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ABSTRACT In this paper, the issue of dynamical output H∞ controller designing is addressed for the fuzzy
input–output (FIO) model. The FIO model is significantly distinctive from the conventional Mamdani and
T-S or T-S-K fuzzy models and can be conveniently used to describe more complicated dynamical systems
that cannot be easily handled by the conventional fuzzy models. By using the robust control theory available
for both the linear and fuzzy systems, sufficient conditions in terms of the linear matrix inequalities (LMIs)
are derived to synthesize a dynamical output feedbackH∞ controller for the FIO plant. These LMI conditions
can be numerically and efficiently solved by the existing convex optimization software, e.g., the MATALB
LMI toolbox. Moreover, a motor–spring-mass system abstracted from the real applications is provided to
validate the applicability and efficiency of our method.

INDEX TERMS Fuzzy input-output (FIO) model, dynamical output feedback control, H∞ control, linear
matrix inequalities (LMIs).

I. INTRODUCTION
Since Mamdani firstly introduced the concept of fuzzy sets
into the control community in 1974, fuzzy control has
attracted great interests from both control theorists and con-
trol engineers, and substantial research progresses have been
made [1]–[4]. Sugeno and Taniguchi [5] classifies all the
existing fuzzy systems into three main types, i.e., Type I,
Type II, and Type III. Type I, proposed by Mamdani [6],
is characterized by a set of fuzzy rules, which are constructed
by the linguistic terms both in the antecedent and consequent
parts of fuzzy rules. Fuzzy sets can be used to mathematically
quantify the linguistic terms, and fuzzy inference techniques
are employed to draw the conclusions from these linguistic
rules. Because the Mamdani fuzzy systems are built on the
basis of linguistic terms, the human knowledge/experience
can be easily embedded into the fuzzy rule bases. The math-
ematical properties of this type of fuzzy systems have been
extensively investigated [1]. If the fuzzy variables in the
consequent part of fuzzy rules are replaced by singletons,
we have the Type II fuzzy systems. Therefore, Type II can be
considered as a special case of Type I fuzzy systems. When
the consequent part of fuzzy rules becomes an analytical
function instead of linguistic terms, a new fuzzy model is
constructed, namely T-S or T-S-K fuzzy systems, i.e., Type III

fuzzy systems. The T-S fuzzy system proposed in 1985 [7] is
a well-known landmark in the history of fuzzy control theory,
which can be regarded as a fuzzy blending of local linear
systems. In fact, it is a significant extension of the classical
linear model. On the other hand, the classical linear model
can be regarded as a special kind of T-S fuzzy model with
all the local linear models chosen to be the same. Within
the framework of the T-S fuzzy model, numerous fuzzy
control issues, such as stability analysis [8]–[12], systematic
controller design [12]–[16], robustness analysis [17]–[20],
have been extensively investigated. In effect, the T-S fuzzy
system based research still remains one of the hot topics in
the field of nonlinear control [21]–[28]. In [29], the T-S fuzzy
model is generalized to a more complicated case, where the
local linear systems in the consequent part of fuzzy rules
are replaced by T-S fuzzy systems. Although the approx-
imation capability is greatly enhanced, the formulation of
this model looks more complicated than the conventional T-S
model and hence the controller design method also becomes
sophisticated. Nowadays, much effort has been attracted
to the type II fuzzy sets based fuzzy systems, which are
argued to be more effectively in handling uncertainty. The
readers are referred to [3] and the reference therein for the
details.
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Motivated by some real applications encountered in con-
trol engineering, a fuzzy input-output (FIO) model was pre-
liminarily presented in our earlier work [30], in which the
local linear system in the consequent part of fuzzy rules was
replaced by an input-output relationship with the following
form:

y (t) =
∫ t

0
h (t − τ)u (τ ) dτ (1-1)

where u(·) and y(·) are the functions of time, and they repre-
sent the input and output signals of this system, respectively.
It can be seen that the output y(·) is determined by the convo-
lution of u(·) and h(·). Actually (1-1) represents a linear time
invariant system.

As we know, all the state variables for each local linear
model are exactly the same for the conventional T-S fuzzy
System. More specifically, the group of state variables for
all the local linear models in a T-S fuzzy model is exactly
the same set of variables both from the physical or math-
ematical point of view. Therefore, it is inconvenient if not
impossible to deal with the complicated process for which the
state variables might be distinctive under different operating
conditions.

Motivated by this observation, the FIO model is con-
structed. Within the framework of FIO models, it is pretty
easy to circumvent this inconvenience because the state vari-
ables of each local linear system could be distinct from others.
This will include the T-S fuzzy model as a special case. The
more in-depth comparison between the FIO system and the
conventional T-S fuzzy systemwill be provided in Section III.

In this research, starting from two practical systems,
the merit of the FIO model is emphasized and the moti-
vation of the FIO model is further strengthened. Then the
H∞ controller designing problem is to be addressed, which
is an extremely important theoretical issue in the field of
control engineering. More specifically, a dynamical output
H∞ controller is synthesized by using the convex optimiza-
tion technique to stabilize as well as to guarantee the H∞
performance of the closed-loop FIO system. As far as we
know, this issue is still open for the FIO system, even though
it is well solved for the conventional T-S fuzzy system and
the linear control system.

The rest of this paper is organized as follows. In Section II,
two practical systems are provided to solidify the motivation
of the FIO model. For the readability and completeness of
this article, the three kinds of formulations for the FIO system
are provided in Section III, which functions as a preliminary
for the followingH∞ controller synthesis. Moreover, theH∞
dynamical output feedback controller designing problem is
discussed in Section IV. Finally, an application example is
provided to validate our approach in Section V. Section VI
concludes this article with some remarks.

II. MOTIVATION OF THE FIO MODEL
In this section, we explain the motivation of the FIO model.
As could be seen, although T-S fuzzy systems have gained

TABLE 1. The dynamics of superheated steam temperature process.

great success in dealing with nonlinear control problems,
it encounters some difficulty when coping with an industrial
process and a control equipment which will be detailed here
in this section.

A. SUPERHEATED STEAM TEMPERATURE PROCESS
It has always been a challenge to regulate or control the tem-
perature of superheated steam in power plants. Nowadays,
large-scale coal-fired thermal power plants are required to
operate in a cycling mode. This means the load of power
plants increases during the daytime while decreases at night.
Therefore, the control system should adapt to the variations
of load as quickly as possible [31], [32]. Consequently,
we obtain a set of linear approximations of the original
complex dynamics of superheated steam temperature process
around different operating points based on experiments as
listed in TABLE 1 [33], [34].

An apparent observation from TABLE 1 is that the orders
of the linear systems are different from each other. This
makes it unreasonable to construct a conventional T-S fuzzy
system by directly blending all the linear systems together.
It may be argued it is due to the absence of observability
that the orders the linear systems around different operating
point are distinct, and we can still use an exactly same set of
state variables to construct a conventional T-S fuzzy system.
In fact, theoretically it is. However, the question is in that way
some local linear systems have to be unobservable, which is
extremely unusual for the current conventional T-S control
theory. More importantly, it is impractical if not impossible
to construct state-space equations based on the same set of
state variables around different operating points simply from
the measured input-output data.

B. A MOTOR-SPRING-MASS SYSTEM
Consider the motor-spring-mass system described in
FIGURE 1, where a torsional spring with the spring constant
K2 is mounted on the top of the shaft of the motor and a
metal string is fixed on the shaft with another end fixed on
a mass-spring system. At the beginning, the metal string is
loose. With the shaft rotating, the metal string gets tightened.
For this system, we aim at controlling the angular position
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FIGURE 1. Configuration of the motor-spring-mass system.

of the shaft. More specifically, we want to make the shaft of
the motor follow some positional instructions as accurately
and quickly as possible. The system can be mathematically
modeled as follows.

When the metal string is completely loose, according to
Newton’s laws of mechanics, the following equations hold:

Te = J θ̈ + µ0θ̇ + K2θ (2-1)

Te = KeU (2-2)

where Te denotes the electromagnetic torque supplied by
the motor, J is the moment of inertia of the motor shaft,
µ0 denotes the factor of friction and Ke is the coefficient
between the output electromagnetic torque of the motor and
the voltage applied to the motor. With the state variables
chosen as x1 = θ , x2 = θ̇ , we get the following second order
state-space equations of the system:

ẋ1 = x2 (2-3)

ẋ2 = −
K2

J
x1 −

µ0

J
x2 +

Ke
J
u (2-4)

y = x1 (2-5)

When the metal string gets tightened, it follows from the
Newton’s laws that the following equations hold:

KeU = J θ̈ + µ0θ̇ + K2θ + K1R (θR− Z )

(2-6)

K1 (θR− Z )− K1Z = MZ̈ + µ1Ż (2-7)

where R is the radius of the motor shaft; Z represents the
position of the mass M. With the state variables chosen as
x1 = θ , x2 = θ̇ , x3 = Z , x4 = Ż , we get the following fourth
order state-space equations:

ẋ1 = x2 (2-8)

ẋ2 = −
K2 + R2K1

J
x1 −

µ0

J
x2 +

RK1

J
x3 +

Ke
J
u (2-9)

ẋ3 = x4 (2-10)

ẋ4 =
RK1

M
x1 −

2K1

M
x3 −

µ1

M
x4 (2-11)

y = x1 (2-12)

The order of the state space equations (2-3)∼(2-4) are
apparently distinct with that of (2-8)∼(2-11) when the motor-
spring-mass system works in different conditions according
to whether the string is loose or tensed. Thus dynamics of
the abovemovement equipment cannot be easily described by

the general T-S fuzzy model. One might describe the system
by a switching system and design a corresponding switching
controller. While considering the continuous tension building
process along the string, we prefer a fuzzy model for this
practical equipment since it is hard to tell to what position
the tension along the string is build and when it disappears
suddenly.

III. DESCRIPTION OF THE FIO MODEL
The FIO model can be mathematically formulated in three
kinds different formations, including the integral, the transfer
function based, and the state space equation based forma-
tions. These three formations are essentially equivalent to
each other. Further more, a thorough comparison is made
between the FIO and the conventional T-S fuzzy models [30].

A. THE INTEGRAL FORMATION OF THE FIO MODEL
The ith rule of a FIOmodel is of the following linguistic form:
Plant Rule i

IF v1(t) is M1
i and · · · and vg(t) is M

g
i ,

THEN

yi (t) =

t∫
0

hi (t − τ)u (τ ) dτ i = 1, 2, . . . , η (3-1)

where hi: R→R, i = 1, . . . , η, are integral functions corre-
sponding to the local linear systems; vk (t), k = 1, . . . , g are
antecedent variables, which are all or part of the measurable
state variables or output of the FIOmodel; yi(t), i = 1, . . . , η,
represent the outputs of the local single-input-single-output
(SISO) linear systems; η denotes the whole number of fuzzy
rules involved;M k

i , i = 1, . . . , η, are fuzzy terms, which can
be quantified by certain kinds of membership functions.

By using some specific fuzzy inference methods, the out-
put of the above fuzzy input-output model can be formulized
as follows:

y (t) =

η∑
i=1
ωi (v (t)) yi (t)

η∑
i=1
ωi (v (t))

=

η∑
i=1

µi (v (t)) yi (t)

=

η∑
i=1

µi (v (t))

t∫
0

hi (t − τ)u (τ ) dτ (3-2)

where

µi (v (t)) =
ωi (v (t))
η∑
j=1
ωj (v (t))

(3-3)

ωi (v (t)) =
g∏

k=1

M k
i (vk (t)) (3-4)

v (t) =
[
v1 (t) , v2 (t) , · · · , vg (t)

]
(3-5)
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for all t . The term M k
i (vk (t)) is the grade of membership of

vk (t) in M k
i .

Since 
η∑
i=1

ωi (v (t)) > 0

ωi (v (t)) ≥ 0, i = 1, 2, . . . , η

(3-6)

we have 
η∑
i=1

µi (v (t)) = 1

µi (v (t)) ≥ 0, i = 1, 2, . . . , η

(3-7)

for all t .

B. THE TRANSFER FUNCTION-BASED FIO MODEL
Assuming that functions u(·), y(·) and h(·) are all Laplace
transformable and transforming the local linear mapping in
(3-1) into the Laplace form, the FIO model can be described
as follows:

Plant Rule i
IF v1(t) is M1

i and · · · and vg(t) is M
g
i ,

THEN

Y i (s) = H i (s)U (s) i = 1, 2, . . . , η (3-8)

where Yi(s), Hi(s), and U(s) are Laplace transform of
yi(·),hi(·) and u(·), respectively.
Note that a so-called Takagi-Sugeno fuzzy transfer model

has been proposed in [35], where the inference result of the
antecedent part of a linguistic fuzzy rule is directly combined
with the coefficients of the consequent transfer function.
Unfortunately, such a direct combination is difficult if not
impossible in the complex domain [36]. Different from this
Takagi-Sugeno fuzzy transfer model, the transfer function-
based form of our FIO model implies that its local input and
output can be described by the transfer function Hi(s).

C. THE STATE SPACE EQUATION BASED FIO MODEL
It follows from the classical control theory that the FIOmodel
can be transformed from transfer-function form (3-8) into the
following state-space form:

Plant Rule i
IF v1(t) is M1

i and . . . and vg(t) is M
g
i ,

THEN{
ẋi (t) = Aixi (t)+ Biu (t)
yi (t) = C ixi (t)+ Diu (t),

i = 1, 2, . . . , η (3-9)

where xi (t) =
[
x1i , x

2
i , · · · , x

ni
i

]T
is the state vector of the

local linear system of the ith rule; ni represents the system
order of the ith local linear system; Ai, Bi, Ci and Di, are the
corresponding matrices with compatible dimensions. Here,
it is assumed that the pairs (Ai, Bi) and (Ai, Ci) are control-
lable and observable, respectively.

The above fuzzy rules can be formulated by the following
nonlinear state equations

ẋ1 (t) = A1x1 (t)+ B1u (t)
ẋ2 (t) = A2x2 (t)+ B2u (t)

...

ẋi (t) = Aixi (t)+ Biu (t)
...

ẋη (t) = Aηxη (t)+ Bηu (t)

(3-10)

yi (t) = C ixi (t)+ Diu (t) (3-11)

y (t) =
η∑
i=1

µi (v (t)) yi (t) (3-12)

where xi ∈ Rni , u ∈ Rm, yi ∈ Rp, y ∈ Rp, Ai ∈ Rni×ni ,
Bi ∈ Rni×m, C i

∈ Rp×ni , Di ∈ Rp×m and ni represents the
system order of the ith local linear system i = 1, . . . , η.

D. COMPARISON BETWEEN THE FIO AND T-S MODEL
In this section, we make a detailed comparison between these
two models. Generally speaking, the T-S model is of the
following form:

Plant Rule i
IF v1(t) is M1

i and . . . and vg(t) is M
g
i ,

THEN{
ẋ (t) = Aix (t)+ Biu (t)
y (t) = C ix (t)+ Diu (t),

i = 1, 2, . . . , η (3-13)

By using some specific fuzzy inference and defuzzification
methods, the above linguistic fuzzy model can be expressed
by the following analytical equation:

ẋ (t) =
η∑
i=1

µi (v (t)) [Aix (t)+ Biu (t)] (3-14)

y (t) =
η∑
i=1

µi (v (t)) [C ix (t)+ Diu (t)] (3-15)

According to (3-14) and (3-15), it can be seen that both
the local state and the output are blended in a fuzzy way, and
the local state variables for the different rules are always the
same, i.e., x(t).
For a FIO model, however, the state vectors xi (t) =[
x1i , x

2
i , · · · , x

ni
i

]T
of the local linear dynamical system differ

from each other, i.e., the vector xi(t), may comprise different
elements from the vector xj(t), i 6= j. The number of the local
state variables may be also different, which means the order
of the local linear systems can be different from each other.

Based on the above feature, it is possible for us tomodel the
plant accurately under some work conditions, while we can
roughly model the plant under other conditions. For example,
we can model a plant by a second order differential equation
under some condition, while under other conditions, we can
use a fourth order differential equation, which is more accu-
rate than the former. More importantly, all kinds of identifi-
cation methods developed for linear systems can be directly
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used to identify the local linear input-output relationship. For
example, the frequency response methods can be used to
identify the parameters of the local transfer functions. As we
know, one of the foremost reasons that the classical control
theory is widely used in practice is that transfer functions can
be easily obtained by experiments. Therefore, we could con-
veniently obtain a nonlinear model which is much accurate
than the linear one.

IV. H∞ OUTPUT FEEDBACK CONTROLLER DESIGN FOR
THE FIO MODEL
A. THE FIO GENERALIZED MODEL
According to the standard H∞ control problem discussed in
[37] and [38], the generalized plant with η rules is constructed
as follows:

ẋ1 (t) = A1x1 (t)+ B1
1w (t)+ B

1
2u (t)

ẋ2 (t) = A2x2 (t)+ B2
1w (t)+ B

2
2u (t)

...

ẋi (t) = Aixi (t)+ Bi1w (t)+ B
i
2u (t)

...

ẋη (t) = Aηxη (t)+ Bη1w (t)+ B
η
2u (t)

(4-1)

zi (t) = C i
1x
i (t)+ Di11w (t)+ D

i
12u (t), i = 1, 2, . . . , η

(4-2)

yi (t) = C i
2x
i (t)+ Di21w (t)+ D

i
22u (t), i = 1, 2, . . . , η

(4-3)

z (t) =
η∑
i=1

µi (v (t)) zi (t) (4-4)

y (t) =
η∑
i=1

µi (v (t)) yi (t) (4-5)

where xi (i = 1, 2, . . . , η) are the state variables of the
system; w ∈ Rm1 are the exogenous inputs; u ∈ Rm2 are the
control inputs; zi, z ∈ Rp1 (i = 1, 2, . . . , η) are the regulated
outputs; yi, y ∈ Rp2 (i = 1, 2, . . . , η) are measured outputs;
v ∈ Rg are the fuzzy premise variables; Ai ∈ Rni×ni , Bi1 ∈
Rni×m1 , Bi2 ∈ Rni×m2 , C i

1 ∈ Rp1×ni , C i
2 ∈ Rp2×ni , Di11 ∈

Rp1×m1 , Di12 ∈ Rp1×m2 , Di21 ∈ Rp2×m1 , Di22 ∈ Rp2×m2 .
Equations (4-1)∼(4-5) can be cast into a more compact

form:

ẋ (t) = Ax (t)+ B1w (t)+ B2u (t) (4-6)

z (t) =
η∑
i=1

µi (v (t))
(
C̃
i
1x (t)+ D

i
11w (t)+ D

i
12u (t)

)
(4-7)

y (t) =
η∑
i=1

µi (v (t))
(
C̃
i
2x (t)+ D

i
21w (t)+ D

i
22u (t)

)
(4-8)

where

x (t) =
[(
x1 (t)

)T
,
(
x2 (t)

)T
, · · · ,

(
xη (t)

)T]T
,

x ∈ R
∑η

k=1 nk ,

A =



A1 0 · · · 0 · · · 0
0 A2

· · · 0 · · · 0
...

...
. . .

... · · ·
...

0 0 · · · Ai · · · 0
...

...
...

...
. . .

...

0 0 · · · 0 · · · Aη


,

A ∈ R(
∑η

k=1 nk)×(
∑η

k=1 nk),

B1 =

[(
B1
1

)T
,
(
B2
1

)T
, · · · ,

(
Bη1
)T]T

,

B1 ∈ R(
∑η

k=1 nk)×m1 ,

B2 =

[(
B1
2

)T
,
(
B2
2

)T
, · · · ,

(
Bη2
)T]T

,

B2 ∈ R(
∑η

k=1 nk)×m2 ,

C̃
i
1 =

[
δi,1C1

1, δi,2C
2
1, · · · , δi,iC

i
1, · · · , δi,ηC

η
1

]
,

C̃
i
1 ∈ Rp1×(

∑η
k=1 nk),

C̃
i
2 =

[
δi,1C1

2, δi,2C
2
2, · · · , δi,iC

i
2, · · · , δi,ηC

η
2

]
,

C̃
i
2 ∈ Rp2×(

∑η
k=1 nk),

δij =

{
0 if i 6= j
1 if i = j

is Kronecker delta function.
For convenience, the two assumptions are assumed

throughout this article:
(i) (Ai, Bi2, C̃

i
2) (i = 1, . . . , η) is stabilizable and

detectable,
(ii) Di22 = 0.

B. MAIN RESULTS
Given the generalized plant (4-6)∼(4-8), our goal is to synthe-
size a controller in the form of (4-9)(4-10) that could render
the L2 gain from the disturbance w to the error signal z less
than γ as well as guarantee the stability of the closed-loop
system.

ẋc =
η∑
j=1

µj

(
AjKxc + B

j
Ky
)

(4-9)

u =
η∑
j=1

µj

(
C j
Kxc + D

j
Ky
)

(4-10)

where xc =
[(
x1c
)T
,
(
x2c
)T
, · · · ,

(
xηc
)T]T, xc ∈ R

∑η
k=1 nk ,

xjc ∈ Rnj (j = 1, . . . , η) are the states of controllers,
uj ∈ Rm2 (j = 1, . . . , η) the outputs of controllers,
AjK ∈ R(

∑η
k=1 nk)×(

∑η
k=1 nk), BjK ∈ R(

∑η
k=1 nk)×p2 , C j

K ∈

Rm2×(
∑η

k=1 nk),DjK ∈ Rm2×p2 (j = 1, . . . , η) are the matrices,
which will be designed.

Applying the controller (4-9)(4-10) into the generalized
plant (4-6)∼(4-8) gives the following closed-loop system
(4-11)∼(4-13), as shown at the top of the next page.
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ẋ =
η∑
j=1

η∑
i=1

µj (v) µi (v)
{[

A+ B2D
j
KC̃

i
2 B2C

j
K

] [ x
xc

]
+

(
B1 + B2D

j
KD

i
21

)
w
}

(4-11)

ẋc =
η∑
j=1

η∑
i=1

µj (v) µi (v)
{[

BjKC̃
i
2 AjK

] [ x
xc

]
+ BjKD

i
21w

}
(4-12)

z =
η∑
j=1

η∑
i=1

µj (v) µ2
i (v)

{[
C̃
i
1 + D

i
12D

j
KC̃

i
2 Di12C

j
K

] [ x
xc

]
+

(
Di11 + D

i
12D

j
KD

i
21

)
w
}

(4-13)

Moreover, we have

ξ̇ =

η∑
j=1

η∑
i=1

µj (v) µi (v)
(
Ai,jcl ξ + B

i,j
clw

)
(4-14)

z =
η∑
j=1

η∑
i=1

µj (v) µ2
i (v)

(
C i,j
cl ξ + D

i,j
clw

)
(4-15)

where

ξ =

[
x
xc

]
, Ai,jcl =

[
A+ B2D

j
KC̃

i
2 B2C

j
K

BjKC̃
i
2 AjK

]
,

Bi,jcl =

[
B1 + B2D

j
KD

i
21

BjKD
i
21

]
,

C i,j
cl =

[
C̃
i
1 + D

i
12D

j
KC̃

i
2 Di12C

j
K

]
,

Di,jcl = Di11 + D
i
12D

j
KD

i
21,

for hi ∩ hj 6= Ø, i, j = 1, . . . , η.
It follows from the bounded real lemma [39], [40], internal

stability and the H∞-norm constraint are jointly equivalent
to the existence of Xcl > 0 of the dimension

(
2
∑η

k=1 nk
)
×(

2
∑η

k=1 nk
)
such that

(
Ai,jcl

)T
Xcl + XclA

i,j
cl XclB

i,j
cl

(
C i,j
cl

)T(
Bi,jcl

)T
Xcl −γ I

(
Di,jcl

)T
C i,j
cl Di,jcl −γ I

 < 0 (4-16)

for hi ∩ hj 6= Ø, i, j = 1, . . . , η.
Notice that in the above inequality the unknown Lyapunov

matrix Xcl and the controller matrices AjK, B
j
K, C

j
K, and D

j
K

are coupled together in a nonlinear way. Therefore, those
unknowns cannot be directly solved by using the convex
optimization method in its current form. However, by some
manipulations it can be reduced to an LMI in terms of
unknowns and can be solved efficiently by some numerical
algorithms, which leads to our main result.
Theorem 1: The fuzzy dynamical output feedback H∞

controller can be synthesized for the generalized plant (4-
6)∼(4-8), by solving the following optimization problem:

min γ (4-17)

s.t.
[
X I
I Y

]
> 0 (4-18)

and (4-19), as shown at the top of the next page, where

Âi,j = Y
(
A+ B2D

j
KC̃

i
2

)
X + NBjKC̃

i
2X + YB2C

j
KM

T

+NAjKM
T, Âi,j ∈ R(

∑η
k=1 nk)(

∑η
k=1 nk) (4-20)

B̂j = YB2D
j
K + NB

j
K, B̂j ∈ R(

∑η
k=1 nk)×p2 (4-21)

Ĉ i,j = DjKC̃
i
2X + C

j
KM

T, Ĉ i,j ∈ Rm2×(
∑η

k=1 nk) (4-22)

D̂j = DjK, D̂j ∈ Rm2×p2 (4-23)

Proof: Inspired by the procedure in [41], we have the
following proof.

Partition Xcl in (4-16) and X−1cl as Xcl =

[
Y N
NT W

]
and

X1
cl =

[
X M
MT Z

]
, and define F1 =

[
X I
MT 0

]
and F2 =[

I Y
0 NT

]
, where X, Y ∈ R(

∑η
k=1 nk)×(

∑η
k=1 nk) are symmetric,

M,N ∈R(
∑η

k=1 nk)×(
∑η

k=1 nk) have full column rank. Then we
have

FT
1Xcl = FT

2 (4-24)

I = YX + NMT (4-25)

I = NTM +WZ (4-26)

0 = YM + NZ (4-27)

0 = NTX +WMT (4-28)[
X I
I Y

]
> 0 (4-29)

and

F1 0 0
0 I 0
0 0 I

 has full column rank.

So the inequality (4-16) is equivalent to

FT
1 0 0
0 I 0
0 0 I



(
Ai,jcl

)T
Xcl + XclA

i,j
cl XclB

i,j
cl

(
C i,j
cl

)T(
Bi,jcl

)T
Xcl −γ I

(
Di,jcl

)T
C i,j
cl Di,jcl −γ I


×

F1 0 0
0 I 0
0 0 I

 < 0 (4-30)
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
XAT
+ AX + B2Ĉ i,j +

(
B2Ĉ i,j

)T
Â
T
i,j +

(
A+ B2D̂jC̃

i
2

)
B1 + B2D̂jDi21

(
C̃
i
1X + D

i
12Ĉ i,j

)T
221 ATY + YA+ B̂jC̃

i
2 +

(
B̂jC̃

i
2

)T
YB1 + B̂jDi21

(
C̃
i
1 + D

i
12D̂jC̃

i
2

)T
231 232 −γ I

(
Di11 + D

i
12D̂jD

i
21

)T
241 242 243 −γ I

 < 0

(4-19)

Then we get
FT
1

(
Ai,jcl

)T
XclF1+FT

1XclA
i,j
clF1 FT

1XclB
i,j
cl FT

1

(
C i,j
cl

)T(
Bi,jcl

)T
XclF1 −γ I

(
Di,jcl

)T
C i,j
clF1 Di,jcl −γ I


< 0 (4-31)

Multiplying (4-24) by AclF1 on the right, we get (4-32), as
shown at the top of the next page, further (4-33), as shown at
the top of the next page is obtained.

Equation (4-24) is multiplied by Bcl on the right, then we
get (4-34).

FT
1XclB

i,j
cl = FT

2B
i,j
cl =

[
I 0
Y N

][
B1 + B2D

j
KD

i
21

BjKD
i
21

]

=

[
B1 + B2D

j
KD

i
21

YB1 +

(
YB2D

j
K + NB

j
K

)
Di21

]
(4-34)

Moreover, we have(
Bi,jcl

)T
XclF1

=

(
FT
1XclB

i,j
cl

)T
=

[(
B1 + B2D

j
KD

i
21

)T
(YB1)

T
+

(
Di21

)T (
YB2D

j
K + NB

j
K

)T]
(4-35)

By matrix operation, we get

C i,j
clF1 =

[
C̃
i
1 + D

i
12D

j
KC̃

i
2 Di12C

j
K

] [ X I
MT 0

]
=

[
C̃
i
1X + D

i
12

(
DjKC̃

i
2X + C

j
KM

T
)

C̃
i
1 + D

i
12D

j
KC̃

i
2

]
(4-36)

FT
1 =

(
C i,j
cl

)T
=

(
C i,j
clF1

)T
=


{
C̃
i
1X + D

i
12

(
DjKC̃

i
2X + C

j
KM

T
)}T(

C̃
i
1 + D

i
12D

j
KC̃

i
2

)T
 (4-37)

(
Di,jcl

)T
=

(
Di11 + D

i
12D

j
KD

i
21

)T
(4-38)

So the inequality (4-31) is transformed into
211 212 213 214
221 222 223 224
231 232 233 234
241 242 243 244

 < 0 (4-39)

for hi ∩ hj 6= Ø, i, j = 1, . . . , η, where

211 = XAT
+ AX +

(
DjKC̃

i
2X + C

j
KM

T
)T

BT
2

+B2

(
DjKC̃

i
2X + C

j
KM

T
)

212 =

{
Y
(
A+ B2D

j
KC̃

i
2

)
X + NBjKC̃

i
2X

+YB2C
j
KM

T
+ NAjKM

T
}T
+ A+ B2D

j
KC̃

i
2

213 = B1 + B2D
j
KD

i
21

214 =

{
C̃
i
1X + D

i
12

(
DjKC̃

i
2X + C

j
KM

T
)}T

222 = ATY + YA+
(
C̃
i
2

)T (
YB2D

j
K + NB

j
K

)T
+

(
YB2D

j
K + NB

j
K

)
C̃
i
2

223 = YB1 +

(
YB2D

j
K + NB

j
K

)
Di21

224 =

(
C̃
i
1 + D

i
12D

j
KC̃

i
2

)T
233 = −γ I

234 =

(
Di11 + D

i
12D

j
KD

i
21

)T
244 = −γ I

and 221, 231, 232, 241, 242, 243 can be inferred by sym-
metry.
In order to transform the matrix inequality (4-39) into an

equivalent LMI, for i, j = 1, . . . , η, the changes of con-
troller variables are defined as (4-20)∼(4-23), then the matrix
inequality (4-39) is transformed as (4-19).
Obviously the Inequality (4-19) is a LMI in terms of Âi,j,

B̂j, Ĉ i,j, D̂j, X and Y. If M and N have full row rank, and if
Âi,j, B̂j, Ĉ i,j, D̂j andX, Yare given, the controller matricesAjK,
BjK, C

j
K, D

j
K (j = 1, . . . , η) can always be computed, which

meet (4-39), i.e. (4-16) is satisfied. For full order design, one
can always assume that M and N have full row rank. Hence
the variablesAjK,B

j
K,C

j
K,D

j
K can be replaced by Âi,j, B̂j, Ĉ i,j,

D̂j without loss of generality [41], [42].
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FT
1XclAclF1 = FT

2AclF1 =

[
I 0
Y N

][
A+ B2D

j
KC̃

i
2 B2C

j
K

BjKC̃
i
2 AjK

][
X I
MT 0

]

=

 AX + B2

(
DjKC̃

i
2X + C

j
KM

T
)

A+ B2D
j
KC̃

i
2

Y
(
A+ B2D

j
KC̃

i
2

)
X + NBjKC̃

i
2X + YB2C

j
KM

T
+ NAjKM

T YA+
(
YB2D

j
K + NB

j
K

)
C̃
i
2

 (4-32)

FT
1A

T
clXclF1 + FT

1XclAclF =
(
FT
1XclAclF1

)T
+ FT

1XclAclF

=



XTAT + AX +
(
DjKC̃

i
2X + C

j
KM

T
)T

BT
2

+B2

(
DjKC̃

i
2X + C

j
KM

T
) {

Y
(
A+ B2D

j
KC̃

i
2

)
X + NBjKC̃

i
2X + YB2C

j
KM

T
+ NAjKM

T
}T

+A+ B2D
j
KC̃

i
2{

A+ B2D
j
KC̃

i
2

}T
+ Y

(
A+ B2D

j
KC̃

i
2

)
X

+NBjKC̃
i
2X + YB2C

j
KM

T
+ NAjKM

T
ATY + YA+

(
C̃
i
2

)T (
YB2D

j
K + NB

j
K

)T
+

(
YB2D

j
K + NB

j
K

)
C̃
i
2


(4-33)

The variable γ in (4-19) can be directly minimized by LMI
optimization to find the smallest achievableH∞ norm [41],
which ends the proof.

After solving the synthesis LMIs (4-19), Âi,j, B̂j, Ĉ i,j, D̂j,
X and Y are obtained. The parameters of the controller can be
constructed according to the following procedure.

1. We need to find two invertible matrices M, N ∈
R(

∑η
k=1 nk)

2
via singular value decomposition (SVD) such

that

MNT
= I− XY (4-40)

2. The controller can be constructed by

DjK = D̂j (4-41)

C j
K =

(
Ĉ i,j − D

j
KC̃

i
2X
) (

MT
)−1

(4-42)

BjK = N−1
(
B̂j − YB2D

j
K

)
(4-43)

AjK = N−1
[
Âi,j − Y

(
A+ B2D

j
KC̃

i
2

)
X
] (
MT

)−1
−BjKC̃

i
2X
(
MT

)−1
− N−1YB2C

j
K (4-44)

for i, j = 1, . . . , η. It should be mentioned that AjK, C
j
K in

(4-44) and (4-42) are not unique. Here, AjK, C
j
K are computed

only when i = j, so

C j
K =

(
Ĉ j,j − D

j
KC̃

j
2X
) (

MT
)−1

(4-45)

AjK = N−1
[
Âj,j − Y

(
A+ B2D

j
KC̃

j
2

)
X
] (
MT

)−1
−BjKC̃

j
2X
(
MT

)−1
− N−1YB2C

j
K (4-46)

V. SIMULATION EXAMPLES
In this section, a numerical simulation is presented to illus-
trate the effectiveness of the above results.

For the motor-spring-mass system described in
Section II-B, in order to make the angle error (y-r) and

the control voltage u as small as possible, a two degree-of-
freedom feedback controller is designed.

u = ufb +
2∑
j=1

µj (v) kff,jr (5-1)

where the forward controllers kff,1 =
K2
Ke

and kff,2 =
K2+R2K1

Ke
are deduced, and the feedback controller ufb, a fuzzy

dynamical output feedback H∞ controller, will be designed
according to Theorem 1. It follows from Section II-B, we get
the following generalized plant for the motor-spring-mass
system.

Plant Rule 1
IF y(t) is M1,
THEN[
ξ̇1
ẋ1,2

]
=

[
0 1

−
K2

J
−
µ0

J

][
ξ1
x1,2

]
+

[
0
0

]
r

+

[
0
Ke
J

]
ufb (5-2) ξ1

ufb +
K2

Ke
r

 = [ 1 0
0 0

] [
ξ1
x1,2

]
+

 0
K2

Ke

 r + [ 0
1

]
ufb

(5-3)

y1 =
[
1 0

] [
ξ1 x1,2

]T
+ [1] r + [0] ufb

(5-4)

Plant Rule 2
IFy(t) is M2,
THEN

ξ̇2
ẋ2,2
ẋ2,3
ẋ2,4


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=


0 1 0 0

−
K2 + R2K1

J
−
µ0

J
RK1

J
0

0 0 0 1
RK1

M
0 −

2K1

M
−
µ1

M



ξ2
x2,2
x2,3
x2,4



+


0
0
0
RK1

M

 r +


0
Ke
J
0
0

 ufb (5-5)

 ξ2

ufb +
K2 + R2K1

Ke
r



=

[
1 0 0 0
0 0 0 0

]
ξ2
x2,2
x2,3
x2,4

+
 0
K2 + R2K1

Ke

 r
+

[
0
1

]
ufb (5-6)

y2 =
[
1 0 0 0

] [
ξ2 x2,2 x2,3 x2,4

]T
+ [1] r + [0] ufb (5-7)

where the parameters of the system are chosen as J =
0.02kg·m2, K2 = 0.1N·m/rad, Ke = 1N·m/V, µ0 =

0.1N·m·s/rad, R = 0.05m, M = 1kg, K1 = 10N/m, µ1 =

0.01N·m·s/rad, and the membership function M1 and M2 are

M1 (y) =


1 y < π/2

−
y
π
+ 1.5 π/2 ≤ y ≤ 3π/2

0 y > 3π/2

(5-8)

M2 (y) =


0 y < π/2
y
π
− 0.5 π/2 ≤ y ≤ 3π/2

1 y > 3π/2

(5-9)

The final outputs of the fuzzy input-output model of the
generalized plant can be formulized as

ẋ = Ax+ B1w+ B2ufb (5-10)

z =
2∑
i=1

µi (v)
(
C̃
i
1x+ D

i
11w+ D

i
12ufb

)
(5-11)

y =
2∑
i=1

µi (v)
(
C̃
i
2x+ D

i
21w+ D

i
22ufb

)
(5-12)

where

x =
[
x1
x2

]
, x1 =

[
ξ1
x1,2

]
,

x2 =
[
ξ2 x2,2 x2,3 x2,4

]T
,

w = [r], ufb = [ufb],

A =
[
A1 0
0 A2

]
, B1 =

[
B1
1

B2
1

]
, B2 =

[
B1
2

B2
2

]
,

TABLE 2. The parameters of controller.

C̃
1
1 =

[
C1
1, 0

]
, C̃

2
1 =

[
C2
1, 0

]
, C̃

1
2 =

[
0, C1

2

]
,

C̃
2
2 =

[
0, C2

2

]
,

A1
=

[
0 1

−
K2

J
−
µ0

J

]
, B1

1 =

[
0
0

]
, B1

2 =

[
0
Ke
J

]
,

C1
1 =

[
1 0
0 0

]
, D1

11 =

 0
K2

Ke

, D1
12 =

[
0
1

]
,

C1
2 =

[
1 0

]
, D1

21 = [1] , D1
22 = [0],

A2
=


0 1 0 0

−
K2 + R2K1

J
−
µ0

J
RK1

J
0

0 0 0 1
RK1

M
0 −

2K1

M
−
µ1

M

,

B2
1 =

[
0 0 0

RK1

M

]T
, B2

2 =

[
0

Ke
J

0 0

]T
,

C2
1 =

[
1 0 0 0
0 0 0 0

]
, D2

11 =

 0
K2 + R2K1

Ke

,
D2
12 =

[
0
1

]
,

C2
2 =

[
1 0 0 0

]
, D2

21 = [1], D2
22 = [0].

By solving the LMIs in Theorem 1, we get the following
dynamical output feedback H∞ controller,

ẋc =
2∑
j=1

µj (v)
(
AjKxc + B

j
Ky
)

(5-13)
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FIGURE 2. The output of the closed-loop fuzzy system and the control
input.

ufb =
2∑
j=1

µj (v)
(
C j
Kxc + D

j
Ky
)

(5-14)

with the parameters listed in TABLE 2.
Then the fuzzy controllers (5-1) is employed to let the

fuzzy input-output system in (5-2)∼(5-7) track the reference
input in the form of positive and negative step. The output of
the system and the control input are shown in FIGURE 2.

VI. CONCLUSION
In this article, the issue of dynamical output H∞ controller
designing is successfully addressed for the fuzzy input-output
(FIO) model. The FIO model is different from the conven-
tional Mamdani and T-S or T-S-K fuzzy models. So far there
is no report on the H∞ controller designing for this kind of
nonlinear system. For this problem, a sufficient condition in
terms of LMIs has been derived in this article to design a
dynamical output feedback FIO controller. This condition can
be efficiently solved by some commercial softwares, e. g.,
MATLAB.Moreover, a motor-spring-mass system abstracted
from the real applications is provided to validate the applica-
bility and efficiency of our method.

Our FIO model may encounter the problem of ‘‘the curse
of dimensionality’’ because the dimensions of the matrices
A in the plant and Ak in the controller will be increasing
significantly with the growth of the numbers of fuzzy rules.
Consequently, numerical issues might be encountered when
solving the controller in those scenarios.
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