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ABSTRACT For the direction-of-arrival (DOA) estimators based on sparse signal representation, the fea-
sibility and precision are greatly restricted by the inherent limitation of the predefined spatial discrete
grids. In this paper, based on the high aggregation characteristic of wideband linear frequency modulation
signals, we derive the modified fractional domain sparse model (MFDSM) in DOA estimation and propose a
novel off-grid DOA estimation method via alternating descent iteration (OGDEADI). The simulation results
show that our proposed MFDSM-OGDEADI method has enhanced estimation accuracy and better angular
resolution in terms of signal-to-noise ratio, angle difference, grid size, and angle bias, and it also has the
advantage of being less sensitive to the grid size.

INDEX TERMS Direction-of-arrival estimation, sensor arrays, off-grid targets, sparse signal representation,
wideband signals.

I. INTRODUCTION
In recent years, research and applications related to sensors
and sensor networks (SSN) have received more and more
attention, which have been applied to a lot of missions such as
battlefield, search and rescue, surveillance, and so on. Using
sensor arrays in Direction-of-arrival (DOA) estimation has
also been a hot research topic in the past decades, which
is widely applied to radar, sonar, communications, seismic
exploration and other fields [1]–[3]. The algorithms proposed
to solve this problem are generally designed for the narrow-
band stationary signals. However, with the development of
signal processing technology, wideband signal DOA estima-
tion has also drawn more and more attention [4]–[7].

The most classical DOA estimation methods of wideband
signal are incoherent signal subspace method (ISSM) [8]
and coherent signal subspace method (CSSM) [9]. With a
filter bank or the discrete Fourier transform (DFT), the two
methods decompose wideband signals into many narrow-
band signals and then they use narrowband signal DOA
estimation methods to estimate wideband signals. The ISSM
methods cannot estimate the coherent wideband signals and
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have relatively low precision. The CSSM methods provide
outstanding estimation accuracy and relatively low compu-
tational complexity, but their prerequisite is that a lot of
snapshots are needed. Furthermore, most of these algorithms
need the focusing matrices which require pre-estimating the
DOA angles. However, these focusing matrices are sensitive
to the DOA values which are pre-estimated, especially when
the estimated error is large, the estimation performance of
the algorithm is degraded.

Recently, sparse signal representation (SSR), an emerging
area in signal processing, has been introduced to DOA esti-
mation [10]–[13] where the conventional DOA estimation
will be transformed into an SSR problem by the sparsity-
inducing techniques [14], [15]. The SSR based estimators
exhibit superior performance compared to spectrum-based
ones, especially when signal-to-noise-ratio (SNR) is low,
snapshots are limited and signals are coherent, their disad-
vantages should not be ignored. The sparsity based DOA esti-
mators explore the incident signals’ spatial sparsity, i.e., the
angle space is divided into a large number of grids where
the source directions of interest are assumed to exactly lie
on some of the grids. However, a too coarse or too dense grid
set may bring unpleasant results. In particular, a coarse grid
set cannot achieve satisfactory estimation accuracy. On the
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other hand, a compact grid set may lead to the high model-
ing error and the high computation complexity [16]. Hence,
some researchers [17]–[20] have focused on the off-grid case,
where the unknown DOAs are not limited onto the grids.

To our best knowledge, the off-grid case was origi-
nally studied in [21]. For perturbed compressive sensing
under sparsity constraints, the authors proposed a sparsity-
cognizant total least-squares (S-TLS) method. However, this
paper mainly focuses on generalized algorithms rather than
on DOA estimation. In [22], a new algorithm based on sparse
Bayesian inference (SBI) is applied for the off-grid case to
achieve a high DOA resolution from a coarse sampling grid.
Firstly, a first-order Taylor expansion-based model is estab-
lished. Then, a new algorithm named OGSBI is proposed
to solve this model from a Bayesian inference perspective
where the sparse prior is exploited by assuming a Laplace
prior for the signal of interest. Additionally, an iterative alter-
nating descent algorithm was developed in [23] based on
first order Taylor expansion, which can simultaneously make
DOA angle estimation and deal with the off-grid problem.
In general, these algorithms are for narrowband signals, and
for wideband signals, there is not much research literature.

Linear frequency modulation (LFM) signals have been
extensively applied in radar, sonar, seismic detection and
so on. However it is a non-stationary signal and cannot
be handled by the traditional DOA estimation algorithms
with high resolution. Therefore time-frequency analysis
tools are introduced to solve this problem. As a powerful
time-frequency analysis tool, Fractional Fourier trans-
form (FRFT) [24]–[26] can reflect the signal characteris-
tic in time domain and frequency domain simultaneously.
FRFT has many significant advantages, such as excellent
aggregation characteristics to LFM signals, and no cross-
term interference. Also in FRFT, there are no frequency
point selection problems of the secondary time-frequency
distribution [27]–[29], and LFM signals can be separated
while the parameters also can be estimated easily. Therefore,
through the integration of array signal processing technol-
ogy and FRFT transform, it is easier to achieve wideband
LFM signals’ DOA estimation and provides better estimation
effect compared with other time-frequency analysis methods.
In this paper, we focus on wideband LFM signal DOA esti-
mation problems under grid mismatch conditions. The modi-
fied fractional domain sparse model (MFDSM) is introduced
and a novel off-grid DOA estimation method via alternating
descent iteration (OGDEADI) is proposed based onMFDSM
model.

The rest of the paper is organized as follows: in Section II,
DOA estimation models of wideband LFM signals in the
time domain and FRFT domain are introduced. Then,
FRFT domain based off-grid DOA model is introduced
in Section III. In Section IV, an off-grid DOA estimation
algorithm based on alternating descending iteration is pro-
posed. Subsequently, the simulation results and analysis are
stated in Section V. Finally, we summarize the paper in
Section VI.

II. WIDEBAND LFM SIGNAL DOA ESTIMATION MODEL
A. TIME DOMAIN MODEL
Suppose there are K far-field wideband signals, sk (t) , k =
1, 2, · · · ,K , which are incident on a receiving array, and their
angle of incidence are (θ1, θ2, · · · , θK ) respectively. We take
a uniform linear array (ULA) with the array spacing d , and
the number of array sensors is Mas the receiving array.

Denote the kth LFM signal as

sk (t) = Ck exp
[
jπ
(
2fk t + µk t2

)]
, |t| ≤

T
2

(1)

where Ck is the amplitude, fk is the center frequency, µk is
the frequency slope and T is the pulse width of the kth LFM
signal, respectively.

The mth array sensor’s received signal can be represented
as

rm (t) =
K∑
k=1

sk (t − τmk)+ nm (t) (2)

where nm (t) is the received noise signal, τmk represents the
relative delay between the received signal by the mth sensor
and the reference signal received by the first sensor, and
for ULA, it can be expressed as τmk = (m− 1) d sin (θk)/c,
in which c is the speed of light. By substituting the LFM
signal expression into (2), the received signal can be further
expressed as

rm , (t)
K∑
k=1

am (θk , t) sk (t)+ nm (t) (3)

In (3), am (θk , t) is the array steering vector on the mth array
sensor, and expressed as

am (θk , t) = exp
[
−j2π (fk + µk t) τmk + jπµkτ 2mk

]
,

for m = 1, 2, · · · ,M (4)

By integrating all the signals received by the array together,
(3) can be written as

r (t) = A (θ, t) s (t)+ n (t) (5)

where r (t) = [r1 (t) , · · · , rM (t)]T and n (t) = [n1 (t) ,
· · · , nM (t)]T represent the received signal and the noise
vector, s (t) = [s1 (t) , · · · , sK (t)]T represents the incident
source signal vector. A (θ, t) = [a (θ1, t) , · · · , a (θK , t)]M×K
is the array manifold matrix in which a (θk , t) is the steering
vector of the kth wideband LFM signal expressed as

a (θk , t) =


a1 (θk , t)
a2 (θk , t)

...

aM (θk , t)



=


exp

{
−j2π (fk + µk t) τ1k + jπµkτ 21k

}
exp

{
−j2π (fk + µk t) τ2k + jπµkτ 22k

}
...

exp
{
−j2π (fk + µk t) τMk + jπµkτ 2Mk

}


for k = 1, 2, · · · ,K (6)
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As can be seen in (6), the array steering vector varies along
with time t and this fact would result in that the traditional
DOA estimation methods cannot be applied to the wideband
LFM signal DOA estimation, since these traditional methods
are with the assumption that the array steering vector is time-
invariant and stationary.

B. FRFT DOMAIN MODEL
As an effective time-frequency analysis tool, FRFT trans-
form has an aggregation effect on LFM signals and can
take the LFM signal’s energy together [24]. Using this fea-
ture, we consider introducing FRFT transform into the data
processing.

Firstly, the FRFT transform is performed on the received
signal of the mth sensor

Rm (u, α) =FFF p [rm (t)] ,
K∑
k=1

Z km (u, α)+ Nm (u, α) (7)

where Z km (u, α) and Nm (u, α) are the FRFT transform of
the signal sk (t − τmk) and the noise nm (t), respectively. The
transformed variable u is called the FRFT domain, and can
also be called fractional domain (FD) [25].

In view of FRFT transform’s time-shifting characteris-
tics [24], Z km (u, α) in (7) can be expressed as

Z km (u, α) = Sk (u− τmk cosα, α)

· exp
(
jπτ 2mk sinα cosα− j2πuτmk sinα) (8)

In (8), Sk (u, α) is the signal sk (t)’s FRFT transform, and then

Sk (u, α) =

√
1− j cotα

2π
exp

(
jπu2 cotα

)
·

∫ T/2

−T/2
exp

[
jπ t2 (cotα + µk)

− j2π t (u cscα − fk)] dt (9)

Substituting (9) into (8),

Z km (u, α)

=

√
1− j cotα

2π
· exp

(
jπτ 2mk sinα cosα− j2πuτmk sinα)

· exp
(
jπ (u− τmk cosα)2 cotα

)
·

∫ T/2

−T/2
exp

[
jπ t2 (cotα + µk)

− j2π t ((u− τmk cosα) cscα − fk)] dt (10)

From (10), we can see that, when α = −arc cot (µk) , α̂k ,
the clustering property of Z km (u, α) is the best, thus Eq. (10)

can be further reduced to

Z km
(
u, α̂k

)
=

√
1− j cot α̂k

2π

·T
sin
[
π
((
u− τmk cos α̂k

)
csc α̂k − f0

)
T
][

π
((
u− τmk cos α̂k

)
csc α̂k − f0

)
T
]

· exp
(
jπ
(
u− τmk cos α̂k

)2 cot α̂k)
· exp

(
jπτ 2mk sin α̂k cos α̂k − j2πuτmk sin α̂k

)
(11)

As can be seen from the above, Z km
(
u, α̂k

)
is a 1-D func-

tion of the variable u. When ûk = τmk cos α̂k + f0/csc α̂k ,
the maximum value of Z km

(
u, α̂k

)
can be obtained as

Z km
(
ûk , α̂k

)
= T

√
1− j cot α̂k

2π
· exp

(
jπ
(
f0
/
csc α̂k

)2 cot α̂k)
· exp

(
jπτ 2mk sin α̂k cos α̂k − j2π ûkτmk sin α̂k

)
(12)

When m = 1, that is, for the reference sensor, the delay
τ = 0, so (12) can be reduced as

Z k1 (u, α) =FFF p [sk (t)] = Sk (u, α) (13)

Thus Z k1 (u, α)’s peak value is

Z k1
(
û1,k , α̂1,k

)
= Sk

(
û1,k , α̂1,k

)
= T

√
1− j cot α̂1,k

2π
exp

(
jπ û21,k cot α̂1,k

)
(14)

and the peak position coordinate is
(
α̂1,k , û1,k

)
, which can be

expressed as {
α̂1,k = −arc cot (µk)
û1,k = f0/csc α̂k

(15)

In view of (14), (12) can be further simplified as

Z km
(
ûk , α̂k

)
= Sk

(
û1,k , α̂1,k

)
· exp

(
−j2π û1,kτmk sin α̂1,k

)
· exp

(
jπτ 2mk sin α̂1,k cos α̂1,k

)
(16)

In (16), the item of exp
(
jπτ 2mk sin α̂1,k cos α̂1,k

)
can be

ignored thanks to τ 2mk is so small. As a result, we can obtain
(16)’s further simplification

Z km
(
ûk , α̂k

)
= Sk

(
û1,k , α̂1,k

)
· exp

(
−j2π û1,kτmk sin α̂1,k

)
(17)

Then we can substitute (17) into (7) and obtain

Rm
(
ûk , α̂k

)
=

K∑
k=1

Sk
(
û1,k , α̂1,k

)
· exp

(
−j2π û1,kτmk sin α̂1,k

)
+Nm

(
ûk , α̂k

)
(18)
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where Rm
(
ûk , α̂k

)
is a certain peak value of the received

signal’s FRFT transform the mth sensor. By integrating all
sensors’ received signals together, (18) can be expressed with
a matrix form as

R
(
ûk , α̂k

)
= B (θ)S

(
û1,k , α̂1,k

)
+ N

(
ûk , α̂k

)
(19)

where R
(
ûk , α̂k

)
is the corresponding peak-value vector of

the received signal and N
(
ûk , α̂k

)
is the noise vector after

FRFT transform. B (θ) = [b (θ1) , · · · , b (θK )] is the array
manifold matrix, and in which b (θk) is the kth LFM signal’s
steering vector with the expression

b (θk) =


exp

(
−j2πτ1k û1,k sin α̂1,k

)
exp

(
−j2πτ2k û1,k sin α̂1,k

)
...

exp
(
−j2πτMk û1,k sin α̂1,k

)
 (20)

where for the ULA arrays, τmk = (m− 1) d sin (θk)/c.
In view of (20), unlike (6) in time domain, the steering

vector in FRFT domain does not vary along with time t.
As a result, we can apply the traditional narrowband DOA
estimation methods to the DOA estimation model obtained
from (19) in the FRFT domain. In other words, applying
FRFT transform to the wideband LFM signals will make the
DOA estimation model of wideband LFM signals transform
into a similar estimation model of narrowband signals.

III. OFF-GRID DOA MODEL BASED ON FRFT DOMAIN
A. SPARSE DOA MODEL BASED ON FRFT DOMAIN
Combined with the above analysis, a sparse representation
model based on FRFT domain (FDSM) of DOA estimation
will be obtained by deriving the DOA estimation model in
FRFT domain from (19).

Firstly, divide the whole angle space evenly into L parts
(L � K ), so that we can obtained the discretized sampling
grid set 2 ,

{
θ̄1, θ̄2, · · · , θ̄L

}
. In view of (20), a redundant

dictionary can be generated as (21), which consists of an over-
complete steering vector set corresponding to the angle 2.

9 (2) =
{
b
(
θ̄1
)
, b
(
θ̄2
)
, · · · , b

(
θ̄L
)}

(21)

For convenience, we can define the sparse vector H ,
{h1, h2, · · · , hL} as the signal amplitude values correspond-
ing to all potential directions 2. The element hi is not zero
when there is a signal from the angle θ̄i, and its value is equal
to the corresponding peak value after the FRFT transform.
The element hi is equal to 0 when there is no signal from the
potential incident direction, that is

hi =

{
Sk
(
û1,k , α̂1,k

)
, θ̄i ∈ {θ1, θ2, · · · , θK }

0, θ̄i /∈ {θ1, θ2, · · · , θK }
(22)

Therefore, the sparse representation model based on FRFT
domain of DOA estimation can be obtained as

R = 9 (2)H + N (23)

where R and N are the received signal peak-value vector and
the noise vector after the FRFT transform on all the sensors.

B. OFFGRID DOA MODEL BASED ON FRFT DOMAIN
Consider the true DOA angles cannot be right the elements
in set 2. An off-grid model is proposed in [21]. Suppose for
some DOAs, they are not right on the discretized sampling
grid, i.e., θk /∈

{
θ̄1, θ̄2, · · · , θ̄L

}
for some k ∈ {1, 2, · · · ,K }.

Note the nearest grid point to θk as θ̄lk , lk ∈ {1, 2, · · · ,L}.
Therefore the first-order linear approximation for the steering
vector b (θk) can be written as

b (θk) = b
(
θ̄lk
)
+ d

(
θ̄lk
) (
θk − θ̄lk

)
(24)

where d
(
θ̄lk
)
= b′

(
θ̄lk
)
.

According to the formula (20),

d
(
θ̄lk
)
=
(
j2π ûk sin α̂kp sin

(
θ̄lk
)
/c
)
� b

(
θ̄lk
)

(25)

where ‘‘�’’ denotes the element wise Hadamard product. p =
[0, d, 2d, · · · , (M − 1) d]T , d is the sensor spacing.
For convenience, define a redundant derivative matrix D

and its each column is the derivative d
(
θ̄i
)
of the grid angle θ̄i,

i.e.,D =
{
d
(
θ̄1
)
, · · · , d

(
θ̄L
)}
. θk− θ̄lk is the deviation of the

true DOA and the most closed grid, expressed as1. Define a
deviation vector 0 = [11, · · · ,1L]T to satisfy{

1l = θk − θ̄lk , if l = lk , k ∈ {1, . . . ,K }

1l = 0, others
(26)

Therefore, under the grid mismatch conditions the off-grid
DOA estimation model can be formulated as

R = [9 + D5]H + N (27)

where R =
[
R0
(
û, α̂

)
, · · · ,RM−1

(
û, α̂

)]T and N =[
N0
(
û, α̂

)
, · · · ,NM−1

(
û, α̂

)]T are the single snapshot data
vectors and the noise vectors consisting of the peaks after
FRFT-transform of received signals and noise on all array
sensors, respectively. 5 = diag (0) is a diagonal matrix
consisting of angular deviations.

IV. OFF-GRID DOA ESTIMATION ALGORITHM BASED
ON ALTERNATING DESCENDING ITERATION
For the modified fractional domain sparse model (MFDSM)
of (27), under the condition that both the variableH and0 are
unknown, the optimal solution can be solved by the following
problems

min
H,0
‖R− [9 + D5]H‖22 + λ ‖H‖1 + ‖0‖

2
2 (28)

The problem of (28) is a non-convex problem, thus it
cannot be solved by the methods of convex optimization,
moreover, the optimization problem contains two unknown
variable vectors, therefore it is so difficult to solve directly.

Here we seek a sub-optimal method, which uses the idea
of alternating descending iteration. In the optimization a vari-
able is fixed, which the original optimization problem would
be transformed into the sub problem of another variable,
thus the non-convex problem is also relaxed into a convex
problem. The convex problem is solved, and then the final
solution is obtained by alternating descending iterations.
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TABLE 1. MFDSM-OGDEADI algotithm steps.

To do this, firstly we can look for a solution to the regular-
ized least squares by keeping the unknown vector 0 fixed and
solve for H . Therefore, at the kth iteration of the algorithm
we need to solve the sparse recovery problem:

min
H

∥∥∥R− [9 + D5(n)
]
H
∥∥∥2
2
+ λ ‖H‖1 (29)

The sparse problem (29) can be solved by l1-norm minimiza-
tion or alternatively by greedy approaches such as SOMP.

Once H has been updated, we minimize over 0 keeping
the current estimate of H fixed. In this case, the problem of
(28) reduces to:

min
0
‖R− [9 + D5]H‖22 + ‖0‖

2
2 (30)

The optimal solution of the problem (30) can be solved
by deriving the cost function equal to zero. At the same
time, the problem (30) can be proven to have a closed form
solution and is equivalent to the following Least Square (LS)
problem [30]:

R−9H = D5H (31)

According to the property of the diagonal matrix, there is
D5H = DH̄0, where H̄ , diag (h1, h2, · · · , hL). There-
fore, (31) can be further reduced to

R−9H = DH̄0 (32)

Therefore, the least squares solution of a variable 0 can be
expressed as

0∗ =
(
DH̄

)†
(R−9H) =

(
DH̄

)†
E (33)

where ‘‘†’’ denotes the pseudo-inverse and E , R − 9H is
the residual signal.

Therefore, based on MFDSM model, the off-grid DOA
estimation by alternating descent iteration (MFDSM-
OGDEADI) can be obtained and it can solve the optimal
solution of (27). Then we can summarize the procedure flow
of the MFDSM-OGDEADI algorithm in Tab. 1 below.

Through the above iterative algorithm, the sparse solution
Ĥ can be solved and then the spatial spectrum is constructed
by

P (θ) =
∣∣∣Ĥ∣∣∣/max

{∣∣∣Ĥ∣∣∣} (34)

The peaks of spatial spectrum are searched to obtain the grid
angles closest to the incident angles

θ̄lk = argmax
θ

P (θ) (35)

then the angular deviation vector 0̂ is corrected and the
off-grid DOA estimation θk = θ̄lk +1lk can be obtain.

V. SIMULATION RESULTS AND ANALYSIS
In this section, a lot of simulation experiments are performed
to prove the performance improvement of our proposed
MFDSM-OGDEADI algorithm compared to the state-of-the-
art algorithms. In the simulation below, a standard ULA array
with 8 sensors is adopted. The array sensor spacing is set as
the half wavelength of the LFM signal’s highest frequency.
The grid size is set to 2◦ as a default.

A. SPATIAL SPECTRUM COMPARISON
Consider three wideband LFM signals and their energy dis-
tribution in the fractional domain is shown in Fig. 1. Fig. 1(a)
and Fig. 1(b) are the case of incoherent and coherent LFM
signals, respectively. The incident signal angles are the same
in both cases, 81.215◦, 75.372◦ and 109.581◦, respectively.
It can be seen that the three incoherent LFM signals are
separable in the fractional domain, thus we can extract three
peak-values of three LFM signals and then perform the
DOA estimation for each peak-value separately, however,
the three coherent LFM signals are inseparable in the frac-
tional domain, thus we can only extract one peak-value and
then perform the DOA estimation only once to estimate three
signal angles.

Fig. 2 shows different DOA estimation algorithms’ spa-
tial spectrum (enlarged view) for the first LFM signal in
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FIGURE 1. LFM signal energy distribution in the fractional domain.
(a) Incoherent signal case. (b) Coherent signal case.

FIGURE 2. Spatial spectrum comparison (for the first LFM signal).

TABLE 2. Comparison of simulation results (unit: degree).

incoherent signal case, where the sampling points is 2500 in
time domain, whereas the snapshot is 1 in fractional domain.
The SNR is set to 0dB. In the simulation, ‘‘On Grid’’ is
obtained by the FRFT-BPDN algorithm with grid mesh-
ing, whereas the FRFT-BPDN, FRFT-OGSBI and FRFT-
SOMP-LS algorithm are obtained by performing FRFT trans-
form on the received data and then estimating DOAs using
BPDN [32], OGSBI [21] and SOMP-LS [23] algorithm
respectively.

For a better comparison, Table 2 gives the detailed estima-
tion results of the different algorithms for the three incoherent
LFM signals.

Seen from Fig. 2 and Table 2, when the grid size is large,
the DOA estimation algorithm using On Grid has a large
deviation from the true DOA angle, whereas the algorithms
using grid mismatch (FRFT-OGSBI, FRFT-SOMP-LS and
our proposed algorithm) can compensate the deviation appro-
priately. Under the same conditions, the compensation effect
of the proposed algorithm is better. For incoherent wideband
LFM signals, their DOA estimation is relatively easy, since
they are almost separable in the fractional domain. How-
ever, it is more difficult for coherent wideband LFM signal’s

DOA estimation, because they are almost inseparable in the
fractional domain, only single snapshot data can be used for
DOA estimation, which results in a decrease in estimated
performance. Therefore, the following discussion in the paper
focuses on coherent wideband LFM signal’s off-grid DOA
estimation performance.

B. ANALYSIS IN TERMS OF SNR
This subsection intends to present a detailed performance
analysis on the aforementioned algorithms to illustrate the
superiority of our methods. The root mean square error
(RMSE) is used for DOA estimation precision evaluation.

FIGURE 3. DOA estimation performances versus SNRs (in large angle
difference condition). (a) Estimated RMSE. (b) Successful probability of
estimation.

Fig. 3 and Fig. 4 show the relationship between DOA
estimation performance and signal-to-noise ratio for differ-
ent DOA estimation algorithms under large angle difference
condition and small angle difference condition respectively.
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FIGURE 4. DOA estimation performances versus SNRs (in small angle
difference condition). (a) Estimated RMSE. (b) Successful probability of
estimation.

Fig. 3 is a case where the angle difference is larger than
the array beamwidth (for M = 8, the beamwidth is 16.4◦),
whereas Fig. 4 is a case where the angle difference is
smaller than the array beamwidth. In the simulation, the
classic RSS-L1SVD [33] algorithm uses an ideal DOA
pre-estimation.

As can be seen from Fig. 3 and Fig. 4, MFDSM-
OGDEADI algorithm can provide the best estimation perfor-
mance regardless of large or small angle difference. Among
the algorithms, RSS-L1SVD and FRFT-BPDN are based on
grid meshing, except that the former performs frequency
domain DOA estimation and the latter performs fractional
domain DOA estimation. Relatively speaking, FRFT-BPDN
algorithm has better performance, but since the true DOA of
the signal does not fall on the grid, its performance will not
decrease as SNR increase when the SNR is greater than 5dB.
For the other three algorithms based on grid mismatch

(FRFT-OGSBI, FRFT-SOMP-LS andMFDSM-OGDEADI),
the FRFT-OGSBI algorithm is sensitive to noise and results
in poor performance at low SNR, while FRFT-SOMP-LS the
algorithm adopts the simple OMP algorithm as the sparse
recovery algorithm, and its estimation accuracy is not as good
as the ReFOCUSS algorithm used in this paper. Therefore,
the proposed algorithm can provide better estimation perfor-
mance than the other two algorithms.

FIGURE 5. DOA estimation performances versus angel differences of
signals. (a) Estimated RMSE. (b) Successful probability of estimation.

C. ANALYSIS IN TERMS OF ANGLE DIFFERENCE
We evaluate different DOA algorithms’ angular resolution
performance in this subsection. The statistical results for the
coherent wideband LFM signals are shown in Fig. 5. Also,
the relationship between DOA estimation error and success-
ful resolution probability and the angle difference between
signals in different coherent wideband LFM signals’ estima-
tion algorithms are demonstrated in Fig. 5. In the simulation,
it is assumed that the DOA angle of the first signal is fixed

18506 VOLUME 7, 2019



X. Wang et al.: Off-Grid DOA Estimation for Wideband LFM signals in FRFT Domain Using the Sensor Arrays

as θ1 and the DOA angle of the second signal is set to θ2 =
θ1 + 1θ , where 1θ is the angular difference. In addition,
the SNR is set to 0dB and the classic RSS-L1SVD algorithm
still uses ideal DOA pre-estimation.

From Fig. 5, we can see that the estimation errors of
all algorithms decrease as the angle difference increases.
However, for the RSS-L1SVD and FRFT-BPDN algorithms
based on meshing, due to the difference between the grid
and the true angle, the estimation error will not drop sharply
as angle difference increase after the angle difference is
greater than a certain degree. For the other three algorithms
based on mesh mismatch, the FRFT-SOMP-LS algorithm
has poor angular resolution due to the OMP algorithm. The
FRFT-OGSBI algorithm provides better performance than
FRFT-SOMP-LS in terms of successful resolution probability
when the angle difference is less than 20◦. When the angle
difference is larger than 20◦, their resolution probability can
reach 100%, whereas the estimation error of FRFT-OGSBI
algorithm is slightly inferior to FRFT-SOMP-LS algorithm.
The MFDSM-OGDEADI algorithm is superior to other algo-
rithms in both estimation error and successful resolution
probability.

FIGURE 6. DOA estimation RMSE versus grid size.

D. ANALYSIS IN TERMS OF GRID SIZE
This subsection presents the DOA estimation performance
under different grid size. In Fig. 6, the statistical results for the
coherent wideband LFM signals are shown. In the simulation,
it is the same as above that the coherent wideband LFM
signal’s basic setting, in which the two adjacent wideband sig-
nals from [78.651◦, 122.384◦] impinge onto the array simul-
taneously and the SNR is set to 0dB. In addition, RSS-L1SVD
algorithm still uses the ideal DOA pre-estimation.

As can be seen from Fig. 6, the estimation errors of
RSS-L1SVD and FRFT-BPDN algorithms increase with the
increase of the grid size, since they are based on the grid
meshing, the bigger grid sizes will bring the greater devia-
tions from the true angles. The FRFT-SOMP-LS algorithms
based on the grid mismatching compensates for this deviation

and makes its estimation error smaller, but the increase in
the grid size will still increase the estimation error. How-
ever, the FRFT-OGSBI and MFDSM-OGDEADI algorithms
are basically unaffected by the grid size, but the MFDSM-
OGDEADI algorithm is superior in terms of estimation error.

E. ANALYSIS IN TERMS OF THE ANGLE BIAS BETWEEN
THE GRID AND THE TRUE ANGLE
This subsection presents the DOA estimation performance
under different angular bias, as shown in Fig. 7. In the simu-
lation, the SNR is set to 0 dB and the grid size is set to 2◦.
In addition, the RSS-L1SVD algorithm still uses the ideal
DOA pre-estimation.

FIGURE 7. DOA estimation RMSE versus angle bias.

As can be seen in Fig. 7, the estimation errors basically
exhibit a symmetric distribution centered on 0, that is, the esti-
mation error is independent of the positive or negative angle
bias, and is only related to its absolute value. At the same
time, it can be seen that the sensitivity of different algorithms
to angular bias is slightly different. For FRFT-OGSBI and
FRFT-SOMP-LS algorithms, their estimation errors change
faster as the angular bias increases, indicating that they
are more sensitive to angular bias. Whereas for the other
three algorithms, their estimation error is relatively flat with
the increase of the angular bias, so the sensitivity is weak.
However, from the perspective of estimated error, MFDSM-
OGDEADI algorithm can provide better performance.

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, the problem of wideband LFM signal’s DOA
estimation in the off-grid scenario has been studied, which is
very common in reality. Making use of LFM signal’s char-
acteristics with high aggregation in the fractional domain,
the conventional DOA estimation model is modified and a
modified fractional domain sparse model is derived. Based
on this model, a novel off-grid DOA estimation method using
alternating descent iteration is proposed. And a large number
of simulations are make and compared to existing classical
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methods to verify the effectiveness of the proposed algorithm.
The simulation results show that our proposed method can
provide better estimation performance.

In the future works, we will further consider more general
wideband signals for the problems of off-grid DOA esti-
mation. In addition, the higher precision and more efficient
algorithms will also be studied.
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