to
manage fluctuations in external and internal environments.
Some studies [27]–[33] have used SISO control systems
for resource allocation. However, processing different ser-
vices requires different types of resources, such as CPU
and memory resources. For example, two users who request
different services with different resources demands but have
similar SLAs can have the same priority for a provider, which
may lead the provider to allocate insufficient memory and
excessive CPU resources to the services that require consid-
erable memory but limited CPU resources, thereby causing
low QoS or even violating SLA. These SISO approaches
perform single-resource allocation to achieve a single goal,
and ignoring the resource combination may lead to different
types of resource allocation mismatches.

To manage the mismatch problem mentioned above, sev-
eral studies [35]–[39] have designedmultivariable controllers
to allocate multiple resources, such as CPU and memory
resources, to meet QoS requirements. These decomposed
multivariable control approaches decompose oneMIMO con-
trol system into multiple independent and simple SISO con-
trol systems to allocate multiple types of resources tomultiple
services. However, due to the shared nature of cloud comput-
ing, QoS may be impacted by interactions and competition
with co-hosted services; therefore, inaccurate decomposition
of interference may cause low QoS and even SLA violation.

From Table 1, we find that coordinated MIMO control
systems combine prediction, multiple resource allocation
and interference consideration into one controller; there-
fore, we adopt coordinated multivariable control to achieve
resource allocation that resolves the challenges mentioned
above.

III. APPROACH OVERVIEW
An overview of the proposed approach is shown in Fig. 3.
In this paper, we focus on the most important resources
that affect QoS: CPU and memory resource allocations.
We deploy multiple services on multiple VMs (VM1,
VM2 and VM3) that share the same resource pool. The
services on the VMs have different demands of multiple
resources. For example, the services deployed on VM1 are
CPU-intensive and consume more CPU resources than mem-
ory, the services deployed on VM2 are memory-intensive and
consume more memory than CPU resources, and the services
on VM3 are normal services that consume nearly the same
amount of CPU and memory resources. To clearly express
this scheme, we provide definitions below.
• W (k) = [w1(k), w2(k), w3(k)]T : W (k) is the current
workload at moment k and contains the numbers of
requests per second of each VM. w1(k) (requests/s)
is the number of requests per second of VM1, w2(k)

FIGURE 3. Overview of resource allocation.

(requests/s) is the number of requests per second of
VM2, and w3(k) (requests/s) is the number of requests
per second of VM3.

• Q(k) = [q1(k), q2(k), q3(k)]T : Q(k) is the current QoS
at moment k . q1(k) is the number of service responses
per second of VM1, q2(k) is the number of service
responses per second of VM2, and q3(k) is the number
of service responses per second of VM3.

• R(k) = [CPU1(k), MEM1(k), CPU2(k), MEM2(k),
CPU3(k),MEM3(k)]T : R(k) is the current resource allo-
cation at moment k and contains the CPU and mem-
ory resources of each VM. CPU1(k) and MEM1(k) are
the CPU and memory resource allocations of VM1,
respectively. Analogously, CPU2(k) and MEM2(k) and
CPU3(k) and MEM3(k) are the CPU and memory
resource allocations of VM2 and VM3, respectively.

As shown in Fig. 3, the requests of each VMW (k) simulta-
neously arrive at the resource allocation controller. The con-
troller calculates the CPU and memory resource allocation
R(k) to each VM. Then, the resource allocator executes the
calculated multiple resource allocations R(k) to the VMs.
In addition, the current QoS Q(k) is observed by the monitor
and fed back to the resource allocation controller. According
to this feedback Q(k) and workload W (k), the controller
calculates the resource allocations R(k) for the next interval.

IV. RESOURCE ALLOCATION CONTROLLER
The cloud computing environment is dynamic and complex.
To achieve economic benefits and ensure QoS, a controller
with an adaptive model and a simple algorithm that enables
prediction of future demands are required. Unlike tradi-
tional controls in [29]–[32], GPC (Generalized Prediction
Control) [41] is a kind of control algorithm combined with
feedback correction that recedes horizon optimization and
prediction to meet the real-time control requirements of cloud
computing. In addition, since the parameters of the control
model are unknown and setting an unreasonable parameter
may cause oscillations, an adaptive mechanism is proposed
to estimate the parameters in real time.

An overview of the resource allocation controller is shown
in Fig. 4. We adopt a coordinated MIMO control structure for
the controller consisting of four parts: a transition process,
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FIGURE 4. Multivariable resource allocation controller.

optimization, the system model and the adaptive mechanism.
The transition process facilitates the transition from the actual
workload to the expected workload. The optimization calcu-
lates and predicts the CPU and memory resource allocations
for the three VMs by minimizing resource consumption. The
system model then predicts the future QoS based on the
historical and current resource allocations and QoS. Concur-
rently, the adaptive mechanism corrects the parameters of the
systemmodel according to the current resource allocation and
QoS. All these components consist of a closed control loop
to calculate the resource allocation online.

In Fig. 4, Wr is the expected workload containing
the expected workload of each VM; R is the predicted
resource allocation containing the predicted CPU and mem-
ory resource allocations of these VMs; Qo is the observed
QoS based on moment k; and Q∗ is the predicted QoS based
on moment k . The specific expressions are shown in (1).

W r = [Wr (k + 1) · · ·Wr (k + N )]T

Wr (k + j) = [wr1(k + j),wr2(k + j),wr3(k + j)]T

j = 1, 2 · · ·N
R = [R(k + d) · · ·R(k + N − 1)]T

R(k + j)= [CPU1(k + j),MEM1(k+j),CPU2(k + j),
MEM2(k + j),CPU3(k + j),MEM3(k + j)]T

j = 1, 2 · · ·N − 1

(1)

where N is the prediction length; wr1(k + j), wr2(k + j),
and wr3(k + j) are the expected workloads of the three VMs,
respectively, which indicate the number of requests per sec-
ond for each VM; CPU1(k + j),MEM1(k + j), CPU2(k + j),
MEM2(k+j),CPU3(k+j), andMEM3(k+j) are the predicted
CPU and memory resource allocations to the three VMs,
respectively; and q1(k + j|k), q2(k + j|k), and q3(k + j|k) are
the predicted QoS of the three VMs based on k , respectively.

A. SYSTEM MODEL
Considering the non-linear and time-varying characteristics
of cloud computing, the specific relationship between QoS
and resource allocation is difficult to capture. We describe

the QoS and resource allocation in (2).

Q(k)= f
(
Q(k−1) · · ·Q(k−nq),R(k−d) · · ·R(k−d−nr )

)
(2)

where f (∗) describes the relationship between QoS and
resource allocation and d is the latency of controller.
As latency exists in real-time systems, especially for cloud
computing systems, ignoring the latency may lead to model
mismatch of even an invalid control system, thereby affecting
QoS [42]. Therefore, it is necessary to consider latency in
resource management. We consider the latency in the real-
time system by compensating for the controller with a latency
d , and the setting of d is discussed in the next section.
In the non-linear complex cloud computing environment,

we describe the relationship between QoS and resource allo-
cation by using an auto-regressive integrated moving aver-
age (ARIMA) model [36], and the adaptive mechanism esti-
mates the time-varying parameters in every control interval.
In ARMA form, the system model is described in (3).

Q(k) =
nq∑
i=1

AiQ(k − 1)+
nr∑
j=0

BjR(k − d − j) (3)

where Ai ∈ R3×3, Bj ∈ R3×6 are the parameters of the system
model.

B. TRANSITION PROCESS
The goal of the controller is to derive the resource allocation
by minimizing resource consumption and the gap between
QoS and the workload. Therefore, to transition from the
expected workloads to actual workloads smoothly, we use the
transition process in (4) [7].

Wr (k + j) = αWr (k + j− 1)+ (I − α)W (k) (4)

where j = 1, 2 . . .N and α ∈ R3×3 = diag{α1, α2, α3} is
the transition coefficient, which determines the transition rate
from the expected workloads to the actual workloads.

C. OPTIMIZATION
The receding horizon optimization is updated online rather
than using a fixed global optimization. We predict QoS
Q∗(k + j|k), (j = 1, 2 . . .N ) based on moment k , and the
resource allocation R(k) is calculated according to the pre-
diction. Therefore, the optimal resource allocation is updated
by the predictions and regulations online.

1) PREDICTION
Due to the existence of network transmission delay and con-
troller execution delay, it is difficult to precisely determine
the latency in the system [43]. Prediction control is used
to cope with the latency by predicting the future QoS [44].
It predicts QoS in the future by minimizing the error between
the observed QoS Qo(k+ j) and the predicted QoS Q∗(k+ j),
and the performance index is shown in (5).We adopt recursive
multi-steps prediction to obtain the observed QoS Qo(k + j)
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based on the current QoS Q(k). Therefore, the prediction and
optimization are cycled online to compensate for the latency
in real time.

Jmin = E
{[
Q∗(k + j|k)− Qo(k + j)

]2} (5)

To compensate for the latency, we define the observed predic-
tion vector Qo and prediction vector Q∗, the details of which
are as follows:{

Qo = [Qo(k + d),Qo(k + d + 1) · · ·Qo(k + N )]T

Q∗
=
[
Q∗(k + d),Q∗(k + d + 1) · · ·Q∗(k + N )

]T (6)

where Qo(k + d) . . .Qo(k +N ) are iterated based on Q(k) as
follows:

Qo(k + 1) = f (Q(k) · · ·Q(k − nq + 1),
R(k − d + 1) · · ·R(k − d − nr + 1))

...

Qo(k + d) = f (Qo(k + d − 1) · · ·Qo(k − nq + d),
R(k) · · ·R(k − nr ))

...

Qo(k + N ) = f
(
Qo(k + N − 1) · · ·Q(k − nq + N ),

R(k − d + N ) · · ·R(k − d − nr + N ))

(7)

where the iteration is based on (3). Therefore, we can derive
the observed prediction vectorQo = [Qo(k+d). . .QoQo(k+
N )]T . Then, the prediction performance index expressed in
matrix form is as follows:

Jmin = E
{
(Q∗
− Qo)

T (Q∗
− Qo)

}
(8)

According to (3) and (8), we can derive the prediction Q∗ by
minimizing the deviation between prediction Q∗ and obser-
vation Qo. Q∗ is calculated in (9).

Q∗ = Qo + C1R (9)

where C is the control coefficient matrix. The specifics of C
are shown in (10).

C =


C1 0 · · · 0
C2 C1 · · · 0
...

...
. . .

...

CN−d+1 CN−d · · · C1

 (10)

where the element Cj of C is calculated by the iteration
formulae (7) and (3). The calculation is described in (11).

C1 = B0

Cj = Bj−1 +
j1∑
i=1

AiCj−i, j1 = min
{
j− 1, nq

}
,

j− 1 > nr , Bj−1 = 0

(11)

2) OPTIMAL CONTROL
The optimal resource allocation is determined by minimizing
the resource allocation consumption and the gap between
the expected workloads Wr and the predicted QoS Q∗. The
performance index is described in (12).

Jmin = E


N∑
j=1

[
Q∗(k + j)−Wr (k + j)

]2
+

N∑
j=1

[1R(k + j− 1)]2

 (12)

where R(k) = [1CPU1(k), 1MEM1(k), 1CPU2(k),
1MEM2(k), 1CPU3(k), 1MEM3(k)]T is the incremental
control. Formula (10) indicates that the resource allocation
is optimized in every control interval and is not a fixed global
optimized allocation determined offline. According to (1),
the performance index expressed in matrix form is shown in
(13).

Jmin = E
{
(Q∗
−W r)T (Q∗

−W r)+1RT1R
}

(13)

where 1R is the increment resource allocation, and its spe-
cific expression is shown in (14).
1R = [1R(k),1R(k + 1) · · ·1R(k + N − 1)]T

1R(k + j) =
[
1CPU1(k + j),

1MEM1(k + j), 1CPU2(k + j),

1MEM2(k + j), 1CPU3(k + j), 1MEM3(k + j)
]T (14)

To derive the minimized Jmin in (13), we let ∂J/∂1R =
0. The minimizing process is shown in (15), which can be
derived according to (13) and (9).

∂J
∂1R

= (Q∗
−W r)T

∂(Q∗
−W r)

∂1R
+
∂(Q∗

−W r)T

∂1R
× (Q∗

−W r)+1RT +1R

= (Qo + C1R−W r)T
∂(Qo + C1R−W r)

∂1R

+
∂(Qo + C1R−W r)T

∂1R
(Qo

+C1R−W r)+1QT +1Q

=

[
(Qo + C1R−W r)T CC 1RT

]
+

[
CT (YQo + C1R−W r)+1R

]
= 0 (15)

Then, the increment control 1R can be derived, and the
expression is shown in (16).

1R = (CTC + I)−1CT (W r − Qo) (16)

where C is set according to (10) and (11), and R(k) is the first
element of 1R. Then, we can derive the resource allocation
R(k) in (17).

R(k) = R(k − 1)+1R(k)
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= R(k − 1)+ [1 · · · 1︸ ︷︷ ︸
6

, 0 · · · 0]1R

= R(k − 1)+ [1 · · · 1︸ ︷︷ ︸
6

, 0 · · · 0]

×(CTC + I)−1CT (W r − Qo) (17)

whereWr andQo are derived by (4) and (3), respectively, and
R(k − 1) is observed by the monitor.
From the above functions, we derive the k moment CPU

and memory resource allocations R(k) for the three VMs.
Then, the monitor feeds back QoS Q(k) to the controller for
the next control cycle.

D. ADAPTIVE MECHANISM
Because the parameters in (3) are unknown, an adaptive
mechanism is needed to estimate the parameters in real
time. We use FFRLS (Forgetting Factor Recursive Least
Square) [45] to estimate the parameters of the controller.
The goal of the adaptive mechanism is to minimize the gap
between the estimated and actual QoS. As the scale of the data
increases, the capacity of correction becomes worse. When
changes in the system occur, the adaptive mechanism cannot
react to the changes, leading to failure of real-time parameter
estimation. To overcome this deficiency, the forgetting factor
is adopted to forget the historical data, which introduces a
weighting coefficient to the data. The coefficient of the latest
data is 1, and older data correspond to a coefficient closer to 0;
thus, the historical data are forgotten by this forgetting factor.
The performance index of the adaptive mechanism is shown
in (18).

Jmin =

k∑
j=1

λk−j
[
Q(j)− Q̂(j)

]2
(18)

where Q̂(j) is the estimated QoS of service responses per sec-
ond and λ is the forgetting factor. The coefficient weight
of the historical data at the (k − 1), (k − 2) . . . 1 moment
is 1, 2 . . . k − 1. Therefore, the current data are maximally
weighted, and the historical data are exponentially forgotten.
For clarification, we let Q̂(k) = ϕT (k)θ̂ (k), and the specific
expressions of ϕT (k) and θ̂ (k) are shown in (19).


Q̂(k) = ϕT (k)θ̂ (k)
ϕ(k) =

[
Q(k − 1) · · ·Q(k − nq),
R(k − d) · · ·R(k − d − nr )]T

θ̂ (k) =
[
Â1(k) · · · Ânq(k),B̂0(k) · · · B̂d+nr (k)

]T (19)

where ϕ(k) is the initial configuration andθ̂ (k) is the esti-
mated parameters. In (18), the forgetting factor λwill weaken
the impact of historical data with data updates. Then, we can
derive the estimated parameters of the controller by min-
imizing the performance index in (18), and the estimated

TABLE 2. Resource allocation control algorithm.

parameters θ̂ (k) is shown in (20).
θ (k) = θ (k − 1)+ K (k)

[
Q(k)− ϕT (k)θ (k − 1)

]
K (k) =

P(k − 1)ϕ(k)
λ+ ϕT (k)P(k − 1)ϕ(k)

P(k) =
1
λ

[
I − K (k)ϕT (k)

]
P(k − 1)

(20)

For all of the above processes, the resource allocation is
summarized in Table 2.

V. EXPERIMENTAL SETUPS
We build two types of experimental situations to verify
our resource allocation approach: insufficient and suffi-
cient resource pools. We select four approaches from the
30 reviewed papers according to the approach type shown
in Table 1: the reactive approach in [15], the proactive
approach in [19], the SISO control approach in [29] and
the decomposed MIMO control approach in [39]. In [15],
the reactive approach allocates the system resources to the
VMs using linear programming; hereafter, this approach will
be abbreviated as ‘‘LP’’. In [19], the proactive approach pro-
poses a distributed learning mechanism using reinforcement
learning that facilitates adaptive VM resource allocation;
hereafter, it will be abbreviated as ‘‘RL’’. In [29], the SISO
control approach designs multiple SISO controllers for each
VM, which allocates CPU or memory resources according
to the feedback information; hereafter, we call this approach
‘‘SISO’’ for short. In [39], the decomposed MIMO control
approach also adopts MIMO control to allocate multiple
types of resources to the VMs, but it decomposes the MIMO
controller to multiple simple SISO controllers; thus, we call
this decomposedMIMO control approach ‘‘de-MIMO’’ here-
after for short. Different from the de-MIMO control in [39],
we use only one coordinatedMIMO control to allocate multi-
ple types of resources to multiple VMs, and hereafter we call
our approach ‘‘co-MIMO’’ for short.

In this experiment, we allocate the most important
resources, CPU andmemory resources, to theVMs. To extend
our approach to a large-scale cloud, we classify the services
into three types, CPU-intensive services, memory-intensive
services and normal services [46], separately for the three
VMs. Services for which the ratio of CPU and memory
demands is greater than 1:2 are termed CPU-intensive ser-
vices; services for which the ratio of CPU and memory
demands is less than 1:4 are termed memory-intensive ser-
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vices, and services for which the ratio of CPU and memory
demands is between 1:4 and 1:2 are termed normal services.

In this experiment, we use ‘‘Route planning’’, ‘‘Image
analysis’’, and ‘‘Regional location’’ as the three services to
evaluate the proposed controller. ‘‘Route planning’’ is con-
sidered a CPU-intensive service, ‘‘Image analysis’’ is con-
sidered a memory-intensive service, and ‘‘Regional location’’
is considered a normal service. Therefore, VM1 is run with
the service ‘‘Route planning’’, VM2 is run with ‘‘Image
analysis’’, and VM3 is run with ‘‘Regional location’’. The
QoS requirements indicate that the response time of these
three types of services must be less than 0.8 s.

The resource allocator and controller run on two separate
physical machines, and both are developed by Python 3.4.
In our experiments, CPU and memory resource allocation
is required for each VM. OpenStack [47] is an open-source
platformwith well-defined APIs, and therefore we provide an
interface for each VM based on OpenStack Icehouse.

A. INITIAL PARAMETER SETTINGS
To determine the initial parameters mentioned in Table 2,
we will discuss the impact of the parameters on our coor-
dinated MIMO performance by analyzing the simulation
results.
• ϕ: ϕ is the initial CPU and memory resource allocation
of the VMs; the initial configurations of the three VMs
under insufficient and sufficient situations are shown
in Table 3 and Table 4, respectively.

• N : N is the prediction length; the more the controller
predicts, the more stable the system is. However, too
long of a prediction length may lead to enormous calcu-
lation. Therefore, we setN = 6 as its initial value, which
is a relatively short prediction length, on the premise of
system stability.

• λ: λ ∈ (0, 1] is the forgetting factor, which will
weaken the impact of historical data as the current data
are updated. As shown in (16), the current data are
maximally weighted, and the historical data are expo-
nentially forgotten. In this paper, according to general
studies [45], we choose the initial λ as 0.9.

• d : d is the latency of the system, and each control
interval is 2 minutes. The latency is expressed as d con-
trol intervals. We monitored the system and determined
that our system requires approximately 3-4 minutes to
execute a resource adjustment, which indicates that the
actual latency is approximately 3-4 minutes. To ensure
the stability of the control system, the latency of the con-
troller should be nearly the same as the actual latency.
As one control interval is 2 minutes, we set the latency
of the controller as d = 2.

• α : α ∈ R3×3 = diag{α1, α2, α3} is the transition
coefficient, which determines the transition rate from
the reference workload to the actual workload. We sim-
ulate three representative values to evaluate its impact
on the controller, and the simulation results are shown
in Fig. 5.

FIGURE 5. Setting values of α simulation.

FIGURE 6. Insufficient resources situation experimental environment.

TABLE 3. Insufficient situation experiment configuration.

As shown in Fig. 5, the fastest transition rate is α = 0.1.
However, although the transition rate of α = 0.1 is the
fastest, the transition process is not stable because the real
system cannot adapt to frequent dramatic changes made by
controller. Under the setting of α = 0.9, it takes too much
time to transit from the reference value to the actual value,
which indicates that the system cannot react to the workload
changes in time. For α = 0.6, although transit is slower
than for α = 0.1, the transition process is more stable than
for α = 0.1 and is considerably faster than for α = 0.9.
Compared with α = 0.1 and α = 0.9, the transition process
is fast and stable, and thus α = 0.6 is more acceptable than
other values.

B. INSUFFICIENT RESOURCES SITUATION
To evaluate the efficiency of our approach, a critical situation
is implemented in which the resource pool is insufficient.
An overview of the experimental environment under the
insufficient resource condition is shown in Fig. 6. These three
VMs are implemented on one PM, indicating that the resource
pool that they share is finite. Because the resource pool is
insufficient, we restrict the total CPU use to no more than
16 cores and memory consumption to no more than 32 G.
The configurations of the physical machines and the initial
configuration of the VMs are described in Table 3.

C. SUFFICIENT RESOURCES SITUATION
When the resource pool is sufficient, the three VMs are
deployed on three physical machines. An overview of the
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FIGURE 7. Sufficient resources situation experimental environment.

TABLE 4. Sufficient situation experiment configuration.

FIGURE 8. Workloads of the three VMs.

sufficient resources situation is shown in Fig. 7. The three
types of services run on three VMs, but unlike the insuffi-
cient resources situation, these three VMs run on three PMs
separately. The experimental configuration of the sufficient
resources situation is shown in Table 4.

D. WORKLOADS
In this experiment, we use the workload generator LoadRun-
ner 11 to generate three types of workloads for the three
VMs. After classifying the services above, the requests will
be assigned to the relative VM according to the details of the
requirements. The three workloads of the three VMs w1(k),
w2(k) and w3(k) are shown in Fig. 8. They represent the
number of requests per second of the three VMs, and the
experiment lasts 24 hours.

VI. EXPERIMENTAL RESULTS
We analyze the experimental results from seven aspects by
comparing them with those of existing approaches under
sufficient and insufficient resource pool situations: (1) CPU
resource allocation; (2) memory resource allocation; (3) CPU
resource utilization; (4) memory resource utilization; (5)
service response time; (6) service request satisfaction rate
and (7) adjustment time. For each aspect, the analysis is
performed under two situations: sufficient and insufficient
resource pools.

Resource utilization is the percentage of consumed
resources of all allocated resources and is also used as an eval-
uation index reflecting the efficiency of our approach. Higher
resource utilization is not better because excessive resource
utilization (more than 90%) may lead to failed service
requirements, while low resource utilization (less than 30%)
may lead to resource waste.

The request satisfaction rate is the percentage of the num-
ber of services meeting the requests of the total number of ser-
vices. Because the adjustment time can reflect the complexity
of each approach, we analyze this rate to evaluate whether an
approach enables a quick response to an unpredictable burst
in workload.

A. INSUFFICIENT RESOURCES SITUATION RESULTS
1) CPU RESOURCE ALLOCATION
For the insufficient resources situation, the CPU allocations
are shown in Fig. 9. The LP and RL approaches allocate con-
siderably more CPU resources to VM1 than the control theo-
retic approaches (SISO, de-MIMO and co-MIMO). However,
the RL and LP approaches allocate less CPU resources to
VM2 and VM3 than the control theoretic approaches during
the peak of the workload, as shown in Fig. 9-2 and Fig. 9-
3, because the RL and LP approaches determine resource
allocation by only considering whether the QoS satisfies the
requirements. As a result, they allocate excess CPU resources
to VM1, resulting in a lack of resources for VM2 and VM3,
especially during the peak workload.

As shown in Fig. 9-1 and Fig. 9-3, the SISO approach
allocates nearly the same amount of CPU resources as the
MIMO approaches (de-MIMO and co-MIMO) to VM1 and
VM3 but obviously less than the MIMO approaches during
the peak workload. However, it always allocates more CPU
resources to VM2 than theMIMO approaches, indicating that
VM2 is CPU over-allocated. Since the SISO approach only
focuses on a single metric and the VM2 deploys memory-
intensive services that consume massive memory resources
but few CPU resources, the SISO approach allocates not only
extensive memory resources but also massive CPU resources
to VM2. As a result, insufficient CPU resources are allocated
to VM3, and VM3 is allocated obviously less CPU resources
than by the other approaches, especially during the peak
workload.

The de-MIMO approach allocates nearly the same or even
greater CPU resources to the three VMs but less CPU
resources than the co-MIMO approach during the peak work-
load because it easily decomposes one MIMO control system
to several SISO control systems. However, interactions and
competition occur between services when the resource pool
is insufficient, and the interactions and competition cannot
be easily decomposed. Therefore, inaccurate decomposition
leads to CPU under-allocation during the peak workload.

2) MEMORY RESOURCE ALLOCATION
Memory resource allocation in the insufficient resource pool
situation is shown in Fig. 10. Similar to CPU resource
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FIGURE 9. CPU resource allocation under the insufficient situation.

FIGURE 10. Memory resource allocation under the insufficient situation.

allocation, the RL and LP approaches allocate consider-
ably more memory resources than the control theoretic
approaches. For VM2 and VM3, the memory resource allo-
cation is obviously less than that with the control theoretic
approaches during the peak workload because no feedback is
available with the RL and LP approaches, which only focus
on whether the QoS meets the requirements. Therefore, over-
allocation to VM1 leads to a lack of memory for VM2 and
VM3.

Since the SISO approach focuses on a single type
of resource allocation, it also allocates massive memory
resources to VM1.However, VM2 deploysmemory-intensive
services requiring massive memory resources, and insuffi-
cient memory resources are available for VM2 and VM3,
especially VM2. Therefore, as shown in Fig. 10-2 and
Fig. 10-3, the SISO approach allocates obviously less mem-
ory resources than the MIMO approaches to VM2 and
VM3 during the peak workload.

Similar to CPU resource allocation, the de-MIMO
approach allocates nearly the same amount of memory
resources as the co-MIMO approach to the three VMs but
less than the co-MIMO approach during the peak workload
because the de-MIMO approach ignores the interactions and
competition between services, especially when the resource
pool is insufficient. When the interactions and competition

FIGURE 11. CPU resource utilization under the insufficient situation.

persist, inaccurate decomposition may lead to unreasonable
resource allocation.

3) CPU RESOURCE UTILIZATION
The CPU resource utilization of the three VMs under the
insufficient resource pool situation is shown in Fig. 11. As the
RL and LP approaches allocate massive CPU resources
to VM1, the CPU resource utilization of the RL and LP
approaches for VM1 is obviously lower than that of the con-
trol theoretic approaches, indicating that VM1 is CPU over-
allocated. Therefore, insufficient CPU resources are available
for VM2 and VM3, and the CPU resource utilization of the
RL and LP approaches is greater than 90% during the peak
workload, which indicates that some services may violate the
QoS requirements.

The CPU resource utilization of the SISO approach for
VM1 is lower than that for the MIMO approaches but obvi-
ously higher than that for the MIMO approaches during the
peak workload. However, the utilization of VM2 is only
approximately 20%-40%, as shown in Fig. 11-2, and is
always obviously lower than that for the MIMO approaches
because the SISO approach ismanipulated by a single-control
strategy that allocates not only massive memory but also
massive CPU resources to VM2, which leads to VM2 CPU
over-allocation but VM1 CPU under-allocation during the
peak workload. This unreasonable resource allocation also
leads to a lack of CPU resources for VM3, and the CPU
resource utilization of VM3 is greater than 90% during the
peak workload.

For the de-MIMO approach, consistent with CPU resource
allocation, the CPU resource utilization of the three VMs is
nearly the same as that for the co-MIMO approach but higher
than that for the co-MIMO approach during the peak work-
load. In addition, we find that some CPU resource utilization
is greater than 90% during the peak workload, indicating
poor QoS that cannot satisfy the requirements because the
de-MIMO approach does not consider the interactions and
competition between services.

4) MEMORY RESOURCE UTILIZATION
The memory resource utilization of the three VMs is shown
in Fig. 12. Similar to CPU resource utilization, the memory
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FIGURE 12. Memory resource utilization under the insufficient situation.

resource utilization of the RL and LP approaches for VM1 is
obviously lower than that for the control approaches. For
VM2 and VM3, memory resource utilization is greater than
90% during the peak workload and less than 30% when the
peak passes due to the over-allocation of VM1 by the RL and
LP approaches, with insufficient memory resources for VM2
and VM3.

The SISO approach results in different CPU resource uti-
lization. The memory utilization of VM1 shown in Fig. 12-1
is only approximately 70%, which is lower than that for
the MIMO approaches all the time, but the CPU resource
utilization of VM1 (shown in Fig. 11-1) is greater than 90%
during the peak workload. However, as shown in Fig. 12-2,
the memory resource utilization of VM2 is greater than
90%, but the CPU resource utilization of VM2 (shown
in Fig. 11-2) is only approximately 40% during the peak
workload. Thus, VM1 is memory over-allocated while CPU
is under-allocated, and VM2 is CPU over-allocated while
memory is under-allocated. As mentioned above, focusing on
a singlemetric leads to unreasonable resource allocation. As a
result, both CPU and memory resources are under-allocated
to VM3 during the peak workload; therefore, both the CPU
utilization and memory resource utilization of VM3 are
greater than 90% during that time.

The memory resource utilization of the de-MIMO
approach is similar to the CPU resource utilization and is
nearly the same as that with the co-MIMO approach but
greater than 80% during the peak workload. This occurs
because when resources are limited, competition and inter-
actions between services occur, and ignoring the competition
and interactions leads to greater than 80% resource utilization
of some services.

5) AVERAGE SERVICE RESPONSE TIME
The average response time during one minute is shown
in Fig. 13. As more resources are allocated, QoS increases,
reflecting a lower response time. The RL and LP approaches
allocate high amounts of CPU and memory resources to
VM1, and the response time is therefore obviously lower
than that for the control theoretic approaches. However, for

FIGURE 13. Service response time under the insufficient situation.

VM2 and VM3, the response time is obviously higher than
that for the control theoretic approaches during the peak
workload because insufficient resources are available for
VM2 and VM3.

For the SISO approach, the response time of VM1 is
obviously higher than that for the MIMO approaches when
the peak workload arrives. Because VM1 is memory over-
allocated but CPU resources are under-allocated, the lack of
CPU resources for VM1 leads to lower QoS and requirement
violation. For VM2, the response time is also higher than
that for the MIMO approaches during the peak workload.
The poor QoS, which is different from VM1, is due to a
lack of memory resources for VM2 as VM2 is CPU over-
allocated but memory is under-allocated. Therefore, any type
of resource under-allocation may lead to poor QoS. Due to
this unreasonable resource allocation, both CPU and memory
resources are insufficient for VM3, the response time is con-
siderably higher than that for the MIMO approaches during
the peak workload, and the poor QoS indicates that many
services cannot satisfy the QoS requirements.

For the de-MIMO approach, the response time of the three
VMs is nearly the same as that for the co-MIMO approach but
higher than that for the co-MIMO approach during the peak
workload because interactions and competitions occur when
resources are insufficient. Ignoring these interferences leads
to lower QoS than in the co-MIMO approach.

6) SERVICE REQUEST SATISFACTION RATES
The service request satisfaction rate is the percentage of the
total number of services that meet the requests. The request
satisfaction rates of the five approaches under the insufficient
resources pool situation are shown in Fig. 14. For VM1,
the satisfaction rates of the RL and LP approaches are 100%,
and the MIMO approaches shows a rate greater than 90%.
However, the satisfaction rate of the SISO approach is only
88.96% because of the unreasonable resource allocation of
this approach, which results in VM1 CPU under-allocation
but memory over-allocation. This CPU under-allocation leads
to the low satisfaction rate of the SISO approach.

For VM2 and VM3, the satisfaction rate of the co-MIMO
approach is greater than 90%, but the rate for the de-MIMO
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FIGURE 14. Satisfaction rate under the insufficient situation.

FIGURE 15. Adjustment time.

approach is less than 90%. As mentioned above, the reason
for the low satisfaction rate of the de-MIMO approach is that
interference between services is ignored. The satisfaction rate
of the SISO approach for VM2 is only 85.76%. Unlike VM1,
the low satisfaction rate of the SISO approach for VM2 is due
to a lack of memory resources rather than CPU resources.
As a result of memory over-allocation for VM1 and CPU
over-allocation for VM2, both CPU and memory resources
are insufficient for VM3. Therefore, the satisfaction rate
of the SISO approach for VM3 is only 83.19%. However,
the satisfaction rates of the RL and LP approaches are less
than 80%, indicating that many services fail to meet the
requests. The reason for such poor satisfaction rates is that
the RL and LP approaches allocate extra resources to VM1,
resulting in a serious lack of resources for VM2 and VM3.

7) ADJUSTMENT TIME
The adjustment time results of the five approaches are shown
in Fig. 15. Every time the request workloads change, the RL
approach applies adjustments obviously later than the other
approaches. As shown in Fig. 15, the adjustment time of these
five approaches decrease in the order RL, LP, co-MIMO, de-
MIMO and SISO, indicating that an easier algorithm cor-
responds to less adjustment time needed. The RL approach
requires considerably more time than the other approaches
because reinforcement learning requires extensive time and
cannot sufficiently react when fluctuations occur frequently.
The LP approach cannot predict future resource demands,
and when the workload changes, it cannot promptly adjust
resource allocation; therefore, the adjustment time is higher
than that for the control theoretic approaches.

B. SUFFICIENT RESOURCES SITUATION RESULTS
1) CPU RESOURCE ALLOCATION
The CPU resource allocations under the sufficient situation
are shown in Fig. 16. The RL and LP approaches allocate
considerably more CPU resources to the VMs than the con-
trol theoretic approaches under the sufficient situation. This
result occurs because the RL and LP approaches determine
resource allocation only by analyzing whether the QoS can
satisfy the requirements or whether the predefined threshold
is reached, whereas the control theoretic approaches calculate

FIGURE 16. CPU resource allocation under the sufficient situation.

resource allocation by narrowing the gap between the pro-
vided QoS or resource and the users’ requirements.

The SISO approach allocates nearly the same or even
more CPU resources to VM1 and VM3 than the MIMO
approaches but obviously more CPU resources to VM2 than
the MIMO approaches, which indicates that it not only allo-
cates massive memory but also massive CPU resources to
VM2. CPU resource allocation is obviously greater than that
for the MIMO approaches because the SISO approach is
used to allocate a single type of resource to VMs, which is
manipulated and constrained by a single control strategy.

The de-MIMO approach allocates nearly the same or even
more CPU resources to the VMs than the co-MIMO
approach. However, when the peak workload arrives, it allo-
cates less than the co-MIMO approach because, as resource
utilization increases, interactions and competition between
services occur. The de-MIMO approach only decomposes
one MIMO control system to multiple easy SISO control sys-
tems, and the interactions and competition cannot be easily
decomposed. Therefore, inaccurate decomposition leads to
less CPU resources allocated by the de-MIMO approach than
that by the co-MIMO approach during the peak workload.

2) MEMORY RESOURCE ALLOCATION
The memory resource allocations of the three VMs are shown
in Fig. 17. Similar to CPU resource allocation, the RL and LP
approaches allocate obviously more memory resources to the
three VMs than the control theoretic approaches since they
do not try to minimize resource allocation on the basis of
satisfying the QoS requirements.

Unlike CPU resource allocation, the SISO approach allo-
cates obviously more memory resources to VM1 than the
MIMO approaches and nearly the same amount of memory
resources to VM2 and VM3 as the MIMO approaches. This
result occurs because the SISO approach only focuses on
a single metric and thus allocates both massive CPU and
memory resources to VM1.

Similar to CPU resource allocation, the de-MIMO
approach also allocates nearly the same or evenmorememory
to the three VMs than the co-MIMO approach but less during
the peak workload because the de-MIMO approach ignores
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FIGURE 17. Memory resource allocation under the sufficient situation.

FIGURE 18. CPU resource utilization under the sufficient situation.

interactions and competition between services when resource
utilization increases.

3) CPU RESOURCE UTILIZATION
The CPU resource utilization of the three VMs under the
sufficient situation is shown in Fig. 18. Consistent with CPU
resource allocation to the VMs, the CPU resource utilization
of the RL and LP approaches is the lowest for the three VMs
compared with that of the other approaches, with some ser-
vices even under 30%, which indicates CPU resource waste.

For the SISO approach, the resource utilization of
VM1 and VM3 is nearly the same as that for the MIMO
approaches, which is approximately 60%-80%. However, for
VM2, it is only approximately 20%-50%, indicating that
VM2 is CPU over-allocated, which occurs because the SISO
approach focuses on a single type of resource allocation.

The utilization of the de-MIMO approach for the three
VMs is nearly the same or even less than that of the co-MIMO
approach but more than that of the co-MIMO approach during
the peak workload because the de-MIMO approach ignores
interactions and competition between services when resource
utilization increases.

4) MEMORY RESOURCE UTILIZATION
The memory resource utilization of the VMs is shown
in Fig. 19. Greater resource allocation corresponds to lower
resource utilization. The lowest memory resource utilization

FIGURE 19. Memory resource utilization under the sufficient situation.

is observed with the RL and LP approaches because these
approaches have no feedback and only focus on whether
requirements are met.

Unlike CPU resource utilization, the memory resource
utilization of the SISO approach for VM2 and VM3 is nearly
the same as that with the MIMO approaches. However, for
VM1, the memory resource utilization is only approximately
30%-50%. The SISO approach allocates both massive CPU
and memory resources to VM1, which leads to memory over-
allocation and obviously lower memory resource utilization
than that for the MIMO approaches.

For the de-MIMO approach, the memory resource utiliza-
tion of the VMs is also higher than that for the co-MIMO
approach during the peak workload since interactions and
competition occur as resource utilization increases; however
the de-MIMO approach does not consider the interactions and
competition.

5) AVERAGE SERVICE RESPONSE TIME
As shown in Fig. 20, the average response time increases
as utilization increases and vice versa. As the RL and LP
approaches allocate massive CPU and memory resources to
the three VMs, these approaches show the lowest response
time among the five approaches, which indicates the best
QoS.

Although the SISO approach allocates nearly the same
amount of CPU resources to VM1 as the MIMO approaches,
memory is over-allocated, and the response time of VM1 is
therefore lower than that for the MIMO approaches. Simi-
larly, VM2 is allocated nearly the same amount of memory
resources as with the MIMO approaches, but CPU is over-
allocated, and the response time of VM2 is therefore lower
than that with the MIMO approaches. For VM3, the SISO
approach allocates nearly the same amount of CPU andmem-
ory resources as the MIMO approaches, and therefore the
response time is nearly the same.

In response to resource allocation, the response time of the
de-MIMO approach for the VMs is nearly the same or even
less than that for the co-MIMO approach. However,
contrary to expectations, the response time is higher than that
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FIGURE 20. Service response time under the sufficient situation.

FIGURE 21. Satisfaction rate under the sufficient situation.

for the co-MIMO approach during the peakworkload because
interactions and competition between services are ignored.

6) SERVICE REQUEST SATISFACTION RATES
The satisfaction rates of the five approaches for the three
VMs under the sufficient situation are shown in Fig. 21.
We find that the satisfaction rates of all approaches for the
three VMs are greater than 90%, indicating that nearly all
services meet the QoS requirement. Although the co-MIMO
approach has a lower satisfaction rate and a higher response
time than the SISO, RL and LP approaches, its satisfaction
rate is still greater than 90%, which indicates that the co-
MIMO approach still meets the SLA of users.

7) ADJUSTMENT TIME
The adjustment times of the five approaches under the suffi-
cient situation are shown in Fig. 15. We find that the adjust-
ment time is lower under the sufficient resource situation than
the insufficient situation. Because the resource allocation
algorithm itself consumes substantial resources, it requires
more time when the resource pool is insufficient. In addition,
the adjustment times of the RL, LP and SISO approaches
under the insufficient resource pool situation are obviously
greater than those under the sufficient resource pool situation.
However, for the MIMO approaches, the adjustment times
are nearly the same under these two situations because the
unreasonable resource allocation of the RL, LP and SISO
approaches causes a lack of resources, resulting in greater
time consumption.

VII. FUTURE WORK
In futurework, wewill evaluate the efficiency of our proposed
approach using some real-world workloads [49], [50] in real
time. In addition, we will also extend the scale of the exper-
iment to evaluate the stability and scalability of our resource
allocation control system.

VIII. CONCLUSIONS
In this paper, we propose an adaptive multivariable control
strategy for resource allocation in cloud computing systems.
Our proposed approach provides a powerful mechanism to
manage unpredictable changes and uncertainties, executes
combinatorial resource allocation according to the various
characteristics of different services and considers interfer-
ence.

Our adaptive resource allocation approach has been evalu-
ated under situations of sufficient and insufficient resources.
The experimental results show that the proposed approach
enables management of the challenges of resource alloca-
tion in cloud computing systems, saves operating costs and
increases resource utilization. Simultaneously, this approach
ensures QoS, adaptively reacts to the open environment full
of interference and manages unpredictable resource demands
in real time.
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