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ABSTRACT Optimal repeater designs are performed for Cu and carbon nanotube (CNT)-based
nanointerconnects to reduce the delay and power dissipation. The effects of inductance and metal-CNT
contact resistance are treated appropriately. In this paper, the circuit parameters are calculated analytically,
while they can be extracted experimentally for a specific foundry at a specific technology node. The particle
swarm optimization (PSO) technique is employed to numerically calculate the optimal repeater size and the
optimal number of repeaters in the Cu and CNT-based nanointerconnects. The results are verified against the
analytical and genetic algorithm results. To facilitate CADdesign, themachine-learning neural network (NN)
is adopted. The data obtained using the PSO algorithm are used to train the NN and the feasibility of the NN
is investigated and validated.

INDEX TERMS Carbon nanotube, copper, nanointerconnect, neural network, particle swarm optimization,
repeater insertion, time delay, power dissipation.

I. INTRODUCTION
As the CMOS technology continues to evolve, the IC feature-
size continues to shrink, while the IC chip sizes continue
to increase due to incorporation of additional functionali-
ties [1], [2]. Unlike the transistor scaling, the scaled inter-
connects suffer from severely increased time delay, which
has become a dominant limitation on performance in today’s
very large scale integration (VLSI) chip designs.More impor-
tantly, according to the ITRS prediction, the current density
will soon exceed the maximum ampacity of the traditional
copper (Cu) interconnects in the near future [3].

In recent years, various technologies, including innovative
conductive materials, architectures, and algorithm optimiza-
tion, have been introduced for the interconnect applica-
tions [4]–[8]. For example, as the effective conductive area
of the nanoscale Cu interconnect is dramatically limited,
two-dimensional (2D) materials have been proposed as
potential diffusion barrier layer for Cu/low-k interconnects

due to their atomically thin properties [9]–[11]. Moreover,
carbon nanotube (CNT), which possesses many unique phys-
ical properties, has been considered as a promising alterna-
tive conductor in the nanoscale ICs [4]. Depending on the
number of graphene sheets, CNT can be classified as single-
walled CNT (SWCNT) and multi-walled CNT (MWCNT).
A SWCNT has only one graphene sheet rolled into cylin-
der with diameter ranging from 0.4 nm to 4 nm, while an
MWCNT can be viewed as a coaxial assembly of cylinders
of SWCNTs [12], [13]. To date, numerous efforts have been
devoted to modeling, fabrication, and reliability evaluation of
the CNT interconnects [14]–[20]. It has been shown that the
CNT interconnects have superior electrical performance over
their Cu counterparts.

On the other hand, to improve the interconnect perfor-
mance, the insertion of repeaters is always employed in the
design of high-performance ICs [21]. By solving the differen-
tial equations, analytical formulas of the optimal repeater size
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and number were derived in [22]. Furthermore, the repeater
insertion methodologies in the SWCNT bundle and the
MWCNT interconnects were studied in [23] and [24], respec-
tively. However, as there exist contact resistances between the
metal electrodes and CNTs, each inserted repeater in CNT
interconnect would introduce new contact resistances, which
surely degrade the interconnect performance [25]. Based on
the multivariable curve fitting technique, the closed-form
expressions of the optimal repeater size and number were
developed in the previous work [26]. It was demonstrated
that neglecting the contact resistance leads to significant
error in estimation of the optimal repeater size and num-
ber in the CNT interconnects. However, the delay-minimal
repeater design methodology may lead to overestimation of
the repeater number, thereby resulting in excessive power dis-
sipation. To this end, [27] and [28] developed power-optimal
repeater insertion methodologies, but they have not taken
into account the inductance effect. It is challenging to derive
closed-form expressions for the optimal repeater design in
an RLC interconnect [29], not to mention considering the
influence of metal-CNT contact resistance.

To address this issue, a model is developed in this study,
where the input variables include the interconnect width,
length, and contact resistance at specific technology nodes.
Through the particle swarm optimization (PSO) simulations
of nanointerconnects [30], a database is created, where the
outputs are represented by the optimal repeater size and
the optimal number of repeaters. The database is used as
input and output to train a machine-learning algorithm to
create a mapping between the geometrical parameters and the
optimal repeater designs. The rest of this paper is organized
as follows. Section II introduces the electrical model of the
Cu and CNT-based nanointerconnects. The PSO algorithm is
outlined in Section III, with the simulated results validated
by the analytical results. In Section IV, the machine-learning
methodology is reviewed and applied to map the interconnect
parameters to the optimal repeater designs. Conclusions are
finally drawn in Section V.

II. INTERCONNECT MODEL
In this study, a typical interconnect structure is consid-
ered, as shown in Fig. 1(a) and (b), where Rd and Cd
are the driver resistance and capacitance respectively, and
Cl is the load capacitance. In Fig. 1, Rpul , Lpul , and
Cpul are the per-unit-length (p.u.l.) resistance, inductance,
and capacitance of the interconnect, respectively, and Rc
denotes the contact resistance. For a specific technology
node, the interconnect parameters, including width W ,
height H , spacing S, inter-layer dielectric (ILD) thickness T ,
and effective dielectric constant of the surrounding dielec-
tric εr , are adopted from the ITRS projection and listed
in Table 1 [3].

In practical applications, the circuit parameters can be
obtained experimentally for a specific foundry process at a
specific technology node. In this study, these parameters are
calculated analytically.

FIGURE 1. (a) Equivalent circuit model of the driver-interconnect-load
(DIL) system. (b) Cross section of a typical interconnect configuration in
advanced IC designs.

TABLE 1. Global interconnect parameters adopted from the ITRS [3].

A. NANOSCALE CU
With the scaling down of the interconnect dimensions,
the electron scatterings from the surface and grain boundary
become comparable to the electron bulk scattering, thereby
leading to a dramatic rise in the Cu resistivity. Moreover,
the barrier layer, which is used to prevent atom diffusion
into the dielectric, cannot scale rapidly with the interconnect
dimensions, and thus increasingly occupies higher fraction
of the interconnect cross section area. Here, the barrier thick-
ness is denoted as Tb, and the effective interconnect width
and height are WCu(= W − 2Tb) and HCu(= H − 2Tb),
respectively.

Based on the Fuchs-Sondheimer model and the Mayadas-
Shatzkes model, the effective resistivity of the nanoscale Cu
interconnects can be given as [31]

ρCu = ρ0

{
1
/
3

1
/
3− α

/
2+ α2 − α3 ln

(
1+ 1

/
α
)

+
3
8
C (1− pCu)

1+ AR
AR

λCu

WCu

}
(1)

with

C = 1.2, α = λCuRg
/ (
dg
(
1− Rg

))
where ρ0 = 2.04µ� · cm is the bulk resistivity, λCu =
37.3nm is the Cu mean free path (MFP), Rg = 0.22 is
reflectivity coefficient at grain boundaries, pCu = 0.41 is the
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FIGURE 2. Schematic of a Cu interconnect.

specularity parameter of the Cu surface, AR = HCu
/
WCu

is the aspect ratio, and dg is the average distance between
grain boundaries, which is set as WCu [31]. Then, the p.u.l.
resistance of the nanoscale Cu interconnect is calculated by
Rpul = ρCul

/
(WCuHCu). In the case of the Cu interconnects,

the contact resistance Rc is set as 0.
The p.u.l. capacitance Cpul can be extracted using a full-

wave electromagnetic simulator (e.g., ANSYS Maxwell).
As the capacitance is kept almost unchanged with the increas-
ing width in the case of keeping the wire and ILD aspect
ratios constant, Cpul is set as 149.4pF

/
µm and 120.3pF

/
µm

at the 14 nm and 7 nm technology nodes, respectively.
Accordingly, the p.u.l. inductance can be calculated by
Lpul = µ0ε0εr

/
Cpul .

B. SWCNT BUNDLE
Fig. 3(a) shows the cross-sectional view of a densely packed
SWCNT bundle interconnect. In this figure, the SWCNT
diameter is denoted as D, and the spacing between adjacent
SWCNTs is δ = 0.34nm, i.e., van der Waal’s gap. The num-
ber of the metallic SWCNTs in the bundle can be calculated
as [15]

N = Fm ·
(
NwNh − Inter

[
Nh
2

])
(2)

FIGURE 3. Cross-sectional views of (a) SWCNT bundle interconnect
and (b) MWCNT interconnect.

where

Nw = Inter
[
W − D
D+ δ

]
+ 1 (3)

Nh = Inter
[

2
√
3

H − D
D+ δ

]
+ 1 (4)

Inter [·] denotes that only the integer part is taken, and Fm is
the fraction of metallic SWCNTs in the bundle. The contact
resistance of the SWCNT bundle interconnect is given by

Rc =
1
2N

(
Rmc +

RQ
Nch

)
(5)

where RQ = h
/ (

2e2
)
= 12.9k� is the quantum contact

resistance, h is the Planck’s constant, e is the electron charge,
Nch = 2 is the number of conducting channels for an isolated
metallic SWCNT, and Rmc is the imperfect contact resis-
tance per tube that highly depends on the fabrication process.
The p.u.l. resistance of the SWCNT bundle interconnect is
given by

Rpul =
RQ

λSWCNT
(6)

where λSWCNT = 1000D is the effectiveMFP of the SWCNT.
As indicated in the previous study [14], the electrostatic

capacitance of the SWCNT bundle is almost the same as that
of its Cu counterpart. The quantum capacitance ismuch larger
than the electrostatic one, and therefore can be neglected. The
p.u.l. inductance of the SWCNT bundle interconnect can be
calculated by

Lpul = LK + Lm (7)

where LK = RQ
/
(2vFNNch) and Lm = µ0ε0εr

/
Cpul are the

kinetic inductance andmagnetic inductance, respectively, and
vF = 8× 105m/s is the Fermi velocity of CNTs.

C. MWCNT
The cross sectional view of the MWCNT interconnect is
illustrated in Fig. 3(b). The aspect ratio AR(= H

/
W )

of the MWCNT interconnect is fixed at 2. This is, two
MWCNTs are placed in parallel. As mentioned earlier,
an MWCNT can be viewed as a coaxial assembly of cylin-
ders of SWCNTs. The outermost and innermost diameters
of the MWCNT are denoted as Dout and Din, respectively,
and the spacing between adjacent shells is δ. The number
of shells in an MWCNT can be calculated as N = 1 +
Inter

[
(Dout − Din)

/
(2δ)

]
, and the diameter of the nth shell

in the MWCNT is Dn = Din + 2 (n− 1) δ.
According to the pervious study [13], an MWCNT can be

modeled as an equivalent single-conductor conductor trans-
mission line model. The contact resistance of the MWCNT
interconnect shown in Fig. 3(b) is given as

Rc =
1
4

[∑N

n=1

(
Rmc +

RQ
Nch,n

)−1]−1
(8)

whereNch,n is number of conducting channels of the nth shell
in the MWCNT. Nch,n is dependent with the shell diameter,
and can be expressed as [32]

Nch,n =

{
2/3, Dn < 6 nm
aDn + b, Dn > 6 nm

(9)
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where a = 0.0612nm−1 and b = 0.425. The p.u.l. resistance
of the MWCNT interconnect can be calculated by

Rpul =
RQ
2

(∑N

n=1
λnNch,n

)−1
(10)

where λn = 1000Dn is the effective MFP of the nth shell in
the MWCNT.

Similar to the SWCNT case, the quantum capacitance
of the MWCNT can be neglected, and the electrostatic
one is extracted by using the full wave electromagnetic
simulator. Note that the MWCNT interconnect possesses
smaller electrostatic capacitance than the Cu counterpart,
which is attributed to their different configurations. In this
study, the p.u.l. capacitance of the MWCNT interconnect is
129.12pF

/
µm and 102.24pF

/
µm at the 14 nm and 7 nm

technology nodes, respectively. The kinetic inductance of the
MWCNT interconnect is given as

LK =
RQ
2

(∑N

n=1
2vFNch,n

)−1
(11)

The p.u.l. inductance of the MWCNT interconnect is then
calculated by Lpul = LK + LM , where LM = µ0ε0εr

/
Cpul is

the magnetic inductance.
The repeaters are usually employed in long interconnects

to improve the electrical performance. An interconnect with
the insertion of equispaced repeaters is shown in Fig. 4. The
interconnect is divided into k segments, and each segment has
a length of l

/
k . The repeaters are h times the minimum size,

with the driver resistance Rd0
/
h, driver capacitance hCd0,

and load capacitance hCl0. The 50% time delay of one seg-
ment can be calculated by [24]

Ts =
(
1.48ξ + e−2.9ξ

1.35
)√

Lpul
l
k

(
Cpul

l
k
+ hCl0

)
(12)

FIGURE 4. Repeater insertion in a long global interconnect of length L.

with

ξ =
Rt
2

√
Cpul
Lpul

RT+CT+RTCT
(
1+Cd0

/
Cl0
)
+ 0.5

√
1+ CT

(13)

where RT = Rd0
/
(hRt), CT = hCl0

/
Ct , Rt = Rpul l

/
k +

2Rc, and Ct = Cpul l
/
k . The total time delay is Ttotal = kTs.

The energy dissipation Ps consumed by one segment can be
approximated as [28]

Ps =
(
Cpul

l
k
+ h (Cd0 + Cl0)

)
V 2
dd (14)

The total power dissipation can be calculated by
Ptotal = kPs. The figure-of-merit (FoM) for global intercon-
nect with repeater insertion has the following property:

F = (Ptotal)p · (Ttotal)q (15)

FIGURE 5. Flowchart of the PSO algorithm.

where p and q are weighting factors that can be tuned accord-
ingly. For delay- and power-optimal repeater designs, {p, q}
are {0, 1} and {1, 0}, respectively. For simplicity, both p and
q are set as 1 in this study.

III. PARTICLE SWAM OPTIMIZATION
A. PSO DESCRIPTION
The PSO algorithm is a stochastic procedure that derives
from simulation of bird population and fish foraging behav-
ior. Similar to other group intelligence algorithms, the PSO
algorithm realizes the search process in the space by mutual
cooperation and competition among particles in the group to
find the optimal position.

The mathematical description of the PSO algorithm is
briefly reviewed as follows. The total number of particles in
the swarm is popsize, the dimension of the particle is m, and
the termination condition of the algorithm (i.e., the maximum
iteration number) ismaxiter . The flight speed and the position
of the ith particle at time t in the search space are defined as

Vi (t) = [Vi1 (t) ,Vi2 (t) , . . . ,Vim (t)]T (16)

Xi (t) = [Xi1 (t) ,Xi2 (t) , . . . ,Xim (t)]T (17)

and the individual extremum (i.e., the optimal solution that
each individual particle has found by far) and the population
extremum (i.e., the optimal solution that the entire swarm has
ever found) of the ith particle at time t in the search space are

pbest i (t) = [pi1 (t) , pi2 (t) , . . . , pim (t)]T (18)

gbest (t) = [g1 (t) , g2 (t) , . . . , gm (t)]T (19)

The update formulas for all particles in the search space can
be expressed as [30]

Vi+1 (t + 1) = WeiVi (t)+ c1r1 (pbesti (t)− Xi (t))

+ c2r2 (gbest (t)− Xi (t)) (20)

Xi+1 (t + 1) = Xi (t)+ Vi+1 (t + 1) (21)
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FIGURE 6. Optimal number of the repeaters in (a) Cu, (b) SWCNT bundle, and (c) MWCNT interconnects at the 14 nm and 7 nm technology nodes in the
delay-optimal repeater designs.

FIGURE 7. Optimal number of the repeaters in (a) Cu, (b) SWCNT bundle, and (c) MWCNT interconnects at the 14 nm and 7 nm technology nodes in
the PDP-optimal repeater designs.

where Wei = Wmax − (Wmax −Wmin) · iter
/
maxiter is the

inertia weighting coefficient, which is important as it deter-
mines the speed of iteration. iter denotes the current number
of iteration. Here, Wmax and Wmin are set as 0.9 and 0.4,
respectively. By adjusting Wei, both the global and local
search capabilities can be tuned. At the early stage of the PSO
operation, a largeWei can lead to a strong global search abil-
ity, while a small Wei at the later stage can make the particle
gradually converge to the global optimum. The implementa-
tion of such linearly-decreasing inertia weight method could
control the global exploration and local exploitation abilities,
thereby improving the speed of convergence and algorithm
performance. c1 and c2 are the learning factors of the PSO
algorithm, and they affect the self-learning ability and social
learning ability of the particles. It is generally believed that
a large c1 causes all the particles to linger in local range
too much, while a large c2 causes the particles to fall into
local extremum too early, thereby reducing the accuracy of
the solution. r1 and r2 are the random numbers between [0, 1].
The flowchart of the PSO algorithm is outlined in Fig. 5.

At the beginning, the parameters of the particle such as m,
Wei, c1, and c2, as well as a group of particles including
the flight speed and the position information, are initialized.
Here, m, c1 and c2 are set as 2, and popsize and maxiter are
50 and 1000, respectively. Then, the fitness value (i.e., the

function value) of each particle in the population is calcu-
lated. The fitness value of the ith particle and the best position
of the swarm are set as the current individual extremum pbest i
and the total extremum gbest , respectively. According to (20)
and (21), the flight speed and position of the particles are
updated. For all particles, the current position is compared
to the best position found previously. If the current position
is better, the individual optimal position pbest i is set as the
position of the particle, and the global extrema of the group
gbest is then updated. Finally, the searching is stop until the
termination condition is satisfied, and the desired result is
output. Otherwise, the fitness value f (Xi) is re-calculated to
start the cycle over again.

B. VALIDATION
To verify the feasibility of the PSO algorithm in the optimal
repeater designs in the Cu and CNT interconnects, the global
interconnects are considered. Here, the interconnect widths
(the barrier thickness) are set as 21.5 nm (0.9 nm) and
10.5 nm (0.3 nm) at the 14 nm and 7 nm technology nodes,
respectively, with other parameters adopted from Table 1.
The SWCNT diameter is D = 1nm, and the fraction of the
metallic SWCNTs in the bundle is Fm = 1

/
3. The innermost

diameter of the MWCNT is assumed as half of its outermost
diameter, i.e., Din = Dout

/
2.
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FIGURE 8. P.u.l. resistance of the Cu and CNT interconnects at
the (a) 14 nm and (b) 7 nm technology nodes.

FIGURE 9. Optimal number of repeaters in SWCNT bundle interconnects
with different lengths at the (a) 14 nm and (b) 7 nm technology nodes.

At first, the delay-optimal repeater designs (i.e., p = 0 and
q = 1) are studied using the PSO algorithm. For simplicity,
the contact resistances in the CNT interconnects are set as
zero in the simulations. The optimal repeater size and number

FIGURE 10. Optimal number of repeaters in MWCNT interconnects with
different lengths at the (a) 14 nm and (b) 7 nm technology nodes.

FIGURE 11. Optimal repeater size versus imperfect contact resistance for
CNT interconnects at the 14 nm and 7 nm technology nodes.

can be calculated by [22], [24]

hopt =

√
Rd0Ct
RtCl0

1[
1+ 0.18

(
TL/R

)3]0.26 (22)

nopt = Inter


√

RtCt
2Rd0 (Rd0 + Cl0)

1[
1+ 0.21

(
TL/R

)3]0.28


(23)

where

TL/R =

√
Lpul

Rpul [Rd0 (Cd0 + Cl0)]
(24)

As shown in Fig. 6, the numerical results obtained by using
the PSO algorithm agree well with the analytical results.
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FIGURE 12. Optimized FoMs of the Cu and CNT interconnects with
Rmc = 0 at the (a) 14 nm and (b) 7 nm technology nodes.

FIGURE 13. Optimized FoM of the CNT interconnects with Rmc = 0 at the
14 nm technology node with the original and 15 times values of the
kinetic inductance.

The CNT interconnects possess smaller optimal number of
the repeaters than the Cu counterparts, thereby consuming
less power. Moreover, in either cases, with the technology
node advanced, the optimal number of the repeaters increases.
This is, the power dissipation becomes more significant in
advanced technology nodes, and therefore requires special
attention. Furthermore, the optimal repeater designs that aim
at minimum power-delay product (PDP) are performed using
the PSO algorithm, as shown in Fig. 7. Here, p and q
are set as 1. The results from the PSO are compared with
those from the genetic algorithm (GA). In Fig. 7, the solid
lines denote the results from the PSO algorithm, whereas
the symbols indicate the results from the GA scheme. With
consideration of the power dissipation, the optimal number

FIGURE 14. Optimal number of repeaters in the (a) SWCNT bundle and
(b) MWCNT interconnects with Rmc = 0 at the 14 nm technology node
with the original and 15 times values of the kinetic inductance.

FIGURE 15. Optimal number of repeaters in MWCNT interconnect with
Rmc = 100k� at the 14 nm technology node.

FIGURE 16. Optimal number of repeaters in MWCNT interconnect with
length of 4000 µm at the 14 nm technology node.

of the repeaters becomes significantly smaller than those in
the delay-optimal repeater designs for both Cu and CNT
interconnects.
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C. RESULTS AND DISCUSSION
According to the ITRS prediction, the width of global inter-
connect can vary from several tens of nanometers to one
micrometer. Fig. 8 shows the p.u.l. resistance versus the width
for the Cu and CNT interconnects at the 14 nm and 7 nm
technology nodes. The jitter of the curves of the SWCNT
bundle interconnect is because the number of SWCNTs in the
bundle is an inconsistent function of the interconnect width
(as given in (2)-(4)). To make it clear, the resistance curves
in the range up to 40 nm width are plotted in the insets of
Fig. 8. As illustrated in Fig. 8, the CNT interconnects exhibit
superior performance over their Cu counterparts, but their
advantages become less significant with the increasing width.
As the technology node is advanced, the resistances of the
SWCNT bundle interconnect become comparable with those
of the MWCNT interconnects due to the reduced MFP of the
MWCNTs.

To clarify the impact of imperfect contact resistance on
the optimal repeater designs, Figs. 9 and 10 depict the
optimal number of repeaters as a function of imperfect
contact resistance for the SWCNT bundle and MWCNT
interconnects, respectively. The interconnect width is set as
the minimum value, and the other parameters are adopted
from Table 1. With the increasing imperfect contact resis-
tance, the optimal number of repeaters in the SWCNT bundle
interconnect is kept almost unchanged, while it decreases in
the MWCNT interconnect. Intuitively, this phenomenon can
be explained as follows. As given in (5) and (8), the effective
contact resistance of the SWCNTbundle depends on the num-
ber of metallic SWCNTs in the bundle, while it is determined
by the shell number in the MWCNT interconnect. It is found
that the number of metallic SWCNTs in the bundle is much
larger than the shell number of the MWCNT interconnect
with the same width. For instance, for the minimum-sized
global interconnect at the 14 nm technology node, the number
of metallic SWCNTs and the shell number of the MWCNTs
are 222 and 64, respectively. In comparison with the SWCNT
bundle interconnect, the MWCNT interconnect possesses a
larger ratio between the contact resistance and the line resis-
tance and is therefore more susceptible to the variation of
the contact resistance (see Fig. 10). Moreover, Fig. 11 shows
the optimal repeater size of the CNT interconnects as a func-
tion of the imperfect contact resistance. Similarly, with the
increasing imperfect contact resistance, the optimal repeater
size is almost unchanged in the SWCNT interconnects, while
it significantly declines in the MWCNT interconnects.

Fig. 12 shows the optimized FoMs of the Cu and CNT
interconnects at the 14 nm and 7 nm technology nodes. Here,
the imperfect contact resistance is set as zero. It is demon-
strated that the CNT interconnects can provide superior per-
formances over their Cu counterpart. As shown in Fig. 7,
MWCNT requires a minimal amount of repeaters, thereby
saving the power consumption and giving it an edge in per-
formance over the Cu and SWCNT bundle interconnects.

Furthermore, the impacts of the kinetic inductance on
the optimal repeater designs of the CNT interconnects

FIGURE 17. Schematic of the back propagation neural network.

are investigated. As indicated in [33], the measured value
of the CNT kinetic inductance may be 15 times larger than
its theoretical value. Fig. 13 shows the optimized FoMs of
the SWCNT bundle and MWCNT interconnects with the
different CNT kinetic inductances. As the CNT kinetic induc-
tance rises to 15 times the initial value, the optimized FoM
of the SWCNT bundle interconnect is unchanged, while
it increases dramatically for the MWCNT. This is because
the MWCNT has higher MFP and less number of con-
ducting channels than the SWCNT bundle, and is therefore
more susceptible to the variation of CNT kinetic inductance.
Fig. 14 shows the optimal number of repeaters in the SWCNT
bundle and MWCNT interconnects at the 14 nm technology
node. The imperfect contact resistance is set as zero. It is
evident that the optimal number of repeaters in the SWCNT
bundle interconnect is free from the influence of the kinetic
inductance variation, which is consistent with the finding
in Fig. 13. However, the optimal number of repeaters in
the MWCNT interconnect decreases significantly with the
increasing kinetic inductance.

It is known that the influence of the inductance on
the interconnect response tends to be trivial as the damp-
ing factor increases and the DIL system becomes over-
damped [21], [22]. Therefore, as shown in Fig. 15, with Rmc
increasing to 100 k�, the optimal repeater design in the
MWCNT interconnect is no longer affected by variation of
the kinetic inductance. Fig. 16 shows the optimal number of
repeaters in the MWCNT interconnect with different inter-
connect widths. It can be seen that the influence of the kinetic
inductance becomes negligible as the imperfect contact resis-
tance approaches a certain value, which is smaller for larger
interconnect width.

IV. MACHINE-LEARNING NEURAL NETWORK
A. NN DESCRIPTION
As more and more data and computing resources become
available, machine learning is playing an increasingly

VOLUME 7, 2019 13629



W.-S. Zhao et al.: Repeater Insertion to Reduce Delay and Power in Copper and CNT-Based Nanointerconnects

FIGURE 18. Squared error versus epoch curves for (a) Cu, (b) SWCNT bundle, and (c) MWCNT interconnects at the 14 nm technology node in the
PDP-optimal repeater designs.

FIGURE 19. NN output versus target regression curves for (a) Cu, (b) SWCNT bundle, and (c) MWCNT interconnects at the 14 nm technology node in
the PDP-optimal repeater designs.

FIGURE 20. Relative errors between outputs and targets for (a) Cu, (b) SWCNT bundle, and (c) MWCNT interconnects at the 14 nm technology node in the
PDP-optimal repeater designs.

significant role in various applications. Neural net-
works (NNs), a typical class of machine-learning algorithms,
have recently gained attention as a fast and flexible vehicle to
electronic designs [35]–[37].

NNs mimic the structure of human synapse connections to
imitate the function of the brain. It consists of a number of
interconnected nodes, and each node is a simple processing
unit that responds to the weighted sum of its inputs received
from other nodes [38]. As shown in Fig. 17, a two-layer

feedforward NN is trained using the back-propagation (BP)
algorithm, and the numbers of nodes in these layers are
denoted as m and n, respectively. In general, the more nodes
used in each hidden layer, the more nonlinear the network
can be, and consequently the more accurate the results could
become.

In the BP NN shown in Fig. 17, the process of informa-
tion forward propagation and error back propagation goes
round and round. As the core phase of learning, adjusting the
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weights is performed through training in which the network
outputs match the desired targets approximately. The opera-
tion of the BP NN is briefly reviewed as follows. The inputs
pass from the input layer to the hidden layer during the for-
ward propagation phase. They are processed by the activation
function, and then enter to the output layer. The error back
propagation is used for updating the network parameters and
minimizing the error function (i.e., the squared error between
the outputs and desired targets). Such operation is performed
recursively until the accuracy of the outputs meets the pre-
set requirements. Here, the Levenberg-Marquardt (LM) algo-
rithm, a nonlinear optimization technique that combines
the advantages of both the Gauss-Newton method and the
gradient descent method, is applied for training the net-
work [39], [40]. To some extent, the implementation of the
LM algorithm can overcome the drawback that training NN
using gradient descent method converges slowly and is easy
to fall into local minimum point.

B. TRAINING AND VALIDATION
In the data set used for training, the inputs consist of the inter-
connect width, the interconnect length, and the metal-CNT
contact resistance. The corresponding output data, i.e., the
optimal repeater size and the optimal number of repeaters,
is obtained using the PSO simulations. It is worth noting
that although the MWCNTs can always provide superior
performance over the Cu counterparts (see Fig. 8), their diam-
eters are limited in the real-world fabrications. Therefore,
in establishment of the data set for training NNs, the upper
bound of the width of the MWCNT interconnects is set as
40 nm, which can be changed according to the measurements.

In general, to reduce the mapping errors, it is necessary
to use a large amount of data for training. In this study,
the data set is captured by varying the interconnect width
from the minimum value to 100 nm at a step of 1 nm and
from 100 nm to 1 µm at a step of 50 nm. As demonstrated
in Fig. 9, the influence of the imperfect contact resistance on
the optimal repeater design can be neglected in the SWCNT
bundle interconnect. Therefore, the imperfect contact resis-
tance is set as zero in the NNs’ training for the Cu and
SWCNT bundle interconnects. However, for the MWCNTs,
the imperfect contact resistance is varied from 0 to 100 k�
at a step of 5 k�, thereby leading to a significantly larger
training data set. Moreover, as normalization is a way to
simplify calculations and to speed up the convergence of the
training network, the data set in this study is normalized to
the range [0, 1] by linearization. The numbers of the nodes of
two hidden layers arem = 40 and n = 15, respectively. Here,
70% of the input data is used as the training set, and the rest
is used as the test set.

Fig. 18 shows the numbers of iterations of the NNs to
achieve convergence for the Cu and CNT interconnects at
the 14 nm technology node. Here, the goal of mean square
error (MSE) is set as 1 × 10−8. The recursive process of the
learning algorithm stops when the error cannot be reduced
anymore. Furthermore, the comparison between the outputs

of the NNs and the desired targets are shown in Fig. 19. In this
figures, the solid lines represent the best-fit linear regression
line between the outputs and the targets, and the dashed lines
are the perfect results (i.e., the outputs is equal to the targets).
It can be seen from Fig. 19 that the solid and dashed lines
completely overlap with each other, indicating good fit for
the problems of the repeater insertion in the Cu and CNT
interconnects. The R value, an indication of the correlation
between the outputs and the targets, is close to 1, implying
that there is an exact linear relationship between the outputs
and the targets. Finally, the relative error between the NN
outputs and the targets is shown in Fig. 20. It can be seen
that the error of the most samples is closed to zero. Using
the trained NN, the optimal number of repeaters and the
optimal repeater size can be obtained readily. It can be seen
in Fig. 21 that the data from the ML overlaid on the results
from the PSO algorithm.

FIGURE 21. Optimal (a) number of repeaters and (b) optimal repeater size
of MWCNT interconnects obtained using PSO algorithm and trained NN.

It is well known that NNs have unparalleled advantages in
computational efficiency by predicting the optimum directly.
This is, NNs require less simulation time than the conven-
tional methods. More precisely, by using the PSO algo-
rithm for handling tens of thousands of data items, the CPU
times would exceed approximately 25 h, 25 h, and 55 h
for the Cu, SWCNT bundle, and MWCNT interconnects,
respectively. However, for the same data sets, the CPU times
can be reduced to 4.34 s, 4.07 s, and 4.43 s by using the
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trained NNs. Therefore, the implementation of the NNs can
drastically save computational time, and is greatly beneficial
to the design and optimization of IC layout in future carbon
nanoelectronics [41], [42].

V. CONCLUSION
In this paper, the optimal repeater designs were performed
for the Cu, SWCNT bundle, and MWCNT based nanoint-
erconnects. Both the time delay and power dissipation were
considered and treated appropriately. The PSO algorithmwas
developed to compute the optimal number of repeaters and
the optimal repeater size. In practical applications, the circuit
parameters can be obtained experimentally for a specific
foundry process at a specific technology node. The effects
of the metal-CNT contact resistance and the kinetic induc-
tance on the optimal repeater designs were investigated in
detail. It was found that the CNT interconnects have much
smaller optimal number of repeaters than their Cu counter-
parts. As the SWCNT bundle possesses larger number of
conducting channels, it is almost free of the influence of the
imperfect contact resistance. However, the optimal number
of repeaters in the MWCNT interconnect decreases with the
increasing imperfect contact resistance. Similarly, the varia-
tion of the CNT kinetic inductance, which may be 15 times
larger than its theoretical value, has negligible influence on
the SWCNT bundle but significant influence on theMWCNT
interconnect. However, as the imperfect contact resistance
increases, the DIL system tends to overdamped, in which the
influence of the kinetic inductance becomes trivial. Finally,
the feasibility of theMLNN in optimal repeater designs of the
Cu and CNT based nanointerconnects were discussed. It was
demonstrated that the trained NNs can predict the optimal
number of repeaters and the optimal repeater size rapidly
and accurately. The proposed procedure can be applied to the
optimal design of interconnect system in nano-CMOS and
future nanocarbon-based ICs.
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