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ABSTRACT Focusing on industrial processes under uncertainties and partial actuator faults, a new robust
constrained model predictive control (MPC) strategy is developed. To enhance the corresponding control
performance, a new state-space model in which an extended state vector is constructed by combining the
state variables and the tracking error is introduced for the proposed MPC algorithm. As a consequence,
there are extra degrees of freedom for the subsequent controller design by adjusting the output tracking error
and the state variables separately, and the enhanced control performance is anticipated. Note that the state
variables cannot be tuned in the robust MPC design that utilizes the traditional state space model so that its
control performance may be limited because of the restricted degrees of freedom. Finally, the validity of the
proposed robust MPC strategy is evaluated on the injection velocity control under uncertainties and partial
actuator failures.

INDEX TERMS Industrial process, partial actuator fault, robust MPC, extended state space model.

I. INTRODUCTION
As a vital role in manufacturing various high-value prod-
ucts, industrial chemical processes exist widely in industries.
In order to meet the increasing demands, both the control
theory and applications of such processes have gained lots of
progresses in the past decades [1], [2]. It is known that the sys-
tem performance may be deteriorated greatly under all kinds
of disadvantages in practice, such asmodel/plantmismatches,
disturbances, actuator faults, etc [3]. Moreover, the existing
approaches may hardly satisfy higher control demands [4].
Based on such backgrounds, it is of necessity to research
improved control approaches for industrial processes further.

Actuators are the essential part in control systems, and they
implement the control signals calculated by controllers and
ensure the normal operation of industrial processes [5]. How-
ever, actuator failures are common in industrial processes,
which are caused by some physical damages. Under such situ-
ations, the system performance will be affected significantly
because the controller output cannot be implemented accu-
rately by the actuator [6]. Generally speaking, there are three
common actuator failures, that is, actuator outage, actuator
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stuck and partial actuator fault [7]. It is worth mentioning that
the industrial chemical process systems under actuator out-
age and actuator stuck is uncontrollable, so that the relevant
studies may be meaningless [8]. In this paper, we focus on
industrial processes in which partial actuator failures occur.

To cope with the module fault in controlled processes,
fault-tolerant control (FTC) approaches, whose goal is to
maintain the system performance against module failures,
have been studied to a great extent, and there are many
representative results for industrial processes under partial
actuator failures [9]. On the basis of fuzzy iterative learning
control strategy, a fault-tolerant guaranteed cost controller
was investigated for nonlinear batch processes with distur-
bances and actuator faults in [10]. Concentrating on the
regulation of a value-actuated quadruple-tank process with
actuator failures, Arici and Kara [11] developed a modified
adaptive fault compensation controller. In [12], the problem
of fault compensation and diagnosis was studied for a discrete
time systems that have time-varying state delays. Focusing
on actuator faults and inevitable time delays in the batch
process, an improved robust iterative learning FTC method
was proposed by Shen et al. [13]. By using the repetitive
process setting, an improved fault-tolerant iterative learning
control approach was presented in [14].
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As another important branch for dealing with industrial
processes with actuator faults and various uncertainties,
the developments of iterative learning control (ILC) algo-
rithm are also great [15]. It is the fact that repetitive char-
acteristics exist in the operation of chemical batch processes,
which facilitates the progress of ILC strategies. Note that pure
ILC scheme is feedforward control that is unable to handle
the unknown disturbance and other uncertainties, so that
feedback control approaches are employed to combine with
ILC normally [16]. Many researchers have addressed their
significant fruits about the control of such processes in which
uncertainties and partial actuator faults exist utilizing ILC
methods [17]. In [18], the nonlinear constrained system under
actuator failures was controlled by an improved ILC scheme.
For the uncertain discrete linear processes with polytopic
uncertainties and actuator failures, a novel ILC approach was
designed in [19]. To handle the non-linearly parameterized
systems which have actuator failures and time-varying state
delays, Ji et al. [20] developed an adaptive iterative learn-
ing reliable control scheme. In [21], an modified iterative
learning FTC strategy was put forward for networked batch
processes under external disturbances and actuator failures.
A fuzzy delay-range dependent ILC approach was presented
for nonlinear batch processes in which time-varying delays
exist by adopting T-S model in [22].

Besides these aforementioned results, many other control
algorithms have also been studied [23]–[27]. As a valid
control approach in dealing with systems with uncertainties,
MPCwith robustness has drawnmuch attention, and there are
also lots of crucial viewpoints about the application of robust
MPC schemes in industrial processes under uncertainties and
partial actuator failures [28]. As to the constrained batch
processes with model uncertainty, an enhanced robust MPC
approach was developed based on the reverse-time reacha-
bility region in [29]. Zhang et al. [30] presented a system-
atic min-max MPC method to control the batch processes
under unknown disturbances and partial actuator uncertainty.
On the basis of the multi-stage economic nonlinear MPC
method, a modified robust control method was put forward
for constrained batch processes under parametric uncertain-
ties in [31]. In [32], a robust MPC method was addressed for
process supply chains.

In this paper, we concentrate on the robust MPC design for
constrained industrial processes in which partial actuator fail-
ures and uncertainties exist. To the author’s knowledge, most
state space models adopted in robust MPC are conventional,
that is, the adjustable factors in the relevant performance
index are insufficient, which implies that the corresponding
controller design may be restricted on the degree of freedom.
In order to solve this situation, an improved state space model
is formed by uniting the tracking error and the state variables
for the robust MPC approach. By utilizing the improved
state space model, there are extra degrees of freedom for
the relevant controller design through regulating tracking
error and state variables independently, so that the modified
control performance is expected. Finally, the validity of the

modified model based robust MPC strategy is verified on the
constrained injection velocity regulation process with model
uncertainty and partial actuator faults.

II. PROBLEM FORMULATION
We consider the following singe-input single-output (SISO)
time-varying industrial system.

x(k + 1) = A(k)x(k)+ B(k)u(k)

y(k + 1) = Cx(k + 1) (1)

where x(k), u(k), y(k) are process state, input and out-
put. A(k),B(k),C are the corresponding parameter matri-
ces. Suppose that [A(k) |B(k) ] ∈ �, � is the polytope
Co{[A1 |B1 ], · · · , [AL |BL ]} and Co represents collection.
In other words, there are L nonnegative factors υl(k)(l =
1, 2, · · · ,L) which satisfy the following equations

L∑
l=1

υl(k) = 1, [A(k) |B(k) ] =
L∑
l=1

υl(k)[Al |Bl ] (2)

Under partial actuator fault, the details are described as
follows.

uF (k) = αu(k) (3)

where uF (k) is the practical actuator movement. α denotes
the degree of the actuator failure. Note that

0 < α ≤ 1 (4)

Remark 1: From (4), we can easily see that α = 1 rep-
resents the normal case in which no actuator failures occur.
0 < α < 1 corresponds to cases with partial actuator fault.
Further, the process in which partial actuator faults exist

can be expressed as follows.

x(k + 1) = A(k)x(k)+ B(k)uF (k)

y(k + 1) = Cx(k + 1) (5)

For the industrial system shown in (5), the goal of the
relevant robust MPC design is tracking the reference value as
close as possible, meanwhile, maintaining the desired system
performance under uncertainties and partial actuator faults.

III. CONVENTIONAL ROBUST MPC
As to the model shown in (1), it can be rewritten as the
following equation using the difference operator 1

1x(k + 1) = A(k)1x(k)+ B(k)1u(k)

1y(k + 1) = C1x(k + 1) (6)

where1x(k) = x(k)− x(k−1), and the similar formulas can
be obtained for 1u(k) and 1y(k).
By constructing a new state as xm(k) = [1x(k), y(k)]T ,

the model in (6) can be converted into

xm(k + 1) = Am(k)xm(k)+ Bm(k)1u(k)

y(k + 1) = Cmxm(k + 1) (7)
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where

Am(k) =
[
A(k) 0
CA(k) 1

]
; Bm(k) =

[
B(k)
CB(k)

]
;

Cm =
[
0 1

]
In Am(k) and Cm, 0 is the appropriate zero vector.
The following objective function aiming at tracking the

reference trajectory is selected for the traditional approach.

min
1u(k+i|k )

max
[A(k+i)|B(k+i) ]∈�

J∞(k)

=

∞∑
i=0

[(y(k + i |k )− yr (k + i))TQ(y(k + i |k )− yr (k + i))

+1u(k + i |k )TR1u(k + i |k )] (8)

subject to {
|1u(k + i |k )| ≤ 1umax

|1y(k + i |k )| ≤ 1ymax

where yr (k + i) is the reference trajectory. Q is the weighting
matrix for the output tracking error, and R is the weighting
matrix for the control input increment. Here,Q> 0 andR> 0.
y(k + i |k ),1u(k + i |k ) are the output prediction and the
input increment prediction, respectively. 1umax and 1ymax
are upper limits for input increments and output increments.

To obtain the optimal control law, some transformations
are needed to be done for the cost function in (8). Note that
CmT = I is satisfiable for a given matrix Cmwith full rank,
where I is a proper unit matrix. By letting T = CT

m (CmC
T
m )
−1

and xr (k) = Tyr (k), the performance index in (8) is trans-
formed as

min
1u(k+i)

max
[A(k+i)|B(k+i) ]∈�

J∞(k)

=

∞∑
i=0

[(xm(k + i |k )− xr (k + i))TQ′(xm(k + i |k )

−xr (k + i))+1u(k + i |k )TR1u(k + i |k )] (9)

subject to {
|1u(k + i |k )| ≤ 1umax

|1y(k + i |k )| ≤ 1ymax

where Q′ = CT
mQCm. xm(k + i |k ) is the state prediction for

time instant k + i made at time instant k .
By solving the optimization problem in (9), the relevant

optimal control law is derived, and the related details can be
referred in [33].

IV. PROPOSED ROBUST MPC
A. EXTENDED STATE SPACE MODEL
Here, the formula in (6) can be acquired from the model in (1)
via combining the difference operator 1 at first.

Denote yr (k) as the reference value, we can obtain the
tracking error as

e(k) = y(k)− yr (k) (10)

FIGURE 1. Sketch map of the injection molding machine.

FIGURE 2. The corresponding workflow. (a) Filling stage.
(b) Packing/holding stage. (c) Cooling stage. (d) Plastication stage.

On the basis of the difference model in (6) and (10), we can
derive the following prediction for tracking error further.

e(k + 1) = e(k)+ CA(k)1x(k)+ CB(k)1u(k) (11)

To gain the improved state space model, the following
extended state vector is chosen.

z(k) =
[
1x(k)
e(k)

]
(12)

then we can acquire the corresponding extended state space
model as

z(k + 1) = Az(k)z(k)+ Bz(k)1u(k)

1y(k + 1) = Czz(k + 1) (13)

where

Az(k) =
[
A(k) 0
CA(k) 1

]
; Bz(k) =

[
B(k)
CB(k)

]
;

Cz =
[
C 0

]
0 in Az(k) is an appropriate zero vector.
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FIGURE 3. Responses under case 1. (a) Injection velocity. (b) Proportional valve increment. (c) Proportional valve. (d) Tracking error.

Refer to (2), [Az(k) |Bz(k) ] also can be cast into the follow-
ing polytopic description. Here �z is the relevant polytope
and Co denotes the collection.

[Az(k) |Bz(k) ] ∈ �z = Co{[Az1 |Bz1 ], · · · , [AzL |BzL ]}

(14)

[Az(k) |Bz(k) ] =
L∑
l=1

ϑl(k)[Azl |Bzl ],
L∑
l=1

ϑl(k) = 1

ϑl(k) ≥ 0 (15)

B. CONTROLLER DESIGN
The following objective function is adopted for the proposed
robust MPC method to track the reference value.

min
1u(k+i|k )

max
[Az(k+i)|Bz(k+i) ]∈�z

J∞(k)

=

∞∑
i=0

[z(k + i |k )TQz(k + i |k )

+1u(k + i |k )TR1u(k + i |k )] (16)

subject to {
|1u(k + i |k )| ≤ 1umax

|1y(k + i |k )| ≤ 1ymax

where Q, R are the weighting matrices for the extended state
variables and the control input increment. z(k + i |k ) is the
state prediction, and 1u(k + i |k ) is input increment predic-
tion.1umax,1ymax are upper limits for input increments and
output increments.
Remark 2: By utilizing the improved model in (13), both

the output tracking error and the state variables can be tuned
in (16) separately because the state contains such variables,
so that extra degrees of freedom are acquired for the proposed
robust MPC design.
Remark 3: Note that the additional state variables are

adjustable in (16), as a consequence, the dynamics changes
are considered in the proposed robust MPC strategy and the
modified control performance is expected.

To minimize the performance index in (16), we employ the
following state feedback law

1u(k + i |k ) = F(k)z(k + i |k ) (17)
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FIGURE 4. Responses under case 2. (a) Injection velocity. (b) Proportional valve increment. (c) Proportional valve. (d) Tracking error.

Define V (z) = zTP(k)z, P(k) > 0. And assume that the
following robust stability constraint is satisfied for arbitrary
[Az(k + i) |Bz(k + i) ] ∈ �z.

V (z(k + i+ 1 |k ))− V (z(k + i |k ))

≤ −[z(k + i |k )TQz(k + i |k )

+1u(k + i |k )TR1u(k + i |k )] (18)

Through summing (18) from i = 0 to ∞, we can
derive the following formula by demanding z(∞|k ) = 0 or
V (z(∞|k )) = 0.

max
[Az(k+i)|Bz(k+i) ]∈�z

J∞(k) ≤ V (z(k)) ≤ γ (19)

where γ is the upper limit of J∞(k).
Further, the corresponding linear matrix inequali-

ties (LMIs) can be obtained for the inequalities in (19).[
1 z(k)T

z(k) S

]
≥ 0, S > 0 (20)

where S = γP(k)−1.

Based on (13), (17) and the form of V (z), the inequality
in (18) can be converted into

z(k + i |k )T [(Az(k)+ Bz(k)F(k))TP(k)(Az(k)+ Bz(k)F(k))

−P(k)+ F(k)TRF(k)+ Q]z(k + i |k ) ≤ 0 (21)

It is obvious that (21) will be satisfied if the following
inequality is tenable for any [Az(k + i) |Bz(k + i) ] ∈ �z.

[(Az(k)+ Bz(k)F(k))TP(k)(Az(k)+ Bz(k)F(k))

−P(k)+ F(k)TRF(k)+ Q] ≤ 0 (22)

Denote Y = F(k)S and note P(k) = γ S−1, then the formula
in (22) is equivalent to the following LMI

S SATzl + Y
TBTzl SQ1/2 Y TR1/2

AzlS + BzlY S 0 0
Q1/2S 0 γ I 0
R1/2Y 0 0 γ I

 ≥ 0

l = 1, 2, · · · ,L (23)

where I is the appropriate unit matrix.
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FIGURE 5. Responses under case 3. (a) Injection velocity. (b) Proportional valve increment. (c) Proportional valve. (d) Tracking error.

As to the constraints in (16), they will be satisfied if
symmetric matrices X and Z are existing to meet the follow-
ing LMIs.[

X Y
Y T S

]
≥ 0, X ≤ 1u2max (24)[

Z Cz(AzlS + BzlY )
(AzlS + BzlY )TCT

z S

]
≥ 0

Z ≤ 1y2max, l = 1, 2, · · · ,L (25)

Here, the details for the derivation of (24) and (25) can
be seen in [34], so that the relevant contents are omitted for
brevity.

By solving LMIs in (20), (23), (24) and (25), we can obtain
S, Y , thenF(k) = YS−1 is gained. Finally, the optimal control
input increment is gained by (17).

V. CASE STUDIES
A. THE INJECTION MOLDING PROCESS
The schematic diagram and the workflow of the injection
molding machine are given in Figure 1a and Figure 2. For the

injection molding process, it is aimed at getting the needed
products by processing the plastic granules under batchmode.
Generally speaking, there are four stages in the injection
molding process: filling, packing/holding, cooling, and plas-
tication. When the process flow starts, the injection screw
generates high pressure in the filling stage, which will result
in the melt of the plastic. Then the melted plastic will be sent
to the mold cavity. Note that the cavity pressure is increased
gradually among this stage (see Figure 2(a)). when the mold
cavity is topful with the melted plastic, the packing-holding
stage will begin, then the cavity pressure will increase fast.
Meanwhile, in order to make up for the plastic shrinkage,
extra material will be added into the cavity until the gate
freezes off (see Figure 2(b)). After this, cooling and ejection
are happened for the material in cavity, which is known
as the cooling stage. Along with the material solidification,
the plastication stage also happens at the same time in the
barrel. The polymer is melted by the rotating of the screw
until enough melted polymers are obtained (see Figure 2(c)).
When the relevant material is hard enough, it will be ejected
finally (see Figure 2(d)). Then a completed work procedure
is over.
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FIGURE 6. Responses under case 4. (a) Injection velocity. (b) Proportional valve increment. (c) Proportional valve. (d) Tracking error.

As to this process, the injection velocity affects the quality
of the products greatly, and it should be regulated to track the
reference value in the filling stage.

B. SIMULATIONS
Here the proportional valve is the manipulated variable and
the injection velocity is the controlled variable, and the model
is obtained from the relevant responses [35].


x(k + 1) =

[
1.582 -0.5916
1 0

]
x(k)+

[
1
0

]
u(k)

y(k + 1) =
[
1.69 1.419

]
x(k + 1)

(26)

In this chapter, the conventional robust MPC approach
is adopted as the comparison to evaluate the control per-
formance of the proposed robust MPC method. Meanwhile,
model/plant mismatched case is generated by Monte Carlo
simulation to value the ensemble control performance further.

Here, the corresponding mismatched case is
x(k + 1) =

[
1.693 -0.6341
1.08 0

]
x(k)+

[
0.95
0

]
u(k)

y(k + 1) =
[
1.69 1.419

]
x(k + 1)

(27)

Note that the proposed robust MPC strategy will be
designed on the basis of the model in (26), and the obtained
control law will be implemented into the process in (27).

Moreover, the partial actuator faults and constraints are
considered for the simulations. Here, the constraints are
selected as {

|1u(k + i |k )| ≤ 0.5
|1y(k + i |k )| ≤ 2

(28)

and two types of partial actuator faults are adopted,
i.e., constant fault and time-varying fault. The details of the
cases are
Case 1: α = 0.6
Case 2: α = 0.4
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Case 3: α = 0.6+ 0.1 sin(k)
Case 4: α = 0.6+ 0.4 sin(k)
The corresponding form of the set-point is taken as{

yr (k) = 10, 1 ≤ k ≤ 100
yr (k) = 20, 101 ≤ k ≤ 200

(29)

and two robust MPC schemes utilize the control parameters
which are shown in Table 1.

TABLE 1. The detailed control parameters.

Figures 3∼6 show entire responses for all cases. On the
whole, the proposed robust MPC method shows more supe-
rior ensemble control performance. From Figure 3, we can
readily see that the overshoot and oscillations in the conven-
tional approach are bigger than those of the proposed strategy.
The proposed method provides smoother responses, and the
tracking errors are smaller, which proves that the proposed
robust MPC offers modified control performance farther.
In Figures 4∼6, the conditions are analogous to those of
case 1. The responses of the proposed strategy are smoother
with smaller overshoot and oscillations, which implies that
the extra weightings on the state variables restrict the drastic
change of system dynamics. Meanwhile, smaller tracking
errors are also obtained for the proposed method under cases
2∼4, which also verifies the validity of the proposed approach
further.

VI. CONCLUSION
An extended state spacemodel based robust constrainedMPC
approach is presented for industrial processes under uncer-
tainties and partial actuator failures in this article. By adopt-
ing such improved state space model, additional degrees of
freedom are acquired in the design of corresponding MPC
method, and modified control performance is divinable. The
validity of the proposed robust MPC scheme is verified on
the injection molding system with uncertainties and partial
actuator failures.
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