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ABSTRACT On-line monitoring and the diagnosis of the high-voltage circuit breaker (HVCB) have been
discussed and investigated significantly in the past few decades. The vibration analysis is a noninvasive
and advanced diagnostic technique suitable for the detection of mechanical conditions during the HVCB
operation, which plays an important role in improving the operating reliability of HVCB and reduces
maintenance costs. However, due to the very complicated mechanical system and extremely short operation
time of HVCB, the vibration signal has the characteristics of highly nonlinear, non-stationary, and corrupted
by heavy garbage noise, which makes it very difficult to precisely extract effective features for machinery
fault diagnosis. To address this issue, an energy entropy of Hilbert marginal spectrum (HMS) based on
variational mode decomposition (VMD) is presented to analyze the vibration signals of HVCB in this paper.
The VMD is used to decompose the vibration signal into a set of intrinsic mode functions (IMFs) reflecting
its local characteristics, and then, the energy entropy of IMF’s HMS, which varies from different failure
modes of HVCB, is obtained by Hilbert transform and entropy-information theory. The characteristics of
IMF’s HMS, which reveal the variation of vibration signals, under different failure modes of HVCB, are
practically analyzed and examined to illustrate the advantage of the proposed method in feature extraction.
The IMF that best reflects the mechanical anomaly information of HVCB is ascertained from IMF’s HMS,
and its Hilbert marginal spectrum energy entropy (HMSEE), namely, IMF-HMSEE, which synthetically
reflects the variations of vibration signal’s amplitude, phase, and frequency, is turned out to have excellent
classification performance for some mechanical anomalies of HVCB. The effectiveness of the proposed
approaches is substantiated by experiments carried out in a 12-kV vacuum HVCB.

INDEX TERMS Online high voltage circuit breaker (HVCB) assessment, vibration analysis, machinery fault
diagnosis, variational mode decomposition (VMD), Hilbert marginal spectrum energy entropy (HMSEE.)

I. INTRODUCTION
High voltage circuit breakers (HVCBs) are an indispensable
important piece of equipment in the power system which
perform the functions to break currents and protect other
equipment in the grid, their reliability plays an important
role in ensuring the security and stability operation of the
power systems [1], [2]. Consequently, it is of great signif-
icance and attracting increasing attention in HVCB fault
diagnosis to increase the reliability and decrease loss owing
to HVCB faults. Vibration analysis has been verified to
be an effective way for fault diagnosis of HVCB because
the vibration signals from HVCB operation contain a great
deal of fault-related information [3]–[8]. However, Due to

the characteristics of extremely short operation time and
severe impact-collision among moving parts, the vibration
signal of HVCB is significantly different from these of
rotating machinery: the time domain is quite short whereas
the frequency domain is extremely wide, which makes it
more difficult to analyze the inherently highly nonlinear
and non-stationary vibration signals. Therefore, to precisely
extract the fault-related features from the complex vibration
signals of HVCB, a suitable signal processing method should
first be adopted to analyze the vibration signals.

In the last few decades, a multitude of research efforts have
been made and many techniques have been used for process-
ing the raw vibration signals for condition monitoring, fault
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diagnosis, and incident prediction, which can be grouped into
two major categories, namely, the classical spectral analysis
method based on Fourier transform and the time-frequency
analysis technology. The classic spectral analysis method
based on Fourier transform, such as envelope analysis, spec-
trum analysis, holographic spectrum analysis, and high order
spectral analysis have been widely used in the field of
mechanical fault diagnosis. However, it has obvious inherent
disadvantage, that is, the system being analyzed is supposed
to be linear, and the signal being analyzed is required to
be strictly stationary, otherwise, the spectral analysis results
will lack clear physical significance. The vibration signals of
HVCB, however, are non-stationary and the system is non-
linear, which means it will affect the accuracy of the spectral
analysis results by using these Fourier transform based classic
spectral analysis methods.

Actually, the analysis of this kind of nonlinear and
non-stationary signal should mainly consider its local
characteristics. Therefore, the traditional frequency domain
analysismethod based on the global transformation of Fourier
transform is obviously not suitable, while the time-frequency
analysis method based on the joint time-frequency domain
analysis can provide local information of the signal at the
same time, which is an effective method for handling this
kind of complex signal. For now, various time-frequency
analysis methods have been proposed. Most of the methods
are based on local transformation, which is the key to the
realization of the joint analysis in the time-frequency domain.
According to whether the local transformation satisfies the
superposition principle or linear principle, the time-frequency
analysis method can be divided into two categories: linear
transformation method (such as short-time Fourier transform
(STFT), wavelet transform (WT)) and nonlinear transfor-
mation method (such as the typical Cohen time-frequency
distribution and ambiguity function). Considering that the
theory and application of these two kinds of time-frequency
analysis methods are quite mature, they are called traditional
time-frequency analysis methods in this paper. These tradi-
tional time-frequency analysis methods still have some inher-
ent defects, which affect the analysis results. For example,
the STFT is actually a stationary signal analysis method,
there are cross-term interference in the Cohen time-frequency
distribution, and the WT lack of self-adaptability.

It is worth noting that ambiguity function (AF) plays an
important role in non-stationary signal analysis and process-
ing theory. It has beenwidely used in radar signal analysis and
processing, optical information processing, sonar technology
and other fields. For a non-stationary signal x(t), the defini-
tion of the AF is as follows:

Ax(η, τ ) =
∫
∞

−∞

Rx(t, τ )ej2π tηdt (1)

where, τ represents time delay and η represents frequency
shift. Rx(t, τ ) is the signal’s auto-correlation function, which

is defined as:

Rx(t, τ ) = x(t +
τ

2
)x∗(t −

τ

2
) (2)

According to the above definition of AF, the relationship
between AF and WVD is the two-dimensional Fourier trans-
form. Therefore, the AF, like WVD, does not obey the prin-
ciple of linear superposition, but the principle of quadratic
superposition, that is, they all have the phenomenon of cross-
term interference.

Different from the traditional time-frequency analysis
methods, several new time-frequency analysis techniques
have emerged in recent years, namely, adaptive signal
processing methods, such as Hilbert-Huang Transform
(HHT) [9], local mean decomposition (LMD) [10], and
variational mode decomposition (VMD) [11]. These meth-
ods have been widely used in medical [12], [13], geolog-
ical [14], [15], mechanical [16]–[20], electrical [21]–[25]
and many other disciplines. HHT includes two processes:
empirical mode decomposition (EMD) and Hilbert trans-
form (HT). The EMD can carry out adaptive multi-resolution
decomposition according to the characteristics of signals,
but it is easily to generate problems such as mode mix-
ing, IMF screening stop condition and endpoint effect in
the process of decomposition [26], [27]. To overcome (to
some extent) these deficiencies, LMD was proposed by
Smith [10]. The LMD is an adaptive non-stationary signal
analysis method proposed for more accurate analysis and
processing of amplitude-frequency modulation signals. Both
of EMD and LMD can decompose complex signal containing
multiple components into several single-component signals
with physical significance. But LMD does not have problems
such as over envelope, under envelope and boundary effect,
etc. Besides, LMD does not need to construct analytical sig-
nals and undergo Hilbert transformation to calculate instan-
taneous characteristics, but in the process of decomposing
signals, corresponding instantaneous amplitude and instan-
taneous frequency are calculated, which makes LMD more
efficient than EMD. However, in essence, the LMD suffers
the same shortcomings (mode mixing, end effect, etc.) as the
EMD does in decompose signals with close instantaneous
frequencies cross on the time-frequency plane.

Recently, a new adaptive signal decomposition method,
namely, the variational mode decomposition (VMD), was
proposed by Dragomiretskiy and Zosso [11]. The VMD gen-
eralize the classic Wiener filter into multiple and adaptive
bands, which can realize signal adaptive decomposition by
finding the optimal solution of the constraint variational
model. The center frequency and bandwidth of each IMF are
updated continuously and alternately to realize the adaptive
decomposition of the signal frequency band. VMD over-
comes many deficiencies of EMD and LMD and greatly
improves the accuracy of signal decomposition. The recent
applications of the VMD method to analyze complex signals
for feature extraction and fault diagnosis have been investi-
gated in [28]–[32]. These applications testify that VMD is
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an effective signal processing method for complex vibration
signals.

The information entropy is a measure of the disorder for
a system and in this case it is an accurate measure of the
complexity of the vibration signal (e.g., the amplitude, phase,
frequency and energy distribution of the vibration signal
changing with different fault types of HVCB). After the
vibration signals from the HVCB under different fault types
are decomposed by VMD, the IMF’s HMS which is sensitive
to the frequency spectrum and energy distribution is used to
ascertain the changes in the vibration signals. Furthermore,
if we define each scale feature as one information source,
the IMF representing each scale feature can be regarded as
a message from the information source. Therefore, the IMF’s
HMS energy entropy (HMSEE), called IMF-HMSEE, which
is sufficiently sensitive to reflect the small changes in the
vibration signal, is constructed from VMD, HMS and infor-
mation entropy. Hence, in this paper, a novel method based
on VMD and HMSEE, is presented to precisely extract
the fault feature information of HVCB from its nonlinear
and non-stationary vibration signal. The vibration signal of
HVCB is firstly decomposed by the VMD to obtain a number
of IMFs. Then, Hilbert transformation is performed for each
IMF to obtain energy value of HMS. Finally, energy entropy
of HMS, namely HMSEE, a dynamic characteristic vector
reflecting the vibration signal, is obtained according to the
information entropy theory.

The remainder of this paper is organized as follows.
Section II introduces the implementation method of VMD
and HMSEE. In section III, the experimental system for
HVCB is provided. The performance of EMD, LMD, VMD,
and the proposed VMD-HMS method are investigated and
presented in detail in section IV. Two cases of vibration
signal analysis using the proposed VMD-HMS method are
conducted in section V. Section VI illustrates the application
of HMSEE. Discussion and comparison are presented in
section VII. Finally, conclusions and recommendations are
given in section VIII.

II. THEORIES
A. VMD
The VMD decomposes the original signal x(t) into K IMFs
of finite bandwidth, which can be expressed as

uk (t) = Ak (t) cos(ϕk (t)) (3)

where t is the time script, uk (t) is the kth IMF, Ak (t) is
the instantaneous amplitude, and ϕk (t) is the instantaneous
frequency.

Each IMF component uk (t) is concentrated at the center
frequency ωk , the bandwidth of each IMF can be estimated
by the Gaussian smooth migration signal. The correspond-
ing constrained variational model in the decomposition is as
follows

min
{uk }{ωk }

{∑
k

∥∥∥∥∂t [(σ (t)+ j
π t

)uk (t)]e−jωk t
∥∥∥∥2
2

}
(4)

where ∂t represents gradient with respect to t and σ (t) is the
Dirac function, the modes uk subject to∑

k

uk (t) = x(t) (5)

A quadratic penalty and Lagrangian multipliers are intro-
duced to address the (4). The augmented Lagrangian is set
using the following equation:

L({uk}, {ωk}, λ)

= α
∑
k

∥∥∥∥∂t [(σ (t)+ j
π t

)uk (t)]e−jωk t
∥∥∥∥2
2

+

∥∥∥∥∥x(t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), x(t)−

∑
k

uk (t)

〉
(6)

where λ is the Lagrange multiplier, and α is the quadratic
penalty factor to balance the data-fidelity constraint.

The saddle point of equation (6) is found using the alter-
nate direction method of multipliers (ADMM). By iteratively
updating un+1k , ωn+1k , and λ in (7)-(9), the optimal solution of
the equation (6) can be obtained.

un+1k (ω)←

x(ω)−
K∑

i=1,j<k
un+1i (ω)−

K∑
i=1,j<k

uni (ω)+
λn(ω)
2

1+ 2α(ω − ωnk )
2

(7)

and

ωn+1k ←

∫
∞

0 ω

∣∣∣un+1k (ω)
∣∣∣2 dω∫

∞

0

∣∣∣un+1k (ω)
∣∣∣2 dω (8)

and

λn+1(ω)← λn(ω)+ τ (x(t)−
∑
k

un+1k (ω)) (9)

The above iteration stop condition is:

∑
k

∥∥∥un+1k − unk

∥∥∥2
2∥∥unk∥∥22 < ε (10)

B. HMSEE
Once the IMF components uk (t) are obtained by VMD,
the HT can be applied to each individual IMF, which can be
defined as follows:

ûk (t) =
1
π
P
∫
+∞

−∞

uk (τ )
t − τ

dτ (11)

where P is the Cauchy principal value of the integral.
Construct an analytic signal zk (t):

zk (t) = uk (t)+ iûk (t)

= Ak (t)eiθk (t) = Ak (t)ei
∫
ωk (t)dt (12)

where Ak (t), θk (t), and ωk (t) are the kth IMF’s instantaneous
amplitude (namely, the envelope), instantaneous phase and
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instantaneous frequency, respectively, which can be deter-
mined by

Ak (t) =
√
u2k (t)+ û

2
k (t) (13)

θk (t) = arctan
ûk (t)
uk (t)

(14)

ωk (t) =
dθk (t)
dt

(15)

From (12) and (15), after HT, each IMF can be represented
by

uk = Re
[
Ak (t)ei

∫
ωk (t)dt

]
(16)

and thus, the original signal x(t) can be recovered as

x(t) = Re
K∑
k=1

Ak (t)ei
∫
ωk (t)dt (17)

where K is the number of IMFs derived by VMD. The
residual trend rk (t) is omitted since it is either a monotonic
function or a constant.

Equation (17) gives a time-frequency distribution of the
amplitude, which is called the Hilbert spectrum H (ω, t)
showed as follows

H (ω, t) = Re
K∑
k=1

Ak (t)ei
∫
ωk (t)dt (18)

The HMS is then obtained by integrating the Hilbert
spectrum:

h(w) =
∫ T

o
H (ω, t)dt (19)

where T is the total length of the signal.
According to the Shannon information entropy, the energy

entropy of HMS (HMSEE) for the IMF can be defined as:

Hk = −
K∑
k=1

(pk × ln pk ) (20)

where pk denotes the energy ratio of the kth IMF, which can
be computed as:

pk = Ek/
K∑
k=1

Ek (21)

where Ek is the energy of the kth IMF.

III. LABORATORY TESTING SYSTEM
A. DATA-ACQUISITION SYSTEM
Measurements reported in this paper were performed with a
high-performance data-acquisition system. Themain features
of this system are: a high-voltage switchgear, HVCB (which
is installed in the switchgear, the HVCB adopts spring operat-
ing mechanism (OM), rated voltage is 12 kV, rated current is
1250 A, and rated short circuit breaking current is 25 kA),
power supply and vibration signal acquisition system (the
system is composed of a high-sensitivity accelerometer to

record vibration signals, a MDC4 (A/D converter resolution:
24 bits) to collect and preprocess the signals and an MHI or
a computer to show and store the data). The vibration signal
acquisition system triggered when the vibration amplitude of
the breaker exceeds the preset threshold, the sampling rate
is 100 kHz, and the collection time is 40 ms. The HVCB
is operated by electric throughout the experiment. Fig. 1(a)
shows the detail of the testing system.

FIGURE 1. Test set-up in the laboratory for vibration data acquisition.
(a) test platform and (b) placement of accelerometer.

B. ACCELEROMETER
For accurate vibration measurements on HVCBs, accelerom-
eter performance should be selected based on the maximum
vibration burst that can be expected for the breaker drive
mechanism. The main parameters of the accelerometer used
in this paper include: sensitivity of 0.5mV/g;maximum range
of 10000 g; frequency response of 0-50 kHz; resonant fre-
quency of>90 kHz; and linearity of±1%. The accelerometer
is screwed [33] directly on the upper surface of the OM of
HVCB to record the vibration signals, as shown in Fig. 1(b).

IV. PERFORMANCE INVESTIGATION OF EMD, LMD, VMD,
AND THE PROPOSED VMD-HMS METHOD
In this section, the performances of EMD, LMD, VMD, and
the proposed VMD-HMS method are studied by directly
using the actual measured vibration signals (real-life signals).
Fig. 2(a) shows a typical vibration waveform under normal
opening operation, Fig. 2(b) shows its fast Fourier trans-
form (FFT) spectrum. It can be observed that the vibration
signal is very complex, it is composed of multiple nonlinear
and non-stationary shock waves. The duration of the whole
time domain is extremely short (less than 40 ms), and the fre-
quency components are distributed over a wide range (from
0 kHz to about 30 kHz).

Using the EMD and LMD methods, we decompose the
vibration signal (shown in Fig. 2(a)) into eleven IMF com-
ponents and a trend, and three PF components, respectively.
Since the mainly information and the energy of the vibration
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FIGURE 2. The wave of a vibration signal and its FFT spectrum under
normal opening condition of HVCB. (a) time-domain waveform and
(b) FFT spectrum.

signal processed by EMD are concentrated in the previous
IMFs, hence, only the first six IMFs and their Fourier spec-
trum are listed in Fig. 3(a). It is evident from the figure
that the mode mixing problem (also known as the frequency
crossover problem) of EMD is particularly serious (denoted
in colored boxes). In fact, none of the sub-modes has been
decomposed successfully by EMD. Fig. 3 (b) shows the three
PFs obtained from LMD. From the Fourier spectrum of the
PFs, it can also be seen that LMD still exist the mode mixing
phenomenon (denoted in colored boxes), and its decompo-
sition of the original vibration signal is incomplete: there are
multiple frequency components in PF1 (denoted in red color).
Therefore, for the special vibration signal of HVCB, neither
EMD nor LMD can effectively process it. Hence, EMD and
LMD are not suitable for fault feature extraction of HVCB’s
nonlinear and non-stationary vibration signals.

As discussed earlier, VMD can non-recursively and con-
currently decompose a complicated multi-component signal
into AM-FM components adaptively. In essence, IMFs are
defined as explicit AM-FM models, and they have a limited
bandwidth. Fig. 4 illustrates the VMD analysis results of the
vibration signal shown in Fig. 2(a). The number of IMFs
and time-step are set to 6 and 1E-9, respectively. It can be
clearly seen from the decomposition results that, the vibration
signal is decomposed into an ensemble of IMFs that are
band-limited to their respective center frequency: both fre-
quency (energy) divergence and mode mixing phenomenon
are slight. The VMD results are much better than EMD and
LMD since it considers the spectral shape and takes the
gravity center of spectrum as the center frequency of each
IMF.

From the above comparative analysis, it can be known
that EMD and LMD cannot correctly analysis the vibration

FIGURE 3. Decomposition results of the vibration signal in Fig. 2(a) by
using: (a) EMD and (b) LMD.

signals of HVCB. VMD greatly improves the deficiencies
of EMD and LMD, however, there are still existing slight
mode mixing problem and the frequency aggregation is not
very high, which will affect the effective extraction of fault
features from HVCB’s vibration signals. Therefore, in order
to solve this problem, further, HT is performed for each
IMF obtained by VMD to get HMS. Fig. 5(b) shows the
VMD-HMS of the vibration signal (shown in Fig. 2(a)). The
Fourier spectrums of the IMFs are also given in Fig. 5(a),
for the convenience of comparison. As can be seen from
Fig. 5, the HMS is better in frequency aggregation and has
higher frequency resolution than Fourier spectrum, moreover,
the effect of mode mixing is effectively reduced, thus mak-
ing it more sensitive to subtle changes in vibration signals
and more easily to distinguish fault feature frequencies for
HVCB.

Fig. 6 summarizes the analysis results of the above meth-
ods (EMD, LMD, VMD and the proposed VMD-HMS
method). As shown in Fig. 6(a), for the IMFs obtained using
EMD, the frequencies of each band (IMF) overlap with each
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FIGURE 4. VMD analysis results.

FIGURE 5. Spectrums of IMFs derived by VMD. (a) Fourier spectrum and
(b) HMS.

other, and almost completely overlap at low frequencies,
which cannot be distinguished. This problem is not solved
with LMD method shown in Fig. 6(b). The behavior of all
the IMFs in VMD, shown in Fig. 6(c), are greatly improved,
only a fraction of their frequencies overlap, but as can be
found, their frequencies are not concentrated enough. The
method proposed in this paper overcomes all the above short-
comings, which is shown in Fig. 6(d), the frequency com-
ponents of the vibration signal are successfully decomposed

FIGURE 6. Spectrums. (a) EMD Fourier spectrum; (b) LMD Fourier
spectrum; (c) VMD Fourier spectrum; (d) VMD-HMS.

into independent subcomponents, no frequency mixing
(i.e., modemixing), and at the same time, with high frequency
concentration.

V. CASE VERIFICATIONS
A. CASE 1: OIL SHOCK ABSORBER FAILURE
The oil shock absorber [34] (shown in Fig. 7(a)) failure is
one of the most common mechanical anomalies in HVCB.
In the present case, the vibration signals were collected under
the failure of oil shock absorber. Fig. 7(b) shows an example
vibration signal during such a failure, for comparison, a nor-
mal vibration signal (the oil shock absorber works normally)
is also depicted in Fig. 7(c).

FIGURE 7. Case 1. (a) Position of the oil shock absorber; and the waves of
vibration signals under: (b) oil shock absorber failure and (c) normal
condition.
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FIGURE 8. The analyzed results of the proposed VMD-HMS method for
the vibration signals under: (a) oil shock absorber failure and (b) normal
condition.

Fig. 8(a) shows the proposed VMD-HMS method anal-
ysis result of the vibration signal under oil shock absorber
failure (Fig. 7(b)), here, the analysis result of the vibration
signal under normal condition (Fig. 7(c)) is also illustrated
in Fig. 8(b) for comparison. First of all, the raw vibra-
tion signal is processed by VMD (the modes number and
time-step are set to 6 and 1E-9, respectively). Then, the HT
is performed to obtain the IMF’s Hilbert spectrum. Finally,
the IMFs Hilbert spectrum are integrated to obtain the IMFs’
HMS. It can be clearly seen from Fig. 8 that the vibration
signals are successfully decomposed and transformed into
frequencies with high resolution and without cross interfer-
ence by the proposed VMD-HMS method: each frequency
of the vibration signal is clearly separated without frequency
mixing, and the energy concentration of each frequency is
very high.

The oil shock absorber, which has the function of absorb-
ing residual energy and reducing the impact of mechan-
ical collision during HVCB operating. Thus, the failure
of the oil shock absorber will cause the vibration of the
HVCB increase to some extent. By comparing the processing
results of the vibration signals under the failure of oil shock
absorber (Fig. 8(a)) and normal condition (Fig. 8(b)), it can
be found that, for the failure of oil shock absorber, the fre-
quency value and frequency amplitude of all subcomponents
increased, especially the first four high-frequency subcompo-
nents, which is consistent with the increase of HVCB’s vibra-
tion intensity caused by the failure of oil shock absorber. The
results also indicate that a subtle alteration in the vibration
signal can be clearly expressed in HMS, which demonstrates
that the proposed VMD-HMS method is effective to analyze
HVCB’s vibration signal for fault feature extraction.

B. CASE 2: INSULATION PULL ROD ANOMALY
The insulation pull rod anomaly, which is another common
mechanical anomalies occurred in HVCB. The insulation pull
rod is a key component connecting the dynamic contact of
arc interrupting chamber (high-voltage terminal) and the OM
(ground terminal) of HVCB. It transmits the energy of the
OM to the dynamic contact to perform closing and opening
operation. The bolts that connecting the insulation pull rod
and the main transmission linkage of the OM are subjected
to various complicated forces and collisions, resulting in its
frequent failures such as wear and fracture. The failure of the
bolts will directly lead to abnormal motion of the insulation
pull rod and seriously affect the stability performance of
HVCB. Hence, in order to be able to effectively detect the
motion anomaly of the insulation pull rod, here, in the present
case, we simulate the insulation pull rod motion anomaly by
adopting bolt (connecting the insulation pull rod and the main
transmission linkage) smaller than the original size, which is
shown in Fig. 9(a). The vibration signals under the insulation
pull rod motion anomaly and normal condition are illustrated
in Fig. 9(b) and (c), respectively.

FIGURE 9. Case 2. (a) Connection position of the insulation pull rod with
main transmission linkage; and the waves of vibration signals under:
(b) insulation pull rod motion anomaly and (c) normal condition.

Fig. 10(a) and (b) shows the proposed VMD-HMSmethod
analysis results of the vibration signals under the insulation
pull rod motion anomaly and normal condition, respectively.
From this figure, we may easily discover the changes of the
IMFs’ HMS due to the abnormal of insulation pull rod. It is
worth noting that in the present case, the deviation of the
last few low-frequency sub-components is also significant.
The result of this case further demonstrate that the proposed
VMD-HMSmethod is effective and suitable for detecting tiny
variations in HVCB’s vibration signal under different types of
mechanical anomalies.

VI. APPLICATION OF HMSEE
When faults occur or HVCB works in abnormal state, not
only the amplitude, phase and frequency of the vibration
signal will change, but also the energy. That is to say, com-
pared with those under normal state of HVCB, the vibration
signals under abnormal states will have the phenomenon
of amplitude, phase and frequency modulation, along with
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FIGURE 10. The analyzed results of the proposed VMD-HMS method for
the vibration signals under: (a) insulation pull rod motion anomaly
and (b) normal condition.

energy variation. Therefore, taking these factors into con-
sideration, a local energy spectrum based on VMD, namely
VMD-HMES (Hilbert marginal energy spectrum), is pro-
posed here to describe the variation characteristics of the
amplitude, phase, frequency and energy for the vibration
signal.

In the VMD-HMES, the change of IMF’s spectral line
reflects the change of the fault type of HVCB, and the
amplitude value of spectral line reflects the probability of the
frequency feature appearing in the vibration signal. There-
fore, the entire VMD-HMES can actually be regarded as a
sequence of probabilities. As mentioned earlier, by referring
to the definition of entropy in Information theory, the com-
plexity of VMD-HMES can be judged intuitively by its
HMSEE, which is called IMF-HMSEE in this paper. It should
be noted that the IMF HMSEE must be approximately equal
since the vibration signal under the same fault has similar
VMD HMES, whereas for different faults’ vibration signal,
the IMF HMSEE will not approximately equal. Therefore,
different fault types of HVCB can be classified by the IMF
HMSEE.

Fig. 11 illustrates the obtained HMSEE of IMF1-IMF6
components. As can be seen, the three conditions (nor-
mal condition, oil shock absorber failure and insulation
pull rod motion anomaly) can be significantly distinguished
from IMF6’s HMSEE, whereas the distinguishability of
IMF1-IMF5 are not good in comparison with IMF6.

To make a further comparison, 5 samples with different
mechanical anomalies are randomly selected from the vibra-
tion data set for VMD processing, and then IMF-HMSEE are
calculated. The results of the IMF HMSEE of all samples
are shown in Fig 12. It can be seen from the figure that,

FIGURE 11. HMSEE of IMFs under three different conditions.

FIGURE 12. HMSEE of IMFs under three different conditions from five
random samples. (a)-(f): IMF1-IMF6.

all the other IMFs’ HMSEE show disordered and irregular
phenomena except for the IMF6which has a certain regularity
in different samples: there is a clear distinction between the
three types of mechanical anomalies. This suggests that the
HMSEE of IMF6 appears to be useful for classifying the three
types of mechanical anomalies in HVCB.

Actually, for most signals, the main information after
VMD processing is contained in the first several compo-
nents, that is, usually the fault characteristics should be in
the first several components. However, in this paper, a series
of processing results for the vibration signal of HVCB indi-
cate that the sixth component (IMF6) is characterized by
obvious separability for the HVCB’s mechanical anomalies.
The possible reasons and explanations for this phenomenon
mainly fall into two points. The fundamental reason is that
the vibration signal of HVCB is a special kind of complex
signal with strong nonlinear and non-stationary, and its time
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duration is extremely short and frequency range is quite wide,
causing that the fault characteristic information distributes
over a wide frequency range. In addition, the main frequency
component of HVCB’s vibration signal is high frequency.
However, the high-speed operation and strong collision of the
mechanical system of HVCB make some mechanical abnor-
mal signals submerged in the high frequency components,
thus the performance and variation are more obvious in the
low frequency components, which means the fault feature
information of HVCB is mainly presented as low frequency
component.

Nevertheless, the HMSEE of IMF6, which can be used
to characterize the complexity of the IMF6’s HMS in dif-
ferent scales, has been proved that its value is stable in
the case of similar mechanical anomalies and has obvious
difference in the case of different mechanical anomalies.
Therefore, the HMSEE of IMF6 can be taken as a refer-
ence for judging the mechanical abnormal categories of the
HVCB.

It is worth mentioning that there are many types of faults
that can occur to circuit breakers, and different types of
circuit breakers have different faults. Therefore, the feature
extraction algorithm proposed in this paper is effective for
the two types of typical faults (case 1 and case 2) of the
breaker, while the effectiveness of other fault types and other
types of circuit breakers needs to be further verified. To solve
this problem, unique signatures or footprints under normal
and some typical failure conditions for the individual breaker
need to be pre-known before the approach is applied to
practice.

VII. DISCUSSION AND COMPARISON
In order to better understand the method proposed in this
paper, the relevant researches like using VMD, HMS and
energy entropy for processing vibration signals of HVCB
are investigated. So far, there are only 3 similar research
literatures [35]–[37].

In literature [35], only VMD was used to decompose the
vibration signal of circuit breaker, the key issues such as
the validity and accuracy of the decomposition results of
VMD were not discussed. In literature [36], particle swarm
optimization algorithm was used to obtain the optimal VMD
result based on the overall orthogonal coefficient, and then
the spectrum of Hilbert transform of vibration signal was
reasonably divided, so as to define the characteristic vec-
tor and similarity index of the vibration signal. Although
there is no frequency overlap in the VMD results of the
literature, the frequency clustering of each IMF is not as
good as the method proposed in our study. In the literature,
the fault type of HVCB is determined by calculating the
similarity between the fault vibration signal and the normal
vibration signal, ignoring the influence of the dispersion of
vibration signal and noise on the similarity. In literature [37],
VMD was used to decompose the vibration signal of HVCB
firstly, then the sample entropies of all IMFs were calcu-
lated as the characteristic vector of different fault types.

The literature did not make any improvement or optimiza-
tion on the result of VMD. Instead, the sample entropy of
VMD’s result was directly calculated as a fault feature. How-
ever, it can be seen from the analysis results of our study
and literature [36] that the vibration signal’s VMD still has
mode mixing and other problems. If left untreated for sub-
sequent analysis, the final results obtained will have certain
errors.

Based on the above comparative analysis, it is undeniable
that the methods proposed in the literature [35]–[37] have
certain effects, but also have some deficiencies. The method
proposed in this paper can effectively eliminate the mode
mixing and other defects of the VMD results, and the pro-
posed IMF-HMSEE has a good distinction between different
fault types of circuit breakers.

In this paper, firstly, the advantages and disadvantages of
EMD, LMD and VMD methods in processing vibration sig-
nals of HVCB are compared, and then the VMD is improved
(i.e., VMD-HMS). Finally, HMSEE is proposed based on the
improved VMD method. Fig. 13 and Fig. 14 illustrate the
results of EMD-HMSEE and LMD-HMSEE, respectively.
As can be seen, none of these features are significantly distin-
guishable. The list of all the methods mentioned in this paper
are summarized in Table 1.

FIGURE 13. EMD-HMSEE under three different conditions from five
random samples. (a)-(f): IMF1-IMF6.

TABLE 1. Performance contrast of decomposition methods and feature
extraction results.
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FIGURE 14. LMD-HMSEE under three different conditions from five
random samples. (a)-(c): PF1-PF3.

VIII. CONCLUSION
In this paper, a novel vibration analysis approach for detect-
ing mechanical anomalies of HVCB was presented and
described. The vibration signal of HVCB is very special:
the duration time is extremely short (tens of milliseconds),
the frequency range is quite wide (up to 40 kHz), and it also
has strong nonlinear and non-stationary characteristics. It is
therefore very difficult to extract valuable information from
such a complex vibration signal. The way to explore is to
decompose it into several non-interference modes and look
for possible patterns of changes. To explore an appropriate
vibration signal decomposition method for extracting fault
features used for classifyingmechanical anomalies of HVCB,
three existing adaptive signal analysis methods (EMD, LMD
and VMD) and the proposed VMD-HMS method were com-
pared and analyzed. Results indicate that EMD and LMD
are not suitable for handling HVCB’s complex vibration
signal due to serious mode mixing phenomenon and poor
frequency resolution. Although VMD has largely overcome
the shortcomings of EMD and LMD, it still has slight mode
mixing and frequency divergence. The proposed VMD-HMS
method effectively reduce the effect of VMD mode mix-
ing, and the HMS resolution (frequency concentration) of
each IMF is higher than Fourier spectrum, which greatly
improved the decomposition accuracy of HVCB’s vibration
signal. Experiment simulated two different types of mechan-
ical anomalies for HVCB and the results show that the
VMD-HMS is very sensitive to the slight changes of vibration
signals under these two kinds of mechanical anomalies. The
changes of VMD-HMS correspond to a specific mechani-
cal anomaly in HVCB. In order to classify the mechanical
anomalies accurately according to the changing characteris-
tics of VMD-HMS, the IMF-based definition, HMSEE, was
introduced as a changing sensitive feature. The experimental
results demonstrated that the proposed VMD-HMS method
described the fault frequency features in more distinguishable
patterns than EMD, LMD and VMD, and the IMF-HMSEE
shows a clear ability to detect mechanical anomalies for
HVCB.
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