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ABSTRACT With the rapid development of smart health, the health sensors and wearable devices bring
huge amounts of small files of spatiotemporal data, which are distributed in different servers, and affect the
I/O performance of the system seriously. There are many methods to solve the problems of a small file, but
most of them are applied to specific applications. However, due to the influence of user access behavior
and data type, these methods are not effective when applied to sensors data in smart health. In this paper,
a novel small file merging strategy for smart health is proposed. By analyzing the features of health sensors
data and the preferences of user access, the strategy uses spatiotemporal clustering for the historical user
access information. Then, weights are applied to these clusters based on the access density to determine
the access-related spatiotemporal range. Finally, the spatiotemporal range is used to merge small files. The
experimental results show that the merging strategy is simple but efficient, and it can effectively reduce user
access delay for small files of spatiotemporal data in smart health.

INDEX TERMS Smart health, small file merging, spatiotemporal data, spatiotemporal clustering.

I. INTRODUCTION
Among recent advancements in technology, cloud comput-
ing, the internet of things and wearables are widely applied
in a smart health. As a result, massive spatiotemporal data
with three basic attributes, location, time, and type, will
be produced, and distributed stored on different servers,
such as health sensors data, inspection information sys-
tem (LIS) data, medical image data, electronic medical/health
record (EMR/EHR) data. Such data are usually characterized
by small size, wide variety, large amount, high redundancy,
and dynamic growth over time, and are typically small files
of spatiotemporal data [1], [2].

Research shows that in application services containing
large amounts of small files, users’ requests for access to
small files account for more than 90% of the total number
of requests, but the data they request is less than 10% of the
total amount of data. The I/O performance of the system is
severely restricted by the large number of small files [3].

However, nowadays the mainstream of distributed file
system (Figure 1), such as Hadoop Distributed File Sys-
tem (HDFS), are suitable for large files in metadata
management, data layout, cache management and other

FIGURE 1. Distributed file system and access mechanism.

implementation strategies. All of them are focused on stor-
age and access to a large amount of data stream, improving
system throughput rather than response time. There are three
main reasons for this phenomenon. (1) High memory usage
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in metadata server (MDS): each small file in MDS is repre-
sented as an object and stored in memory, large amounts of
small files occupy MDS memory. (2) Frequent Client-MDS
communication: when Client read or write each small file,
it must to establish a communication connection with MDS
to acquire metadata information, which consumes the limited
communication bandwidth of the system. (3) Cross node
transmission of files: when an application needs to access a
large number of small files, it normally causes lots of seeks,
and lots of hopping from data storage server (DSS) to DSS to
retrieve each small file.

Scholars have put forward many solutions to the problem
of small files. Among them, small file merging, as a micro
data layout mechanism, is widely used because of its high
flexibility and excellent performance. But most of the exist-
ing merging strategies are targeted at particular application
scenario and data, such as tile data in WebGIS, PPT files
in educational websites, electronic health records (EHR) in
healthcare, etc. However, due to the impact of user access
preferences and data characteristics, these methods are not
effective when applied to small files of health sensors data in
smart health. In fact, there is no general method of merging,
the merge strategy must match the application to improve the
system performance [4].

In this paper, we propose a merging strategy for small
files of spatiotemporal data in smart health based on spa-
tiotemporal related of user access. The merge strategy first
parameterizes the user access information, extracts the spa-
tiotemporal attributes, and uses spatiotemporal clustering
algorithm for each attribute to form a cluster. Then, calculate
the access related spatiotemporal range of each cluster based
on the density of the attribute point within the cluster. Finally,
the access related spatiotemporal range is used to merge
small files.

The rest of this paper is organized as follows: Section 2
presents the current research on the issue of handling small
files. Section 3 introduces the calculation of the access related
spatiotemporal range and its use in merging small files.
Section 4 presents and discusses the performance evaluation
results of our merging strategy. Finally, Section 5 briefly
summarizes our findings and concludes the paper.

II. RELATED WORKS
At present, there are few studies on the storage of small files
of sensor data in smart health, but many research results in
other application and other types of small files. This research
can be divided into two categories: one is changing the stor-
age and management mechanism of small files in the system,
the other is to research the merging strategy of small files.

A. CHANGING THE STORAGE AND
MANAGEMENT MECHANISM
Ma et al. [5] proposed a novel distributed file system
built over distributed tabular storage, HVFS, which uses
extendible hash to index metadata, log-structured storage for-
mat and columnar storage, and couldmanage billions of small

files and support highly concurrent accesses. However, this
method needs to change the files storage format and the index
mode, and it cannot run on the existing distributed file system.
Zhang et al. [6], [7] proposed a distributed cloud storage
system for small files based on P2P, where a central route
node is introduced to improve the resource query efficiency,
and clients can also cache the routing information. Obviously,
when the system has a large number of small files and high
concurrent user access, the central node is the system’s per-
formance bottleneck. Fu et al. [8], [9] abandoned the hierar-
chical file management model of the traditional file system
and designed a flat lightweight file system called FlatLFS
to improve the performance of the whole system. The flat
storage architecture can effectively improve the continuous
reading efficiency of files, but it is weak for file retrieval or
random reading.

Considering the layout and access features of small files
in a storage system, Zhao et al. [10] attempted to store in the
logical continuous space of physical disks as far as possible,
they use a cache to act as MDS and improved the utilization
rate of cache by using simplified file information nodes.
However, the capacity of the cache limits the number of small
files stored in the system. Elkafrawy et al. [11] present a
new structure for HDFS (HDFSX) to avoid higher memory
usage, flooding network, requests overhead and centralized
point of failure. This method can reduce the load of MDS,
but it did not consider the access related between files. There-
fore, applying this method to different application, the effect
will be very different. Bok et al. [12] optimized the access
efficiency of small files in a distributed file system from the
perspective of cache management. Their method can reduce
the volume of metadata to manage in the MDS by combining
and storing multiple small files in a block, and reduce unnec-
essary accesses by keeping the requested files using clients
and the caches of data nodes. However, this method does not
take into account the impact of user access behavior on cache
performance.

Cheng et al. [13] increased the I/O efficiency of small files
in the system by establishing a small file index and using
distributed cache. This method can effectively improve the
reading performance of files, but the construction cost and
complexity of the system are increased. In order to solve
the problem of performance degradation of search engines
owing to large-scale small file storage in original pages,
Zhang et al. [14] improved the file compression algorithm
in the EXT3 file system; Meanwhile, they design an original
page oriented file organization structure and a read-write
query tree to store the large-scale small files which need no
modification. Their method can effectively reduce the search
response time and disk space waste, but it cannot improve the
efficiency of small file access.

In general, changing the storage and management mech-
anism can solve small file problems effectively, but it needs
to rebuild the file system or add additional cache nodes on
existing file system,which increases the construction cost and
complexity of the system.
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B. SMALL FILE MERGING
Yu et al. [15] took into account the reading time, merge
time and memory occupancy of small files, and used multi-
attribute decision theory to merge small files into large files
by using a sequence file technology. However, their method
did not consider the access related between files, so they
can only merge the files which user have been accessed.
Wang et al. [16] analyzed the relationship among the access
tasks, application, and access files, and proposed a file merg-
ing and prefetching strategy based on the improved prob-
abilistic latent semantic analysis (PLSA) model for user
access tasks. This method is also unable to merge files that
users have not visited. Xiong et al. [17] proposed a merging
strategy for small files of spatiotemporal data in smart city
based on the user access rules and spatiotemporal attributes.
This method can effectively merge all small files by min-
ing user access rules to build feature templates, but it only
considers the logical state of spatiotemporal attributes when
mining user access rules. Therefore, the feature template
cannot reflect all user access rules, and reduce the merging
performance. Liu et al. [18] combined the application char-
acteristics and user access features inWebGIS, merging small
files of neighboring geographic locations (MNGL), and build
index for each file. Due to the particularity of GIS data, this
method does not apply to other types of data.

Dong et al. [19], [20] take into account the relevance
and locality of access between PPT files, merged files of
the same courseware into a large file, and implemented two
level prefetching when reading files. Because of the inherent
access dependencies between PPT files belonging to the same
courseware, this approach is not very applicable in other
scenarios. Zhang and Rui [21] considered the related between
small files and the directory structure of data, merging small
files, and generated a hierarchical index. This method can
effectively improve the search and sequential read perfor-
mance of small files, but cannot meet other forms of access
requirements. Gao et al. [22] propose the small file merge
strategy based on logic file name (SMSBL) to enhance small
file access performance. SMSBL improves the related of
small files in the same block of HDFS effectively based
different file system hierarchy. However, SMSBL does not
take into account the access related between files, therefore,
applying this method to different scenarios, the result is quite
different.

To solve the defect of storage of small files in health-
care, He et al. [23] proposed a method for merging of
small files based on balance of data block, called Tetris
Merge algorithm (TM). The TM will optimize the volume
distribution of the big file after merging, and effectively
reduce the data blocks of HDFS. Though TM can reduce
the memory overhead of major nodes of cluster and reduce
load to achieve high-efficiency operation of data processing,
but the efficiency of reading files is still not good enough.
Dang et al. [24] proposed a novel Hash-Based File Clustering
Scheme (HBFC) to distribute store and retrieve electronic
health records (EHR) efficiently in cloud environments.

The HBFC utilizes hashing to distribute files into clusters
in a control way and it utilizes P2P structures for data man-
agement. Experimental results show that HBFC scheme is
effective in handling big health data that comprises of a large
number of small files in various formats, and user can retrieve
and access data records efficiently. However, this method
cannot be applied to distributed file systems with master-
slave structure, such as HDFS.

From the above studies, we can observe that comparedwith
changing the storage and management mechanism, small file
merging is simple and efficient. However, it is not very well to
apply existing methods to small files of sensor data in smart
health directly, because most of them are targeted at specific
application and different data types, it can onlymerge the files
which user has been accessed, or simply use spatiotemporal
adjacent merging. But in smart health, the health sensor data
is typical spatiotemporal data and user access has obvious
spatiotemporal related.

III. SMALL FILE MERGING STRATEGY
The merging strategy mainly consists of three parts: The first
part is to explain the basic principles of small file merging
algorithm, the second part is calculate the access related spa-
tiotemporal range, and the third part is use the spatiotemporal
range to merge small files.

A. PRINCIPLE
In a smart city, users access small files of spatiotemporal data
through system predefined application services. Therefore,
compared with the normal small files, the users accesses
have obvious spatiotemporal locality and related. However,
the existing merge algorithm does not take into account
this spatiotemporal characteristic, so the merging is not very
efficient.

Obviously, if some small files belonging to a certain spa-
tiotemporal range are frequently accessed by users, these
small files have an access related. Inspired by this, we try
to mine access related small files from historical user access
information by using spatiotemporal cluster, calculate the
access related spatiotemporal range, and finally, use the
access related spatiotemporal range to merge small files.

In addition, considering the impact of user access behavior
and preferences, the access related spatiotemporal ranges of
different types of attributes of small files are also different.
Therefore, we classify each type attribute of small files based
on the historical user access information, and calculate their
access related spatiotemporal range for each attribute type.
The proposed merging algorithm in this paper includes four
steps:
Step 1: Separate the access request sequence for the

type attribute of small files from the historical user access
information.
Step 2: Using spatiotemporal cluster to cluster the small

file access request information which contain the same
type attribute, to obtain the access related spatiotemporal
range.

VOLUME 7, 2019 14801



L. Xiong et al.: Small File Merging Strategy for Spatiotemporal Data in Smart Health

Step 3:Merge small files of the same type attribute by using
the access related spatiotemporal range.
Step 4: Loop steps (1-3) until all attribute types of small

files are merged.

B. ACCESS RELATED SPATIOTEMPORAL RANGE
Assume that the set of small files of spatiotemporal data
in a smart city is F = {f1, f2, · · · , fn}. The request
sequence of historical user access of small files in a smart
city is A = (a1, a2, · · · an), where, each request ai, 1 ≤
i ≤ n corresponds to a small file of spatiotemporal
data fi, 1 ≤ i ≤ n.

According to the definition of small files of spatiotempo-
ral data, every small file contains location attribute l, time
attribute t and type attribute s. Therefore, any small file can
be represented by its three basic attributes (l, s, t). In order to
mine the access related spatiotemporal range from the user’s
access request sequences A = (a1, a2, · · · an), we parameter-
ized the representation and spatiotemporal attribute extrac-
tion for A to obtain the spatiotemporal attribute sequences,

A = (a1, a2, · · · an)

= ((l1, s1, t1) , (l2, s2, t2) , · · · , (ln, sn, tn)) (1)

Then, the access request sequence which contains the type
attribute si is,

Asi =
(
asi1 , a

si
2 , · · · , a

si
m
)

=
((
lsi1 , s

si
1 , t

si
1

)
,
(
lsi2 , s

si
2 , t

si
2

)
, · · · ,

(
lsim, s

si
m, t

si
m
))

(2)

1) LOCATION ATTRIBUTE
The essence of the spatiotemporal range of the location
attribute is to calculate the geographic space range occupied
by access related small files. Therefore, we used the spa-
tiotemporal cluster algorithm to cluster the location attributes
contained in access request sequence Asi . Then, according
to the density of the location-attribute points in each cluster,
the weighted average calculation of the spatial scope of the
clusters was conducted to obtain the average cluster radius,
which is the spatiotemporal range of the location attribute.

Agglomerative NESting (AGNES) is a agglomerative hier-
archical cluster algorithm for large-scale data sets [25], In the
clustering process, AGNES assumes each object as a cluster
and merges similar clusters. The cluster-merging process is
repeated until all the objects are eventually merged into a
cluster. Figure 2 shows the clustering schematic of data object
{a, b, c, b, d , e}.

Assume that the location attribute of small files in a smart
city is represented by two-dimensional latitude and longitude
coordinates (x, y), the set of location attributes contained in
access-request sequence Asi is,

Lsi =
{
lsi1 , l

si
2 , · · · , l

si
m
}

=
{(
xsi1 , y

si
1

)
,
(
xsi2 , y

si
2

)
, · · · ,

(
xsim, y

si
m
)}

(3)

The goal of clustering is to enlarge and compress the simi-
larities of the same and different cluster objects, respectively,

FIGURE 2. Schematic of clustering.

as much as possible. Therefore, a key problem of clustering
is how to measure the similarity between two clusters. In this
study, the group average connectivity was used to define the
similarity between two clusters by calculating the average
distance. The closer the average distance, the higher is the
cluster similarity.

Suppose cluster Cm contains a set of location-attribute
points Cm = (l1, l2, l3, · · ·), cluster Cn contains a set of
location-attribute points Cn =

(
l ′1, l
′

2, l
′

3, · · ·
)
, and the ele-

ments between the two clusters do not intersect. Then, the dis-
tance of any two location-attribute points l = (x, y) and
l ′ = (x ′, y′) is,

d
(
l, l ′

)
=

√
(x − x ′)2 + (y− y′)2 (4)

The average distance of group average connectivity
between clusters Cm and Cn is,

davg (Cm,Cn) =
1

NmNn

∑
∈Cm

∑
l′∈Cn

d
(
l, l ′

)
(5)

where Nm = card (Cm) represents the number of location-
attribute points in cluster Cm, and Nn = card (Cn) represents
the number of location-attribute point in cluster Cn.
According to the principle of the AGNES algorithm, if the

number of clusters is not specified in advance, the AGENS
will merge all the clusters until the whole object is merged
into a cluster. Obviously, if the clustering algorithm merges
all the clusters, it will not be able to find the access-related
spatiotemporal range of the location attribute from the origi-
nal location attribute coordinates. Therefore, we set average
distance λ

si
l between all coordinate point in Lsi as the termi-

nation condition of clustering,

λ
si
l =

2

N si
l

(
N si
l − 1

) ∑
l,l′∈Lsi

d
(
l, l ′

)
(6)

where location-attribute points l, l ′ ∈ Lsi , and N si
l =

card (Lsi) represents the number of location-attribute points
in the Lsi . If the average distance between clustersCsi

m andCsi
n

is davg
(
Csi
m,C

si
n
)
≥ λ

si
l , they cannot be merged into a cluster.
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When all the clusters cannot bemerged, the clustering process
ends.

Here, we describe how to use the AGNES algorithm
to cluster location-attribute sequence Lsi of access-request
sequence Asi ; the aim is to obtain the access-related spa-
tiotemporal range of the location attribute of the small file
with type attribute si. The clustering process is as follows:
Step 1: Consider every location-attribute point of location-

attribute sequence Lsi as a cluster.
Step 2: Calculate the average distance between each clus-

ter, and merge the two nearest clusters. If the average distance
between clusters Csi

m and Csi
n is the least, the clusters are

merged into new cluster Csi
k = Csi

m ∪ C
si
n .

Step 3:Loop step (2) until the average distance between the
two clusters is larger than predefined distance threshold λ

si
l ;

finally, the clustering algorithm ends.
Assuming that after the clustering, the cluster set is Csi

L ={
Csi
1 ,C

si
2 , · · · ,C

si
Kl

}
. Then, for clusters Csi

k , 1 ≤ k ≤ Kl ,
the radius of the space range is,

Rl
(
Csi
k

)
=

2
Nm (Nm − 1)

∑
l∈C

si
k

∑
l′∈C

si
k

d
(
l, l ′

)
(7)

Next, this set of clusters is used to calculate their average
space range. Obviously, a very dense location-attribute point
in a cluster implies that this space is a hot area visited by users.
Therefore, we further weighted the radius of the space range
for each cluster according to the user-access heat, that is, the
greater the density of the coordinate point in each cluster, the
greater is the value. Then, for clusters Csi

k , 1 ≤ k ≤ Kl ,
the radius of the space range weighted by the access
density is,

R̄l
(
Csi
k

)
=
M si
k

N si
l
Rl
(
Csi
k

)
(8)

where M si
k = card

(
Csi
k

)
represents the number of location-

attribute points in cluster Csi
k , N

si
l = card (Lsi) represents

the number of location-attribute point in location-attribute
sequence Lsi , and the Rl

(
Csi
k

)
represents the radius of the

space range of cluster Csi
k . Finally, the average radius of the

weighted space ranges of all clusters in setCsi
L was calculated,

and the location-attribute merging range of the small file with
type attribute si is,

RsiL =
1
Kl

Kl∑
k=1

R̄l
(
Csi
k

)
(9)

2) TIME ATTRIBUTE
The time attribute spatiotemporal range is used to calcu-
late the time interval occupied by small access related files.
Therefore, the method is the same as computing the location
attribute spatiotemporal range. The spatiotemporal clustering
algorithm is used to cluster the time attributes contained in
access request sequence Asi . Then, according to the density
of the time attribute points in each cluster, the weighted
average of the time interval of the clusters is calculated to

obtain the average cluster radius, which is the time attribute
spatiotemporal range.

Assume that the set of time attributes contained in request
sequence Asi is,

T si =
{
tsi1 , t

si
2 , · · · , t

si
m
}

(10)

The first step of clustering is to define the similarity
between clusters, where each cluster is a set of time attributes.
We define the similarity between clusters by calculating the
average time interval. The closer the average time interval,
the higher the cluster similarity.

Suppose cluster Cm contains a set of time attribute points,
Cm = (l1, l2, l3, · · ·), cluster Cn contains a set of time
attribute points, Cn =

(
l ′1, l
′

2, l
′

3, · · ·
)
, and the elements of the

two clusters do not intersect. Then, the time interval between
any time attribute points, t, t ′ ∈ T si , is,

d
(
t, t ′

)
=
∣∣t − t ′∣∣ (11)

The average time interval between clusters Cm and Cn is,

davg (Cm,Cn) =
1

NmNn

∑
t∈Cm

∑
t ′∈Cn

d
(
t, t ′

)
(12)

where Nm = card (Cm) and Nn = card (Cn) represent
the number of time attribute points in clusters Cm and Cn,
respectively.

As same as the cluster location-attribute sequence Lsi ,
wemust set a termination condition for the AGNES algorithm
to cluster time-attribute sequence T si . We set the average
time interval λ

si
t , between all coordinate points in T si as the

termination condition of clustering,

λ
si
t =

2

N si
t
(
N si
t − 1

) ∑
t,t ′∈T si

d
(
t, t ′

)
(13)

where time attribute points t, t ′ ∈ T si , and N si
t = card (T si)

represents the number of time attribute points in T si . Clearly,
if the average time interval between clusters Csi

m and Csi
n is

davg
(
Csi
m,C

si
n
)
≥ λ

si
t , they cannot be merged. The clustering

process ends when all clusters cannot be merged.
The clustering process of a time attribute sequence is the

same as location attribute clustering. Assuming that after
clustering, the cluster set is Csi

T =

{
Csi
1 ,C

si
2 , · · · ,C

si
Kt

}
.

Then, for cluster Csi
k , 1 ≤ k ≤ Kl , the time interval of the

time attribute is,

Rt
(
Csi
k

)
=

2
Nm (Nm − 1)

∑
t∈C

si
k

∑
t ′∈C

si
k

d
(
t, t ′

)
(14)

The time interval for each cluster is weighted according to
the density of the time attribute point, and the value increases
with density. For cluster Csi

k , 1 ≤ k ≤ Kl , the time interval
weighted by access density is,

R̄t
(
Csi
k

)
=
M si
k

N si
t
Rt
(
Csi
k

)
(15)

where M si
k = card

(
Csi
k

)
represents the number of time

attribute points in cluster Csi
k , N

si
l = card (Lsi) represents the
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number of time attribute point in time attribute sequence Lsi ,
and Rl

(
Csi
k

)
represents the radius of the time interval of

cluster Rl
(
Csi
k

)
. Finally, the average weighted time interval

of all clusters in set Csi
T is calculated, and the time attribute

merging range of a small file with time attribute si is,

RsiT =
1
Kt

Kt∑
k=1

R̄t
(
Csi
k

)
(16)

C. SMALL FILES MERGING
Assume that the set of small spatiotemporal data files
have the type attribute si, set of location attributes Lsi ={
lsi1 , l

si
2 , · · · , l

si
m
}
, and set of the time attributes T si ={

tsi1 , t
si
2 , · · · , t

si
m
}
. Then, we use the spatiotemporal range RsiL

and RsiT to merge the small files with the type attribute si.
The principle of merging is based on the geographical

area. That is, the small files that belong to the same location
attribute space are merged first, subsequently, the small files
of the next location attribute space range are merged. The
steps for this process are as follows:
Step 1: Create a large file.
Step 2: Set the most advanced (earliest) time attribute tu

in the set of time attribute T si as the reference point. Then,
find the time attribute point whose time interval is less than
or equal to RsiL and form a set Range_tu.
Step 3: Set any location attribute lv in the set of location

attributes Lsi as the reference point. Then, find the location
attribute point whose distance is less than or equal to the RsiL
and form a set Range_lv.
Step 4: Merge the small files into the large file with time

attribute in Range_tu and location attribute in Range_lv.
Step 5: If the total size of the merged file is larger than

the predefined large file, jump to step (6), else, jump to the
step (7).
Step 6: Delete the time attribute involved in the merge

T si = T si − Range_tu, and sequentially repeat till the file
size of the merged is less than the larger file.
Step 7:Delete the time attribute been involved in the merge

T si = T si−Range_tu. Loop steps (2-5) until all the small files
in the location attribute set Range_lv and the time attribute set
T si are merged into the large file.
Step 8: If the total size of themerged file is still smaller than

the predefined large file, then delete the location attributes
Lsi = Lsi − Range_lv, and reset the set of time attributes T si .
Execute the steps (2-5) once more.
Step 9: Loop steps (1-8) until all small files are merged

with type attribute si.
Based on the above merging steps, we can continue to cal-

culate the access related spatiotemporal range of other types
of attributes, and merge small files of the current attribute
type. Thus, we can merge small files of spatiotemporal data
of all types of attributes in a smart city.

IV. EXPERIMENTAL
In this section, we will first introduce the performance eval-
uation metrics for our merging algorithm. Subsequently,

the experimental environment and data will be described.
Finally, we will present and discuss the results of the
experiments.

A. EVALUATION METRICS
Three indexes were used in the experiment to evaluate the
performance of the merge algorithm: MDS memory usage,
total average write time, and total average response time.
These indexes are defined as follows:
• MDSmemory usage: the memory consumption of MDS
when storing a small file set.

• Total average write time: the total average write time for
user write a small file to HDFS through the Client.

• Total average response time: the total average response
time for user read a small file to HDFS through the
Client.

B. EXPERIMENTAL ENVIRONMENT AND DATA
The experimental data was obtained from the Wuhan smart
city network application demonstration platform, which
includes 14 types of sensors located in different regions.
Each data type of the sensor varies in size between 3.2 KB
and 5.8 KB. The sensors have been collecting data since
1 January 2010, and currently provides 20 types of predefined
applications to the public. The data storage system is HDFS
with 5 nodes. Each node has memory of 2 GB and the data
block size is the default 64 MB. The sensors are connected
through a 1000 M Ethernet switch.

In order to get the historical user access information,
we obtained the user access logs in the server between
1 October 2017 and 1 June 2018. After processing the logs,
we generated 9,763,286 file access requests. The size of
these small files was approximately 39.62 GB. The proposed
algorithm is compared with the original HDFS, the improved
sequence file merging strategy in [15], the merging small files
of neighboring geographic locations (MNGL) in [18], and the
small file merge in healthcare based on balance of data block,
the Tetris Merge algorithm (TM) in [23].

C. EXPERIMENTAL RESULTS
1) MDS MEMORY USAGE
This experiment tests the memory usage in MDS when
the system stores 5000, 10000, 15000, 20000, 25000, and
30000 small files. The results are shown in Figure 3.

It can be observed that the memory usage of the MDS
is approximately 4.2 MB without storing any files, and as
the number of files increase, the memory usage increase
linearly. This is because in HDFS, both small and large files
are represented as an object, store in MDS and occupies
150 bytes of memory space. The more files the system stores,
the more memory usage in MDS. In addition, the original
HDFS memory usage is largest, because there is no small
file merge operation, so the system has the largest number
of small files. Sequence file, MNGL, TM and our algorithm
have merged small file, multiple small files are merged into
one large file, so memory usage is very small.
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FIGURE 3. Comparison of memory usage in MDS.

FIGURE 4. Comparison of average write time.

2) AVERAGE WRITE TIME
The experiment tests the total average write time when
500-3000 small files are written by Client, the results is
shown in Figure 4.

It can be observed that the total average write time
increased with the number of files increased. Simultane-
ously, because the Client must establish a communication
connection with MDS to apply for storage space and create
metadata information when writing every small file to HDFS,
so the original HDFS has the longest time. But in other three
methods, small files are merged into large files by Client at
first. Then, a communication will be established with MDS
to apply for storage space and create metadata information.
Therefore, the number of communication with Client and
MDS can be reduced greatly. In addition, TM has the shortest
time, because it only considers file size when merging small
files. Sequence file technology needs to convert the original
small file into Sequence file, and then uses the key-value
format for merging storage. MNGL and Our algorithm need
to consider the file size, the spatiotemporal attributes and
access related, then used spatiotemporal range is used to
merge them into large files. Hence, the writing performance
is not as good as TM and Sequence file.

3) AVERAGE RESPONSE TIME
The purpose of merging files is to reduce the user access
delay. The experiment tests the total average response time of

FIGURE 5. Comparison of average response time.

the system when 500-3000 small files are accessed by Client,
and the result is shown in Figure 5.

It can be observed that the total average response time
increased with the number of files increased. Simultaneously,
because the Client must establish a communication connec-
tion with MDS to obtain metadata information when access
every small file form HDFS, so the original HDFS has the
longest time. And by merging small files, the Sequence file
and TM technology can reduce the number of communicate
between Client andMDS to a certain extent. However, neither
of them considers the access related between files, so when
users access an application which containing a large number
of small files, they usually need to hop in different DSS to
get each small file. The merging strategy of MNGL and our
algorithm take into account the access related among files.
On the one hand, it reduces the number of communication
connection between Client and MDS. On the other hand,
it solves the problem of hopping DSS. However, the MNGL
only considers a simple mode of the user’s continuous access
to the adjacent geographic location. Therefore, for those
small files that are not geographically adjacent but still access
related. The problem of frequent hopping in different DSS
still exists, which increases average response time for user
access.

V. CONCLUSIONS AND FUTURE WORK
Merging can effectively solve the problem of large number
of small files, but the effects of different merging strategy
are different due to user access behavior. There is no merge
strategy which is fit to all application scenarios and data
type. In this paper, we proposed a merging strategy for small
spatiotemporal data files in smart health. This method takes
advantage of the spatiotemporal locality and related of user
access, can effectively improve the efficiency of file reading
and reduce user access delay.

In our future works, we will focus on optimizing the
calculation of clustering, and dynamic incremental updating
the access related spatiotemporal range, to merge small files
more efficiently.
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