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ABSTRACT Fault diagnosis of rotating machinery is vital to identify incipient failures and avoid unex-
pected downtime in industrial systems. This paper proposes a new rolling bearing fault diagnosis method
by integrating the fine-to-coarse multiscale permutation entropy (F2CMPE), Laplacian score (LS) and
support vector machine (SVM). A novel entropy measure, named F2CMPE, was proposed by calculating
permutation entropy via multiple-scale fine-grained and coarse-grained signals based on the wavelet packet
decomposition. The entropy measure estimates the complexity of time series from both low- and high-
frequency components.Moreover, the F2CMPEmitigates the drawback of producing time series with sharply
reduced data length via the coarse-grained procedure in the conventional composite multiscale permutation
entropy (CMPE). The comparative performance of the F2CMPE and CMPE is investigated by analyzing
the synthetic and experimental signals for entropy-based feature extraction. In the proposed bearing fault
diagnosis method, the F2CMPE is first used to extract the entropy-based features from bearing vibration
signals. Then, LS and SVM are used for selection of features and fault classification, respectively. Finally,
the effectiveness of the proposed method is verified for rolling bearing fault diagnosis using experimental
vibration data sets, and the results have demonstrated the capability of the proposed method to recognize
and identify the bearing fault patterns under different fault states and severity levels.

INDEX TERMS Fault detection and diagnosis, fine-to-coarse multiscale permutation entropy, Laplacian
score, support vector machine.

I. INTRODUCTION
In industrial manufacturing plants, rolling bearings are usu-
ally operated under harsh and complicated working environ-
ment for pursuing higher profits and are inevitably subjected
to incipient defects, which can potentially lead to energy
waste and performance degradation of the whole industrial
system [1]–[3]. Hence, in recent decades, fault detection
and diagnosis of rolling bearing have attracted tremendous
attention for accurately identifying and isolating faults and
performing appropriate maintenance planning to avoid finan-
cial losses caused by unexpected downtime linked to bearing
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failures. For this purpose, lots of effort has been put into the
field of health monitoring of industrial systems by apply-
ing statistical measurements to characterize fault symptoms
hidden in complex signals as early as possible [4], such as
the use of time-domain and frequency-domain features [5];
nevertheless, both of them are most suitable for linear and
stationary signals. As a result, traditional linear methods may
not efficiently detect the dynamic change of complex and
non-linear vibration signals [6].

Over the past decades, enormous entropy algorithms
have been applied successfully in fault diagnosis appli-
cations of rotating machinery, providing useful statistical
indicators as to measures of uncertainty and disorder of
time series acquired from a physical system [7]–[10].
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The commonly used entropy measures include single-scale
entropy [11], such as Approximate Entropy (ApEn), Sample
Entropy (SampEn), Fuzzy Entropy (FuzzyEn) and Permuta-
tion Entropy (PE). For instance, in [12], the ApEn was used
as a non-linear feature indicator for discriminating differ-
ent bearing conditions. In [13], a study was carried out to
compare the performance of ApEn, SampEn and FuzzyEn
in analyzing simulation and experimental electromyographic
signals respectively. Recently, PE was applied for extracting
fault features from bearing vibration signals, and the results
demonstrated that PE enjoys the advantages of simplicity,
fast calculation and invariance for non-linear monotonous
transformations [6], [14], [15].

Nonetheless, the performance of PE might be limited
by analyzing time series with one single scale, which may
neglect potential useful information associated with primary
symptoms hidden in multiple scales. For overcoming this
shortcoming, Multiscale Permutation Entropy (MPE) was
first proposed by Aziz and Arif [16], inspired by the con-
cept of the coarse-grained procedure proposed in Multi-
scale Entropy (MSE) [17]. The main ideas behind MSE and
MPE are producing coarse-grained time series with different
scales and then applying single-scale entropy approaches
(e.g., SampEn and PE) for the calculation of the complexity
of coarse-grained time series with different scales. How-
ever, it was reported that MPE still encounters some draw-
backs [7], [18]. First, the coarse-grained procedure greatly
reduces the data length of the time series with an increasing
scale. Furthermore, the original time series is equally divided
into non-overlapping fragments by the coarse-grained pro-
cedure, the results of which may yield inappropriate PE
measure in the MPE. Concerning this limitation, Compos-
ite Multiscale Permutation Entropy (CMPE) was later pro-
posed in [19] and [20] by integrating information of multiple
coarse-grained time series in one same scale. Comparatively,
the CMPE could provide higher entropy reliability than the
MPE while the use of high scale factors. Though the CMPE
has improved from the MPE; the fundamental theory behinds
the coarse-grained procedure is essentially a linear smoothing
of the original time series. As a result, coarse-grained time
series with increasing scale factors inevitably have sharply
decreased data length which possibly yields inconsistent PE
values. Moreover, only low-frequency components are main-
tained in the coarse-grained time series because of the coarse-
grained procedure is similar to the sub-sampling operation.
This may not adequately detect and identify incipient bearing
degradation, especially when coherent fault symptoms are
hidden in both low and high frequency components caused
by the emergence of early failures in rolling bearings.

In this paper, a novel entropy measure, named Fine-to-
Coarse Multiscale Permutation Entropy (F2CMPE), is put
forward to overcome the shortcomings in the coarse-grained
procedure mentioned above and generate reliable PEmeasure
even with high scale factors. The F2CMPEmethod enjoys the
advantages of extracting the dynamic change of time series
from both low-frequency and high-frequency components.

FIGURE 1. Flowchart of the proposed fault diagnosis method.

Besides, by using the Wavelet Packet Decomposition (WPD)
analysis and F2C procedure, the F2C signals generated from
reconstructed wavelet coefficients have the same data length
as that of raw time series, which improves the reliability of
PE calculation, especially when high scale factors are used
for feature extraction.

A new rolling bearing fault diagnosis method is proposed
based on the F2CMPE, LS and SVM, the flow chart of
which is presented in Fig. 1. More specifically, the F2CMPE
is first applied to characterize non-linear dynamic change
associated with fault symptoms from bearing vibration sig-
nals. After having obtained fault feature vectors, we apply
LS and SVM to select salient features and classify bearing
patterns respectively. Finally, the applicability of the pro-
posed F2CMPE method for analyzing synthetic signals with
different noises was studied and compared with the CMPE
in terms of different sources of noises (i.e., pink noise and
Gaussian white noise) and Signal-to-Noise Ratios (SNRs).
Then, the efficiency of the F2CMPE for bearing diagnosis
was verified via real bearing experimental validation, and a
comparative study between the proposed F2CMPE and the
CMPE was also carried out for diagnosing bearing defects.
The main contributions in this paper are concluded below:

• A novel non-linear complexity measure, named
F2CMPE, is proposed to estimate the dynamic change of
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rolling bearing vibration signals. The F2CMPE not only
takes low- and high-frequency components into account
but also mitigates the influence of decreased data length
in signals with high multiple scale factors based on the
WPD analysis and the F2C procedure.

• A new rolling bearing fault diagnosis method is pro-
posed by integrating the F2CMPE, LS and SVM meth-
ods for identifying and classifying incipient bearing fail-
ures.

• Both synthetic and experimental signals are analyzed
to verify the effectiveness of the F2CMPE for feature
extraction, and its performance is compared with that
of the CMPE for characterizing the dynamic changes
of time series. In the experimental validation, ten con-
ditions of rolling bearing are applied in terms of differ-
ent bearing components and fault severity levels. The
analysis results have demonstrated that the proposed
rolling bearing fault diagnosis method could guarantee
high reliability and robustness in identifying bearing
performance deterioration.

The rest of this paper is organized as follows: Section II
reviews the principles of the PE, MPE and CMPE. Section III
first reviews theWPD analysis and then presents the proposed
F2CMPE method. The parameter selection in the calculation
of the F2CMPE is also described and discussed. Section IV
presents the proposed bearing fault diagnosis method based
on the F2CMPE, LS and SVM. Section V shows the com-
parative study between the F2CMPE and CMPE algorithms
for analyzing synthetic signals with different noise levels.
Section VI presents the experimental analysis to study and
verify the effectiveness of the proposed method for rolling
bearing fault diagnosis. Finally, conclusions are drawn in
Section VII.

II. UNDERLYING PRINCIPLES OF PE, MPE AND CMPE
This section introduces the theoretical background of the PE,
MPE, and CMPE algorithms.

A. PERMUTATION ENTROPY (PE)
Bandit and Pompe proposed PE measure in 2002 for esti-
mating the complexity of time series based on permutation
patterns by comparing the neighboring values of the time
series [21]. PE enjoys the advantages of simplicity, fast cal-
culation and invariance concerning non-linear monotonous
transformations [22]. Thus, PE is suitable for analyzing non-
stationary time series measured from complex industrial sys-
tem [6]. The principle of PE is briefly described below:

Given a time series x(i) of length N , the time delay λ and
the embedding dimension m, the phase space of a time series
can be reconstructed as:

Xi = {x(i), x(i+ λ), · · · , x(i+ (m− 1)λ)} (1)

where 1 ≤ i ≤ N − (m − 1)λ. Then, the m number of real
values contained in eachXi can be rearranged in an increasing

order as

x(i+ (j1 − 1)λ) ≤ x(i+ (j2−1)λ) ≤ · · · ≤ x(i+ (jm − 1)λ)

(2)

Therefore, any vector Xi can be mapped onto a group of
symbols as

πn = (j1, j2, · · · , jm) (3)

where πn is one of the m! symbol permutations having m
distinct symbols and n = 1, 2, · · · , k, k ≤ m! (m! is
the largest number of distinct symbols). If we suppose that
P(π1),P(π2), · · · ,P(πk ) denote the probability distribution
of each symbol sequences respectively, and

∑k
n=1 P(πn) = 1.

For each permutation πn, the relative probability distribu-
tion can be determined by:

P(πn) =
Number{Xi has type πn | 1 ≤ i ≤ N − (m− 1)λ}

N − (m− 1)λ
(4)

Then, the normalized permutation entropy of order m is
defined as [23]:

PE = − ln(m!)−1
m!∑
j=1

P(πj) ln(P(πj)) (5)

It is notable that the PE value ranges from 0 to 1. The
smaller the PE value is, the more regular the time series is.

B. MPE AND CMPE
The MPE algorithm was developed by Aziz and Arif [16]
in 2005 based on the coarse-grained procedure and PE. Given
a time series {x(i), i = 1, 2, 3, · · · ,N } with data length N
and the scale factor τ , construct consecutive coarse-grained
time series, y(τ ). Each element of y(τ ) is calculated by aver-
aging a successively increasing number of data points in non-
overlapping windows at scale factor τ as follows:

y(τ )j =
1
τ

jτ∑
i=(j−1)τ+1

x(i), 1 ≤ j ≤
N
τ
, τ ≤ N (6)

Then, the MPE can be obtained by calculating PE via
various coarse-grained time series as

MPE(X , τ,m, λ) = PE(y(τ ),m, r) (7)

It can be observed that the coarse-grained procedure is
similar to a sub-sampling operation; hence, it may yield
imprecise values because of the increasingly reduced data
length in coarse-grained time series. Moreover, in the MPE,
a time series is divided into equal non-overlapping fragments,
as a result of which some potentially useful information
hidden in adjacent data points may be neglected.

To overcome the shortcomings above mentioned, in 2013,
Wu et al. proposed the concept of Composite Multiscale
Entropy (CMSE) to reduce the variance of estimated entropy
values at high scales [18]. Later, improved MPE methods
were proposed based on CMSE [19], [20], in which the
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FIGURE 2. Illustration of the coarse-graining procedure at the 2nd scale
factor in the CMPE algorithm where only low-frequency components are
considered.

improved coarse-grained procedure combines information
of multiple coarse-grained time series at one scale factor.
Herein, we call those improved MPE as CMPE since the
CMSE is the first work to propose the composite-based
coarse-graining procedure [18]. Similar to MPE, the CMPE
method mainly includes two steps. Firstly, given a time
series {x(i), i = 1, 2, 3, · · · ,N }, its coarse-grained forms
at multiple scales can be obtained. In the CMPE, the kth
coarse-grained time series for a given scale factor τ , y(τ )k =
{y(τ )k,1, y

(τ )
k,2, y

(τ )
k,3, y

(τ )
k,p} is defined as

y(τ )k,j =
1
τ

jτ+k−1∑
i=(j−1)τ+k

xi, 1 ≤ j ≤
N
τ
, 1 ≤ k ≤ τ (8)

then, by averaging of all the k number of CMPE values at τ
scale, the CMPE value with scale factor τ can be obtained as

CMPE(X , τ,m, λ) =
1
τ

τ∑
k=1

PE(y(τ )k ,m, λ) (9)

where τ is the scale factor for producing coarse-grained time
series, m is the embedding dimension, and λ is the time delay
in the calculation of the PE measure. As shown in Fig. 2,
two coarse-grained time series are separated from the original
time series at the 2nd scale factor in the CMPE algorithm.

III. FINE-TO-COARSE MULTISCALE PERMUTATION
ENTROPY (F2CMPE)
This section first briefly reviews the WPD analysis and
then introduces the proposed F2CMPE algorithm. Based on
the reconstructed wavelet coefficients using WPD, F2C sig-
nals are generated by consecutively removing high-frequency
components, and then PE measure is used to estimate the
complexity of the F2C signals for the calculation of F2CMPE
measure.

A. WAVELET PACKET DECOMPOSITION (WPD)
Wavelet analysis has been widely applied to analyze non-
stationary signals and enjoys the advantages of offering good

FIGURE 3. Illustration of WPD on the first level based on Haar wavelet
(C1,0 and C1,1 are, respectively, the approximation coefficients and detail
coefficients after use of low-pass and high-pass filters).

time and frequency resolutions [24]–[26]. WPD can provide
both approximate and detail wavelet decomposition coeffi-
cients with same frequency bandwidths by successively using
wavelet filtering operations to each decomposition level until
desired frequency resolution is achieved. The principle of
WPD can be briefly described as follows [27]. WPD can be
implemented by means of a pair of low-pass and high-pass
wavelet filters, denoted as h(k) and g(k) = (−1)kh(1 − k).
The decomposition of a signal x(t) is described as [28]:

Cj+1,2n =
∑
l

h(l − 2k)Cj,n

Cj+1,2n+1 =
∑
l

g(l − 2k)Cj,n
(10)

where Cj,n denotes the wavelet coefficient at the j-th decom-
position level, the n-th sub-band, and l is the number of the
wavelet coefficients. Thereby, the input signal can be decom-
posed into a series of wavelet decomposition coefficients
including approximation coefficients with low-frequency
information and detail coefficients with high-frequency
information.

To prove the superiority of WPD that could improve the
efficiency of multiple-scale entropy analysis, an example was
given to demonstrate the advantage of WPD when applying
for producing coarse-grained and fine-grained time series.
Fig. 3 presents a procedure of WPD transformation using
Haar wavelet on the first level; it also shows the principal
distinction between the WPD analysis and composite-based
coarse-grained procedure in CMPE (presented in Fig. 2)
when applying to extract frequency information from an
original time series. The former considers both lower and
higher frequency components into account; however, the lat-
ter ignores the high-frequency information, which merely
considers the low-frequency components. Therefore, WPD
makes full use of information hidden in both low- and high-
frequency components. Based on obtained wavelet packet
coefficients, the reconstruction procedure of the wavelet
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transform is defined as [29]:

Cj,n =
∑
l

[
h(k − 2l)Cj+1,2n

]
+

∑
l

[
g(k − 2l)Cj+1,2n+1

]
(11)

where h(k − 2l) and g(k − 2l) denote the low-pass and high-
pass wavelet reconstruction filters respectively. h is related to
the scaling function and g is related to the wavelet function.

Correspondingly, given a wavelet packet tree at the
j-th decomposition level, in total a set of 2j wavelet packet
coefficients, {Cj,n, 1 ≤ n ≤ 2j}, can be obtained where n is
the order of the coefficient in the j-th decomposition level.
Then, based on each coefficient vector Cj,n, a reconstructed
signal Rj,n, with the same length of the original signal, can
be produced by setting the all the other decomposition coef-
ficients on level j to zero and recursively implementing the
wavelet reconstruction transform in the inverse procedure
until j decreases to zero [30]. Among each reconstruction
procedure, the wavelet decomposition coefficient has 1/2 data
points by comparing with the upper level. Finally, for each
Rj,n, it has an approximative frequency range with that of
Cj,n and remains the same length with the original signal.
Therefore, given the sampling frequency Fs, the frequency
intervals of each Rj,n can be approximately computed by:(

(n− 1) ∗ 2−jFs, n ∗ 2−jFs
]
, n = 1, 2, · · · , 2j (12)

Reconstructed signals equally partition the whole fre-
quency spectrum of the signal and contain frequency informa-
tion ranging from low to high. Furthermore, the reconstructed
signals have the same data length as that of the original signal,
which avoids the large variance caused by the decreased data
length in the calculation of MPE and CMPE [7]. Thereby,
the definition of F2CMPE is proposed on the basis of WPD
transformation and reconstruction procedures.

B. F2CMPE ALGORITHM
The superiority of WPD allows decomposing non-stationary
signals into wavelet coefficients with good time and fre-
quency resolution. Also, the reconstruction procedure enables
the inversion of each wavelet decomposition coefficient to a
reconstructed sub-signal that remains the same length with
the original signal. Owing to the advantages of WPD anal-
ysis, the F2C signals are produced by constructing recon-
structed sub-signals with a fine-grained to coarse-grained
manner [31]. More specifically, in the F2C procedure, when
the scale factor increases, the high-frequency information is
consecutively removed from previously acquired F2C sig-
nals at lower scales. Hence, given F2C signals with increas-
ing scales, high-frequency and low-frequency information is
consecutively refined and obtained from the original signal
through the F2C procedure, which can contribute to appropri-
ately characterize the dynamic changes associated with fault
symptoms in vibration signals. The flowchart of our proposed
F2CMPE method is illustrated in Fig. 4. The F2CMPE algo-
rithm is described as follows:

1) Apply WPD to decompose an original signal to j-th
decomposition level where only wavelet decomposi-
tion coefficients produced from the branch of C1,0 on
the 1-th level are selected and used. Thereby, there
are 2j−1 sets of wavelet decomposition coefficients
{Cj,n, (0 ≤ n ≤ 2j−1 − 1)} are obtained and used in
the next step;

2) Reconstruct single branch using each acquired wavelet
decomposition coefficients on the j-th level, by setting
the coefficients of all the other vectors on level j to zero
and recursively implementing the wavelet reconstruc-
tion transform in the inverse procedure until j decreases
to zero. Thus, each reconstructed sub-signal has the
same data length as that of original signals. Therefore,
totally 2j−1 reconstructed signals, {Rj,n, (0 ≤ n ≤
2j−1 − 1)}, can be produced using the wavelet recon-
struction procedure;

3) F2C procedure: construct F2C signals by consecutively
removing one reconstructed signal from previously
obtained F2C signals, commencing from the accumu-
lation of all 2j−1 reconstructed signals. Thereby, F2C
signals are produced as

F2C(τ ) =
2j−1−τ∑
i=0

Rj,i, 0 ≤ i ≤ 2j−1 − 1,

1 ≤ τ ≤ 2j−1 (13)

where j is the decomposition level, τ is the scale factor,
and the maximum number of τ is equal to 2j−1. Herein,
the proposed F2C procedure refers to a process that pro-
duces sub-signals with fine-grained to coarse-grained
time-frequency information refined from the original
signal;

4) Perform PE to estimate the complexity of F2C sig-
nals over different scale factor τ , and we call these
procedures as Fine-to-Coarse Multiscale Permutation
Entropy (F2CMPE) analysis.

In summary, the main idea behinds the F2CMPE can be
concluded as two stages: 1) generate the F2C signals repre-
senting fine-grained to coarse-grained time-frequency infor-
mation obtained by consecutively removing the F2C signal
having high-frequency information from previous obtained
F2C signal based on the F2C procedure; 2) apply PE to
estimate the irregularity and dynamic changes of the F2C
signals over different scale factors. Herein, the frequency
range of the F2C signals obtained from the original signal
is gradually decreased since high-frequency components are
consecutively removed from previously produced F2C sig-
nals. Hence, through the F2C procedure, low-frequency infor-
mation finally remains in the F2C signals at high scales. With
an increasing scale factor, dynamic changes hidden in lower-
frequency components can be gradually characterized from
the original signal. Besides, in the proposed F2CMPE algo-
rithm, the only half frequency spectrum of the original signal
is used for producing F2C signals. Indeed, similarly, in MSE,
MPE, and CMPE, both of them only apply no more than half
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FIGURE 4. Flowchart of the proposed F2CMPE algorithm.

frequency spectrum of the original signal commencing from
2nd scale, because the coarse-grained procedure is similar to
a sub-sampling as well as a linear smoothing method.

Previously published works have verified the effectiveness
of the use of a half-frequency spectrum, which could provide
sufficient and accurate information for discriminating differ-
ent bearing conditions, such as in [6], [7], [11], and [15]–[20].
Furthermore, vibration acquisition system usually has a high
sampling frequency. Hence, very high-frequency compo-
nents typically contain too much detail information that may
be potentially considered as noises to some extent so that
it has less useful information for extracting intrinsic fault
symptoms. Moreover, the emergence of incipient failures in
rolling bearing components introduces impulse waves and
finally results in the occurrence of coupling frequency in both
lower and higher frequency components due to periodical
friction and strikes between faulty and healthy components.
Therefore, capturing the dynamic characteristics using the
F2CMPE measure allows discriminating different bearing
conditions based on the non-linear entropy analysis and pin-
pointing the root cause of bearing defects.

Comparatively, the use of the coarse-grained procedure
has some shortcomings in MPE and CMPE. Firstly, the fun-
damental idea behind MPE is essentially a linear smooth-
ing procedure. As a result, both MPE and CMPE lack
of high-frequency information obtained from the original
time series. That is, useful high-frequency components are
proactively discarded, which may not provide relatively
stable and precise entropy values. Furthermore, the data
length of the coarse-grained time series decreases over
increasing scale factors. But, the calculation of PE greatly
depends on the data length. For instance, short time series
may inevitably yield imprecise estimation of entropy val-
ues [6]. The proposed F2CMPE method could alleviate those
problems.

Theoretically, the proposed F2CMPEmethod not only pro-
vides low- and high-frequency information but also alleviates
the influence of short time series for PE calculation. Thanks
to the WPD analysis, it can give fine-grained resolution in
time and frequency domains. By using orthogonal wavelet
kernels, it allows generating wavelet coefficients by applying
low- and high-pass filters rather than the use of the simple
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FIGURE 5. Time domain waveforms and frequency spectrum of the original ORF signal and F2C signals using the F2CMPE. Herein, ORF stands for the
original bearing vibration signal with outer race fault, and the left waveforms are eight F2C signals. (a) time domain waveforms of ORF and F2C signals.
(b) frequency spectrum of ORF and F2C signals.

linear filter. Therefore, both low- and high-frequency infor-
mation can be maintained in the F2C signals. Furthermore,
by reconstructing coefficients to signals with the same data
length as the original time series, it could avoid imprecise PE
measure due to the decreased data length, especially when
the length of original data is already too short. Given an
example, a vibration signal of rolling bearingwith Outer Race
Fault (ORF) is analyzed by using the F2CMPE algorithm,
and 8 F2C signals are obtained when a four-level WPD tree
is used. The F2C signals and their corresponding frequency
spectrums are presented in Fig. 5.

One can see from Fig. 5 (a) that the F2C signals with
increasing scale factors are becoming more and more smooth
and flat because high-frequency information representing
detail changes has been consecutively removed from former
F2C signals according to the theory of the F2C procedure.
Therefore, only low-frequency information remains in the
F2C signals at very high scales. Furthermore, Fig. 5 (b)
indicates that the frequency range of each F2C signal is in
line with the concept of the F2C procedure. In particular,
both low- and high-frequency information is extracted from
the original signal and exists in F2C signals at small scales.
With an increasing scale, low-frequency information mainly
composes the frequency spectrum because of the use of
reconstruction signals produced by coefficients after the low-
pass filter. Besides, the frequency of the F2C signal at the
first scale factor is very similar to that of the original ORF
signal, which indicates that the F2C signals can maintain
significant frequency information in the original signal to
the most extent. Therefore, the F2CMPE method can be
used to characterize the complexity and dynamic changes
for extracting fault symptoms hidden in bearing vibration
signals.

C. PARAMETER SELECTION OF F2CMPE
The appropriate use of mother wavelet function and decom-
position level can significantly improve the performance of
generating F2C signals based on signal decomposition and
reconstruction in WPD analysis. More specifically, desired
frequency resolution in F2C signals can be achieved by using
a suitable wavelet kernel and decomposition level, where
the latter determines the frequency band in each F2C signal.
Therefore, the selection of wavelet and decomposition level is
vital for achieving optimum performance using the F2CMPE
algorithm, especially for generating the F2C signals appro-
priately. In wavelet analysis, the performance of a mother
wavelet is based on two major factors, namely the support
size and the number of vanishingmoments.More specifically,
a mother wavelet containing a large number of vanishing
moments and small support size can locate valuable infor-
mation from the original signal with less redundant informa-
tion [32]. Among various mother wavelets, the Daubechies
and Symlet family of wavelets are well-known for their
orthogonality and efficiency in filter implementation for
the Mallat fast algorithm, which are considered as desired
wavelet functions in this study. Besides, the Relative Wavelet
Energy (RWE) method has been applied to compare and
select the appropriate mother wavelet [33], [34]. The RWE
can provide information regarding relative energy distribu-
tion in transformed signals, which is also suitable for measur-
ing the energy ratio in the F2C signals. An appropriate mother
wavelet is supposed to extract the most significant amount of
energy because of the occurrence of failures which introduce
large magnitude in a few wavelet coefficients. Hence, the
wavelet kernel having the highest RWE value is considered
as the optimum mother wavelet for generating F2C signals.
Herein, the use of RWEmethod is described as follows. Given
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a set of F2C signals
{
F2Cτ , τ = 1, 2, · · · , 2j−1

}
, the energy

of each F2C signal can be obtained by:

E(τ ) =
N∑
i=1

|F2Cτ,i|2, 1 ≤ τ ≤ 2j−1 (14)

where i is the index of the data point in each F2C signal,
N is the data length of the F2C signal at the scale factor τ .
Then, the total energy of F2C signals obtained in the j-th
decomposition level can be obtained as

Esum =
2j−1∑
τ=1

E(τ ) (15)

Finally, the normalized value represents the relative energy
of each F2C signal among overall F2C signals:

RWE(τ ) =
E(τ )
Esum

, 1 ≤ τ ≤ 2j−1 (16)

where
∑2j−1
τ=1 RWE(τ ) = 1, and the energy probability

distribution RWE(τ ) is considered as a time-scale density.
Besides, the variance of one indicator quantifies to what
extent the indicator varies and fluctuates. Normally, the high
variance index also means that there are extra dynamic
changes and possibly additional information existed in this
indicator. Hence, in this study, the variance of RWE is also
applied to evaluate optional mother wavelet functions. The
larger variance value of REW is, the greater possibility of
extracting useful information associated with fault symptoms
from non-stationary signals [35]. In this study, the RWE
values and their corresponding variance are both applied to
evaluate four Daubechies (‘‘db2’’,‘‘db4’’,‘‘db6’’,‘‘db8’’) and
four Symlet (‘‘sym2’’, ‘‘sym4’’, ‘‘sym6’’, ‘‘sym8’’) wavelets
respectively to select the optimum one for generating F2C
signals. Additionally, the wavelet decomposition level deter-
mines the range of sub-frequency band inwavelet coefficients
as well as the reconstructed signals. The larger decomposition
level, the higher frequency resolution in each sub-band can be
obtained. Nevertheless, a very high decomposition level will
require more computational time and computing resources.
By taking the effectiveness of signal decomposition and
reconstruction based on WPD into consideration, a six-level
wavelet tree is used (the decomposition level j = 6) in
the F2CMPE algorithm. Subsequently, 32 F2C signals and
a set of F2CMPE features over 32 scale factors are produced
correspondingly.

To select the appropriate mother wavelet, the vibration
signals of rolling bearing with ten conditions are randomly
chosen from CaseWestern Reserve University (CWRU) Data
Center [36]. Eight number of different mother wavelet ker-
nels are then applied to construct F2C signals based on the
F2CMPE algorithm. In this study, the fifth-decomposition
level is used, and 32 sets of F2C signals are therefore obtained
correspondingly. This experiment is operated 100 times, and
the average maximum RWE values and their average vari-
ances are presented in Table 1. It can be seen that ‘‘db4’’

TABLE 1. Description of wavelet functions and their maximum RWE and
average variance values (RWE: Relative Wavelet Energy).

and ‘‘db6’’ wavelet functions outperform the rest. Besides,
the two indicators (namely RWE and its variance) of ‘‘db4’’
and ‘‘db6’’ wavelets are very similar, and ‘‘db4’’ is finally
selected as the desired mother wavelet in this study for the
F2CMPE feature extraction.

Additionally, the calculation of PE also greatly affects the
effectiveness of the F2CMPE feature extraction. To provide
reliable PE measurements, the selection of the embedding
dimension m and the time delay λ are necessary. Practically,
when m < 4 it cannot detect the dynamic change of the
mechanical vibration signals. Besides, when m > 8, not only
the reconstruction of phase space will homogenize vibration
signals but also the calculation of PE is time-consuming;
hence, it cannot truly reflect the small varying range. Accord-
ing to literatures [6], [37], it was recommended to select
m = 4 − 7. Regarding the use of time delay, when λ > 5,
it cannot detect a slight change in the time series. Compar-
atively, the effect of time delay λ has small effects on the
calculation of PE [15], especially when λ ≤ 4. Moreover,
a very short time series cannot produce prominent statistical
significance on PE values. Therefore, in this study,m = 5 and
λ = 3 are specified for the calculation of PE values from the
F2C signals by the F2CMPEmeasure as well as in the CMPE
measure for a comparative study, and the data length of time
series is set to N = 4, 096.

IV. THE PROPOSED BEARING DIAGNOSIS METHOD
This section describes the proposed method for fault diagno-
sis of rolling bearing based on the proposed F2CMPE, LS and
SVMmethods, the procedure of which is presented in Fig. 1.

A. LAPLACIAN SCORE (LS) FOR FEATURE SELECTION
The obtained F2CMPE features over all scales could be
applied to discriminate bearing conditions for fault diagnosis
purpose. Nevertheless, not all entropy measures are directly
associated with incipient bearing defects. Furthermore, a vast
number of feature vectors can be time-consuming due to the
increase of computational complexity because of the high
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dimensions. Hence, it is necessary to select the most critical
features to avoid the dimension disaster and enhance the
fault identification efficiency. In this paper, LS is applied to
choose salient features and construct the optimum feature
vectors by reducing feature dimension. It has been verified
for its efficiency in fault diagnosis of rolling bearing, such
as in [15]. LS is a feature selection method used to evaluate
the importance of features according to their power of local-
ity preserving based on Laplacian Eigenmaps and Locality
Preserving Projection [38].

Given m data samples and each sample has n features,
suppose Lr represent the Laplacian score of the r-th feature,
and fri represent the i-th sample of the r-th feature (r =
1, 2, · · · , n and i = 1, 2, · · · ,m). The main calculation of
LS algorithm can be described as follows:

1) Construct a nearest neighbor graph G with m nodes,
where the i-th node corresponds to the i-th data point
xi. Then an edge is put between i-th and j-th node,
if xi and xj are ‘‘close’’, which is defined as xi is
among k nearest neighbors of xj, or xj is among
k nearest neighbors of xi where k is practically set
to 5. When the label information is available, one
can put an edge between two noes sharing the same
label.

2) Define weight matrix S of the models as

Sij =

e−‖
xi−xj‖

2

t if nodes i and j are connected
0 otherwise.

(17)

where t is a suitable constant.
3) For the r-th feature, suppose fr as

f r = [fr1, fr2, · · · , frm]T , D = diag(SI),

I = [1, 1, · · · , 1]T , L = D− S. (18)

where I is the unit vector with dimension m and the
matrix L is often called graph Laplacian. Let

˜f r = f r −
f Tr DI
ITDI

I (19)

4) Compute the Laplacian Score of the r-th feature as
follows:

Lr =

∑
ij
(
fri − frj

)2 Sij
Var

(
f r
) =

˜f Tr L ˜f r
˜f Tr D ˜f r

(20)

where Var
(
f r
)
is used to estimate variance of the r-th feature.

The larger Sij is, the smaller (fri − frj) is; therefore the more
important the feature is, the smaller LS value of the feature
obtains. In this study, the use of LS helps to select salient
entropy features, which are then applied to construct fault fea-
ture vectors according to their LSs from low to high. Specif-
ically, entropy features with lower scores are considered as
critical features for representing fault symptoms extracted
from different vibration signals of rolling bearing [15], [38].
After that, the optimum feature vectors constructed using

F2CMPE features and LS can be fed intomulti-class SVM for
fault identification, which is used to classify health conditions
of rolling bearing.

B. THE PROPOSED ROLLING BEARING FAULT
DIAGNOSIS METHOD
The procedure of the proposed rolling bearing fault diagnosis
method is described as follows:

1) Vibration signals are collected from rolling bearings
with different conditions using an acceleration sensor
with a specified sampling frequency.

2) The F2CMPE algorithm is then applied to extract fault
features from measured vibration signals. In this study,
a six-level wavelet tree is used in the F2CMPE, and
32 F2CMPE features are produced. In the calculation
of PE, the embedding dimension m is set to 5 and time
delay λ is set to 3 respectively.

3) The initial fault feature vectors constructed using
32 F2CMPE features are then divided into training
and testing data sets respectively. After that, LS is
applied to refine and rank training and testing elements
of features according to their LS values from low to
high.

4) The first several salient features in each feature vector
after LS analysis are selected to construct new training
and testing fault feature vectors respectively.

5) The obtained optimum feature vectors are then fed into
multi-class SVM for fault identification and classifica-
tion.

V. COMPARATIVE ANALYSIS OF F2CMPE AND CMPE
BASED ON SYNTHETIC SIGNALS
In this study, simulation analysis is first carried out to inves-
tigate the performance of the proposed F2CMPE and con-
ventional CMPE for analyzing synthetic signals containing
different noise levels and SNRs.

A. ANALYSIS OF GAUSSIAN WHITE NOISE AND 1/F NOISE
Gaussian white noises and 1/f noises with different lengths
(N = 1024, 2048, 4096, 8192, and 16384) are considered in
this study. Both of the F2CMPE and CMPE are applied to
estimate entropy values from noise signals, and the numerical
results are presented in Fig. 6. From Fig.s 6 (a) and (b), it can
be noted that, with an increasing scale factor τ , the F2CMPE
features obtained from the Gaussian white noise and 1/f
noise signals gradually decrease from roughly 0.97 to 0.32.
This phenomenon is in line with the theory of the F2CMPE
algorithm, because both low and high-frequency informa-
tion is extracted from the F2C signals at low scales. The
waveforms of these F2C signals rapidly change and fluc-
tuate over time than those of the smooth signals at high
scales. Therefore, it potentially provides more permutation
sequences and obtains large PE values from those F2C signals
with low scales. Afterward, PE values start to descend with an
increasing scale since the detail information is continuously
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FIGURE 6. F2CMPE and CMPE features of Gaussian white noise and 1/f noise with different data length. (a) F2CMPE
measurements of Gaussian white noise. (b) F2CMPE measurements of 1/f noise. (c) CMPE measurements of Gaussian
white noise. (d) CMPE measurements of 1/f noise.

removed from previously obtained F2C signals; thus, wave-
forms of F2C signals at low scales are becoming more and
more smooth and regular. As a result, the higher the scale is,
the smaller the PE value is.

Additionally, in contrast with CMPE values obtained from
white and 1/f noise signals, one can note that F2CMPE feature
values show more consistency and stability with increasing
scales. Comparatively, the CMPE features, however, rela-
tively fluctuate over scale factors, especially when time series
with decreased data length are analyzed. Indeed, the calcu-
lation of PE depends on the data length of the time series.
Small data length can yield imprecise PE values and give an
incorrect estimation of the dynamic changes of time series.
From the comparative study, the simulation results indicate
that the F2CMPE could provide consistent and stable values
for estimating the complexity of time series compared to that
of the CMPE.

B. ANALYSIS OF SIGNALS WITH DIFFERENT SNRS
Mixed signals are analyzed to verify the distinguishability
and consistence of the proposed F2CMPEmeasure. Gaussian
white noise is added in a sinusoidal signal with a frequency
30 Hz, and the signals with SNRs: 10, 15, 20, 25, and 30 are
considered in this analysis. Then, the F2CMPE and CMPE
features of mixed signals are calculated, the results of which
are presented in Fig. 7. From Fig. 7, it shows that, for both
F2CMPE and CMPE features, entropy values of signals with
small SNRs are greater than that of signals with large SNRs,
because more white noises are added in the signals with a
decreasing SNR. This indicates that F2CMPE and CMPE
verify the case. Moreover, Fig. 7 (a) shows that the F2CMPE
features of the original signal keep steady over 32 scales, and
other signals with white noises gradually decrease until scales
are very high. This is because high-frequency information,
namely potential detail dynamic changes, is consecutively
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FIGURE 7. F2CMPE and CMPE features of synthetic signals with different SNRs. (a) F2CMPE measurements over 32 scales.
(b) CMPE measurements over 32 scales.

removed from F2C signals with increasing scales. Espe-
cially, F2CMPE features extracted from signals at very high
scales cannot be discriminated from each other as their wave-
forms are very smooth at very high scales. Comparatively,
Fig. 7 (b) shows that the CMPE features relatively fluctuate
over 32 scales, and most CMPE feature curves mix with each
other so that it is comparatively more difficult to distinguish
between those signals.

Therefore, the analysis results indicate that the F2CMPE
outperforms the CMPE in discriminating different conditions
of complex signals, which can efficiently characterize the
complexity of signals with different white noises, by extract-
ing low and high-frequency information from the F2C sig-
nals. Besides, the F2CMPE feature values have more consis-
tency and robustness than that of the CMPE when different
white noises are added to the original signal. Especially,
the curves of F2CMPE measure, in signals with small noises
(e.g., SNR= 25 or 30), have the similar trend with that of the
original sinusoidal signal, which indicates that the F2CMPE
measure is robust to small noises and can effectively represent
intrinsic complexity characteristics in non-stationary signals.

VI. EXPERIMENTAL DATA ANALYSIS
This section presents an experimental study to investigate the
performance of the F2CMPE for fault diagnosis of rolling
bearing by analyzing vibration signals. The experiment setup
is introduced, then results and discussions are presented and
described respectively.

A. EXPERIMENT SETUP
Experimental validation is carried out to verify the feasi-
bility of the proposed method for bearing fault diagnosis.
Bearing data sets are provided by the CWRU Bearing Data
Center [36]. In the experiments, bearing data, having ten
classes of states and three kinds of fault severity levels,
were collected from the drive end channel. This experi-
ment system is shown in Fig. 8, which includes a 3HP

FIGURE 8. CWRU bearing testbed [36].

TABLE 2. Description of each bearing condition and its class label.

motor, a torque transducer, a dynamometer, control elec-
tronics, and the 6205-2RS JEM SKF deep groove ball bear-
ing. Single point failures were introduced into SKF bearings
using electro-discharge machining with local fault diameters
of 0.1778 mm, 0.3556 mm, and 0.5334 mm and fault depth
of 0.2794 mm. In this experiment, vibration data of rolling
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FIGURE 9. Original and ranked F2CMPE and CMPE features of rolling bearing vibration signals over 32 scales based on LS analysis. (a) Original
F2CMPE features of vibration signals. (b) Ranked F2CMPE features of vibration signals after LS analysis. (c) Original CMPE features of vibration
signals. (d) Ranked CMPE features of vibration signals after LS analysis.

bearing include ten conditions, i.e., the normal condition
(Norm), and the damages on the inner race (IR), the outer
race (OR) at 6 o’clock, and the ball element (BE) respectively.
In this study, for all fault conditions, three defect sizes of
point fault were considered 0.1778 mm, 0.3556 mm, and
0.5334mm under 1730 r/min with Load 3 HP, and 12 kHz
sampling rate. These ten conditions are respectively labeled
as Norm, IR1, IR2, IR3, OR1, OR2, OR3, BE1, BE2, and
BE3. Then, these vibration signals were split into a set of
non-overlapping segments with a specified data length (N =
4, 096). The detail specification of each rolling bearing state
is presented in Table 2.

B. EXPERIMENTAL RESULTS AND DISCUSSION
In this case, the performance of the proposed F2CMPE for
rolling bearing fault diagnosis is validated and compared

with that of the conventional CMPE, where LS and SVM
are used as standard feature selection and fault classification
methods to justify the comparison results. Firstly, after the
data acquisition, there are in total 29 samples collected for
each condition, and 290 samples are therefore obtained for
ten conditions of rolling bearing. Each sample is a time
series with 4, 096 data points. Herein, 14 samples in each
state are selected as training samples, and the left 15 sam-
ples are chosen as testing samples. Then, the F2CMPE and
CMPE are applied to estimate the complexity of the vibra-
tion signals and produce 32 features to construct feature
vectors for each sample. Therefore, for all 29 samples in
each condition, the mean and standard deviation values of
the F2CMPE and CMPE features representing each state are
acquired, the results of which are shown in Fig.s 9 (a) and (c)
respectively. One can find that both F2CMPE and CMPE
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FIGURE 10. Comparative classification accuracy rate using the proposed F2CMPE and conventional CMPE methods based on LS and SVM over
(a) 32 and (b) 64 number of entropy features respectively. (a) Accuracy rate using increasing number of features from 1 to 32. (b) Accuracy rate
using increasing number of features from 1 to 64.

feature values gradually decrease with an increasing scale
factor since signals are becoming smooth and regular at high
scales. From Fig. 9 (a), it shows that the F2CMPE mea-
sures representing ten conditions of rolling bearing can be
relatively distinguished by observing waveforms, especially
from medium scales between 16 - 25. This indicates that
significant differences can be extracted and identified in ten
conditions using the F2CMPE. From Fig. 9 (c), it was found
that CMPE features representing ten bearing conditions are
very disordered and can be hardly discriminated by observing
waveforms directly. Besides, Fig.s 9 (a) and (c) indicate that
the standard deviation of the F2CMPE features at each scale
is comparatively smaller than those of the CMPE features,
which indicates that the calculation of F2CMPE is more
consistent and reliable. It indicates that the F2CMPE may
effectively extract the dynamic characteristics associatedwith
fault symptoms hidden in different conditions of rolling bear-
ing with different fault states.

After obtaining the F2CMPE and CMPE features from
vibration signals, LS is then used to select and rank salient
features for constructing all training and testing feature vec-
tors, the results of which are presented in Fig.s 9 (b) and (d).
Fig. 9 (b) shows that the first five ranked F2CMPE features
greatly distinguish different bearing conditions to the most
extent, the indexes of which are in line with those scales in
Fig. 9 (a), which can distinguish differences between vari-
ous bearing conditions. Comparatively, the first five CMPE
features lie in the 21 - 25 scales as shown in Fig. 9 (b).
Herein, the importance of entropy features selected using
LS refers to the discriminatory capability of differentiating
and distinguish between various bearing conditions. Besides,
Fig.s 9 (b) and (d) indicate that, for both F2CMPE and CMPE

features, entropy measurements at very low scales can hardly
contribute to the improvement of discriminative performance
since the redundant detail changes in high-frequency infor-
mation may not accurately reflect the intrinsic characteristics
in signals. Hence, after LS analysis, ranked entropy features
in front orders are applied to construct fault feature vectors for
bearing fault classification using SVM classifier [41], [42].

Aiming at verifying the effectiveness of the proposed
method for bearing fault classification, training and testing
feature vectors obtained from signals are used. At first, the
increasing number of features, ranging from 1 to 32, are
used to construct feature vectors. Given k number of features,
the feature vectors of training samples can be obtained with
dimension 140×k , and the feature vectors of testing samples
are 150 × k . Later, the different number of feature vectors
are respectively fed into the SVM classifier for performance
comparison. That is, 32 groups of experiments are carried
out using feature vectors that consist of a different number
of F2CMPE and CMPE features in each vector varying from
1 to 32. In our study, the RBF kernel is applied in SVM,
and a grid search method is applied to locate the optimum
cost parameter c and the width parameter g in the training
stage. Herein, c and g are respectively set between 2−10 to 210.
A 10-fold cross-validation method is used for the validation
of the proposed bearing fault diagnosis approach. In a k-fold
cross-validation method, the data sets are divided into k
subsets, and the holdout method is repeated k times. After
that, the average error for all k trials can be obtained. The
fault identification accuracy rate based on the F2CMPE and
CMPE using an increasing number of features are presented
in Fig. 10 (a). As can be seen, the classification accuracy rate
continuously increases with the use of an increasing number
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FIGURE 11. Misclassified outputs of testing samples using the first 3, 4 and 5 F2CMPE and CMPE features. (a) Outputs by using the first 3 F2CMPEs.
(b) Outputs by using the first 4 F2CMPEs. (c) Outputs by using the first 5 F2CMPEs. (d) Outputs by using the first 3 CMPEs. (e) Outputs by using the first
4 CMPEs. (f) Outputs by using the first 5 CMPEs.

of entropy features. Comparatively, the proposed method
based on the F2CMPE can achieve 100% accuracy rate using
only the first five features in contrast with that based on
the CMPE for fault identification. Moreover, the proposed
method can continuously maintain high and stable identifi-
cation accuracy for bearing diagnosis under ten conditions.

The indexes of the first eight features using the F2CMPE
method with 32 scales are 21, 22, 20, 19, 24, 23, 6, and
5 according to the LSs from low to high. The misclassified
testing samples are shown in Fig. 11 (a) - (c) in which the
first 3, 4, and 5 selected F2CMPE features are respectively
applied. Besides, the proposedmethod can achieve 99% accu-
racy rate with only the first four features. Hence, the analysis
results indicate that the proposed method using the F2CMPE,
LS and SVM can efficiently identify bearing faults under ten
conditions. Comparatively, the method based on the CMPE,
LS and SVMcannot continuously offer a stable accuracy rate,
when an increasing number of CMPE features are applied,
the values of which fluctuate between 86.67% and 100%.
The misclassified testing samples using the first 3, 4, and
5 selected CMPE features are presented in Fig. 11 (d) - (f)
respectively.

Additionally, the effectiveness of the F2CMPE and CMPE
features over 64 scales are investigated using the different
number of selected features using LS and SVM. The results
of the classification accuracy rate are shown in Fig. 10 (b),
which presents that the F2CMPE accuracy curve gradually

increases from 60% to 100% with the use of an increasing
number of features. Besides, it achieves a 100% accuracy rate
when the first eight features are used in this case. In contrast,
the CMPE accuracy curve initially rises to 93% and then goes
up and down when less than 16 CMPE features are applied,
after which it achieves a 100% accuracy rate. Nevertheless,
it cannot continuously guarantee a high and stable accuracy
rate which also fluctuates between 98.67% and 100%. Gen-
erally, with the use of an increasing number of features,
both F2CMPE and CMPE can achieve a reasonable classi-
fication accuracy. Evidently, the diagnosis method based on
the F2CMPE can provide a more reliable and stable fault
classification accuracy than that based on the CMPE, when
ten conditions of rolling bearings are considered. To sum up,
experimental validation has demonstrated that the proposed
method based on the F2CMPE, LS and SVM can efficiently
discriminate different states of rolling bearing and identify
bearing failures by offering reliable and stable bearing fault
pattern classification accuracy.

Finally, to illustrate the potential effectiveness of the pro-
posed methodology for bearing fault diagnosis, a comparison
study between the presented work and published literature
is summarized in Table 3. The comparative items include
the year of publication, defects considered, signal processing
method, characteristic features, classifier used, number of
classified states, maximum classification accuracy and fea-
ture selection method.
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TABLE 3. Comparative study between the proposed method and related published literature for rolling bearing fault diagnosis.

From Table 3, one can note that PE has been widely studied
under a multiple-scale framework for rolling bearing fault
diagnosis. Though some methodologies can achieve 100%
classification accuracy using the different number of bear-
ing conditions, their improved methods are mostly devel-
oped based on the definition of MPE. However, as has been
discussed in this study, both MPE and CMPE neglect the
high-frequency components; thereby, temporal time series
of decreased data length may not yield entropy estimation
appropriately. In this study, we are attempting to overcome
these limitations by proposed the F2CMPE measure. Fur-
thermore, it can be seen that LS and SVM methods have
been widely applied, respectively, for fault characterization
and classification in the field of fault diagnosis. In addition,
it should be noticed that our proposed method is different
from the method presented in Zhao et al. [39], in which aver-
age MPE values of wavelet coefficients are directly obtained
and used as feature vectors based on wavelet coefficients.
In contrast, in this paper, the F2C procedure is proposed
to construct F2C signals which contain varying low- and
high-frequency information based on WPD transformation
and reconstruction analysis. Besides, the LS feature selection
method is applied to investigate the performance of using a
different number of entropy features. Furthermore, experi-
mental results have demonstrated that the proposed method
can achieve a 100% identification accuracy rate even when
ten conditions of rolling bearing are applied for experimental
validation.

VII. CONCLUSIONS
In this paper, a new rolling bearing fault diagnosis method
is proposed based on the F2CMPE, LS and SVM. Focusing
on non-linear and non-stationary characteristics of bearing

vibration signals, a new entropy measure, named F2CMPE,
is presented to estimate the complexity and dynamic changes
of time series. The selection of parameters in the calculation
of the F2CMPE is introduced and discussed (i.e., wavelet
functions and decomposition level in WPD analysis). A com-
parative performance study was carried out to investigate the
F2CMPE and CMPE features for analyzing synthetic signals.
Results indicated that the F2CMPE method could yield more
consistent and robust entropy values compared with those of
the CMPE method. Meanwhile, the effectiveness of the pro-
posed bearing fault diagnosis method is verified by analyzing
rolling bearing vibration signals, which represent different
fault states and fault severity levels. Experimental results have
demonstrated the efficacy of the proposed method and the
superiority of the newly introduced F2CMPE measure for
fault detection and diagnosis of rolling bearing. For future
work, further study will be on the investigation of the pro-
posed bearing fault diagnosis method when applying for
analyzing vibration and acoustic signals measured from a real
industrial-scale rotary machine. Meanwhile, the focus will be
on developing self-adaptive approaches using an improved
multiple-scale entropy measure for detecting performance
deterioration in rotating machinery.

ABBREVIATIONS
λ Time delay
τ Scale factor
m Embedding dimension
N Data length of time series
j Decomposition level
Cj,n Wavelet decomposition coefficient
Rj,n Reconstructed sub-signal using each wavelet

decomposition coefficient
h(k) Low-pass filter
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g(k) High-pass filter
RWE Relative Wavelet Energy
F2C Fine-to-Coarse
F2CMPE Fine-to-Coarse Multiscale Permutation

Entropy
LS Laplacian Score
SVM Support Vector Machine
MSE Multiscale Entropy
WPD Wavelet Packet Decomposition
MPE Multiscale Permutation Entropy
CMPE Composite Multiscale Permutation Entropy
CMSE Composite Multiscale Entropy
ApEn Approximate Entropy
FuzzyEn Fuzzy Entropy
PE Permutation Entropy
SNRs Signal-to-Noise Ratios
EEMD Ensemble Empirical Mode Decomposition
GCMPE Generalized Composite Multiscale

Permutation Entropy
SampEn Sample Entropy

REFERENCES
[1] D. Wang, K.-L. Tsui, and Q. Miao, ‘‘Prognostics and health management:

A review of vibration based bearing and gear health indicators,’’ IEEE
Access, vol. 6, pp. 665–676, 2017.

[2] C. Li, D. Cabrera, J. de Oliveira, R.-V. Sanchez, M. Cerrada, and
G. Zurita, ‘‘Extracting repetitive transients for rotating machinery diagno-
sis using multiscale clustered grey infogram,’’Mech. Syst. Signal Process.,
vols. 76–77, pp. 157–173, Aug. 2016.

[3] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, ‘‘Machinery health prognos-
tics: A systematic review from data acquisition to RUL prediction,’’Mech.
Syst. Signal Process., vol. 104, pp. 799–834, May 2018.

[4] G. Jombo, Y. Zhang, J. D. Griffiths, and T. Latimer, ‘‘Automated gas
turbine sensor fault diagnostics,’’ in Proc. ASME Turbo Expo, Turbomach.
Tech. Conf. Expo. New York, NY, USA: American Society of Mechanical
Engineers, 2018.

[5] Z. Gao, C. Cecati, and S. X. Ding, ‘‘A survey of fault diagnosis and
fault-tolerant techniques—Part I: Fault diagnosis with model-based and
signal-based approaches,’’ IEEE Trans. Ind. Electron., vol. 62, no. 6,
pp. 3757–3767, Jun. 2015.

[6] R. Yan, Y. Liu, and R. X. Gao, ‘‘Permutation entropy: A nonlinear statis-
tical measure for status characterization of rotary machines,’’ Mech. Syst.
Signal Process., vol. 29, pp. 474–484, May 2012.

[7] A. Humeau-Heurtier, ‘‘The multiscale entropy algorithm and its variants:
A review,’’ Entropy, vol. 17, no. 5, pp. 3110–3123, 2015.

[8] Y.-D. Zhang et al., ‘‘Facial emotion recognition based on biorthogonal
wavelet entropy, fuzzy support vector machine, and stratified cross vali-
dation,’’ IEEE Access, vol. 4, pp. 8375–8385, 2016.

[9] G. Jiang, H. He, J. Yan, and P. Xie, ‘‘Multiscale convolutional neural
networks for fault diagnosis of wind turbine gearbox,’’ IEEE Trans. Ind.
Electron., vol. 66, no. 4, pp. 3196–3207, Apr. 2019.

[10] W. Deng, S. Zhang, H. Zhao, andX. Yang, ‘‘A novel fault diagnosis method
based on integrating empirical wavelet transform and fuzzy entropy for
motor bearing,’’ IEEE Access, vol. 6, pp. 35042–35056, 2018.

[11] Z. Huo, Y. Zhang, and L. Shu, ‘‘A short survey on fault diagnosis of rotating
machinery using entropy techniques,’’ in Proc. Ind. Netw. Intell. Syst.
(INISCOM), vol. 221. Cham, Switzerland: Springer, 2017, pp. 279–284.

[12] R. Yan and R. X. Gao, ‘‘Approximate entropy as a diagnostic tool for
machine health monitoring,’’ Mech. Syst. Signal Process., vol. 21, no. 2,
pp. 824–839, 2007.

[13] W. Chen, J. Zhuang, W. Yu, and Z. Wang, ‘‘Measuring complexity using
FuzzyEn, ApEn, and SampEn,’’Med. Eng. Phys., vol. 31, no. 1, pp. 61–68,
2009.

[14] C. Yi, Y. Lv, M. Ge, H. Xiao, and X. Yu, ‘‘Tensor singular spectrum
decomposition algorithm based on permutation entropy for rolling bearing
fault diagnosis,’’ Entropy, vol. 19, no. 4, p. 139, 2017.

[15] J. Zheng, H. Pan, S. Yang, and J. Cheng, ‘‘Generalized composite multi-
scale permutation entropy and Laplacian score based rolling bearing fault
diagnosis,’’ Mech. Syst. Signal Process., vol. 99, pp. 229–243, Jan. 2018.

[16] W. Aziz and M. Arif, ‘‘Multiscale permutation entropy of physiological
time series,’’ in Proc. Pakistan Sect. Multitopic Conf., Dec. 2005, pp. 1–6.

[17] M. Costa, A. L. Goldberger, and C.-K. Peng, ‘‘Multiscale entropy analysis
of complex physiologic time series,’’ Phys. Rev. Lett., vol. 89, no. 6,
Jul. 2002, Art. no. 068102.

[18] S.-D. Wu, C.-W. Wu, S.-G. Lin, C.-C. Wang, and K.-Y. Lee, ‘‘Time series
analysis using composite multiscale entropy,’’ Entropy, vol. 15, no. 3,
pp. 1069–1084, 2013.

[19] H. Azami and J. Escudero, ‘‘Improved multiscale permutation entropy
for biomedical signal analysis: Interpretation and application to elec-
troencephalogram recordings,’’ Biomed. Signal Process. Control, vol. 23,
pp. 28–41, Jan. 2016.

[20] Y. Li, W. Zhang, Q. Xiong, D. Luo, G. Mei, and T. Zhang, ‘‘A rolling
bearing fault diagnosis strategy based on improved multiscale permutation
entropy and least squares SVM,’’ J. Mech. Sci. Technol., vol. 31, no. 6,
pp. 2711–2722, 2017.

[21] C. Bandt and B. Pompe, ‘‘Permutation entropy: A natural complex-
ity measure for time series,’’ Phys. Rev. Lett., vol. 88, no. 17, 2002,
Art. no. 174102.

[22] M. Zanin, L. Zunino, O. A. Rosso, and D. Papo, ‘‘Permutation entropy and
its main biomedical and econophysics applications: A review,’’ Entropy,
vol. 14, no. 8, pp. 1553–1577, 2012.

[23] Y. Cao, W.-W. Tung, J. B. Gao, V. A. Protopopescu, and L. M. Hively,
‘‘Detecting dynamical changes in time series using the permutation
entropy,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 70, pp. 046217-1–046217-7, Oct. 2004.

[24] S. Wang et al., ‘‘Wavelet entropy and directed acyclic graph support vector
machine for detection of patients with unilateral hearing loss in MRI
scanning,’’ Frontiers Comput. Neurosci., vol. 10, p. 106, Oct. 2016.

[25] Z. Huo, Y. Zhang, P. Francq, L. Shu, and J. Huang, ‘‘Incipient fault
diagnosis of roller bearing using optimized wavelet transform based multi-
speed vibration signatures,’’ IEEE Access, vol. 5, pp. 19442–19456, 2017.

[26] Y. Zhang, Z. Dong, S. Wang, G. Ji, and J. Yang, ‘‘Preclinical diagnosis of
magnetic resonance (MR) brain images via discrete wavelet packet trans-
form with Tsallis entropy and generalized eigenvalue proximal support
vectormachine (GEPSVM),’’Entropy, vol. 17, no. 4, pp. 1795–1813, 2015.

[27] T. Ogden, Essential Wavelets for Statistical Applications and Data Analy-
sis. Basel, Switzerland: Birkhäuser, 2012.

[28] R. Yan, R. X. Gao, and X. Chen, ‘‘Wavelets for fault diagnosis of rotary
machines: A review with applications,’’ Signal Process., vol. 96, pp. 1–15,
Mar. 2014.

[29] G. Zhang, T. Yi, T. Zhang, and L. Cao, ‘‘A multiscale noise tuning
stochastic resonance for fault diagnosis in rolling element bearings,’’ Chin.
J. Phys., vol. 56, no. 1, pp. 145–157, 2018.

[30] L.-S. Law, J. H. Kim,W. Y. H. Liew, and S.-K. Lee, ‘‘An approach based on
wavelet packet decomposition and Hilbert–Huang transform (WPD–HHT)
for spindle bearings condition monitoring,’’ Mech. Syst. Signal Process.,
vol. 33, pp. 197–211, Nov. 2012.

[31] Z. Huo, Y. Zhang, and L. Shu, ‘‘Fine-to-coarse multiscale permutation
entropy for rolling bearing fault diagnosis,’’ in Proc. IEEE 14th Int. Wire-
less Commun. Mobile Comput. Conf. (IWCMC), Jun. 2018, pp. 660–665.

[32] S. G. Mallat, A Wavelet Tour of Signal Processing. Amsterdam,
‘The Netherlands: Elsevier, 1999.

[33] R. Yan, ‘‘Base wavelet selection criteria for non-stationary vibration anal-
ysis in bearing health diagnosis,’’ Ph.D. dissertation, Dept. Mech. Eng.,
Univ. Massachusetts Amherst, Amherst MA, USA, Jan. 2007.

[34] P. K. Kankar, S. C. Sharma, and S. P. Harsha, ‘‘Fault diagnosis of ball
bearings using continuous wavelet transform,’’ Appl. Soft Comput., vol. 11,
no. 2, pp. 2300–2312, 2011.

[35] J. Rafiee and P. W. Tse, ‘‘Use of autocorrelation of wavelet coeffi-
cients for fault diagnosis,’’ Mech. Syst. Signal Process., vol. 23, no. 5,
pp. 1554–1572, 2009.

[36] Case Western Reserve University Bearing Data Center. Accessed:
Dec. 28, 2018. [Online]. Available: http://csegroups.case.edu/
bearingdatacenter/home

[37] S.-D. Wu, P.-H. Wu, C.-W. Wu, J.-J. Ding, and C.-C. Wang, ‘‘Bearing
fault diagnosis based onmultiscale permutation entropy and support vector
machine,’’ Entropy, vol. 14, no. 8, pp. 1343–1356, Jul. 2012.

[38] X. He, D. Cai, and P. Niyogi, ‘‘Laplacian score for feature selection,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 507–514.

VOLUME 7, 2019 17065



Z. Huo et al.: New Bearing Fault Diagnosis Method Based on F2CMPE, LS and SVM

[39] L.-Y. Zhao, L. Wang, and R.-Q. Yan, ‘‘Rolling bearing fault diagno-
sis based on wavelet packet decomposition and multi-scale permutation
entropy,’’ Entropy, vol. 17, no. 9, pp. 6447–6461, 2015.

[40] X. Zhang, Y. Liang, J. Zhou, and Y. Zang, ‘‘A novel bearing fault diag-
nosis model integrated permutation entropy, ensemble empirical mode
decomposition and optimized SVM,’’Measurement, vol. 69, pp. 164–179,
Jun. 2015.

[41] LIBSVMMATLAB Toolbox. Accessed: Dec. 28, 2018. [Online]. Available:
https://www.csie.ntu.edu.tw/ cjlin/libsvm/

[42] Y. Zhang, S. Wang, and G. Ji, ‘‘A comprehensive survey on particle
swarm optimization algorithm and its applications,’’Math. Problems Eng.,
vol. 2015, Feb. 2015, Art. no. 931256.

ZHIQIANG HUO received the B.S. and M.S.
degrees from the China University of Geosciences,
Beijing, China, in 2013 and 2016, respectively.
He is currently pursuing the Ph.D. degree with
the School of Engineering, University of Lincoln,
Lincoln, U.K. His research interests include the
field of fault diagnosis of industrial systems, wire-
less sensor networks, and participatory sensing. He
received the INISCOM 2017 Best Paper Award.
He has served as the Co-Chair for international

conferences/workshops, such as AINIS 2015 and 2016 and CollaborateCom
2017.

YU ZHANG received the B.Sc. degree from the
School of Aerospace Engineering and Applied
Mechanics, Tongji University, Shanghai, China,
in 2004, and the M.Sc. and Ph.D. degrees from
the Department of Civil Engineering, University
of Nottingham, Nottingham, U.K., in 2005 and
2011, respectively. She is currently a Senior Lec-
turer with the School of Engineering, University
of Lincoln, Lincoln, U.K. Her research interests
include equipment fault detection and diagnosis,

grey-box system modeling, and development of data analysis and machine
learning algorithms for industrial applications.

LEI SHU (M’07–SM’15) received the B.Sc.
degree in computer science from the South Cen-
tral University for Nationalities, China, in 2002,
the M.Sc. degree in computer engineering from
Kyung Hee University, South Korea, in 2005,
and the Ph.D. degree from the Digital Enterprise
Research Institute, National University of Ireland,
Galway, Ireland, in 2010. Until 2012, he was a
Specially Assigned Researcher with the Depart-
ment ofMultimedia Engineering, Graduate School

of Information Science and Technology, Osaka University, Japan. He is
currently a Distinguished Professor with Nanjing Agricultural University,
China, and a Lincoln Professor with the University of Lincoln, U.K. He
is also the Director of the NAU-Lincoln Joint Research Center of Intelli-
gent Engineering. He is also a member of the EU Academy of Sciences.
He has published over 380 papers in related conferences, journals, and
books in the area of sensor networks. His H-index is 42 and i10-index is
153 in Google Scholar Citation. His main research interests include wireless
sensor networks and the Internet of Things. He served as a TPC Member
of more than 150 conferences, including ICDCS, DCOSS, MASS, ICC,
Globecom, ICCCN, WCNC, and ISCC. He received the Globecom 2010,
ICC 2013, ComManTel 2014, WICON 2016, and SigTelCom 2017 Best
Paper Awards, the 2017 and 2018 IEEE Systems Journal Best Paper Awards,
the 2014 Top Level Talents in ’’Sailing Plan’’ of Guangdong Province,
China, the 2015 Outstanding Young Professor of Guangdong Province,
China, and the Outstanding Associate Editor Award of the 2017 IEEE
ACCESS. He has served as the Co-Chair, more than 50 times, for interna-
tional conferences/workshops, including the IWCMC, ICC, ISCC, ICNC,
and Chinacom, especially the Symposium Co-Chair for IWCMC 2012 and
ICC 2012, the General Co-Chair for the Chinacom 2014, Qshine 2015,
Collaboratecom 2017, DependSys 2018, and SCI 2019, and the TPC Chair
for the InisCom 2015, NCCA 2015, WICON 2016, NCCA 2016, Chinacom
2017, InisCom 2017, WMNC 2017, and NCCA 2018. He has been serving
as Associate Editor for the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,
IEEE Communications Magazine, IEEE Network Magazine, IEEE SYSTEMS

JOURNAL, IEEE ACCESS, IEEE/CAA JOURNAL OF AUTOMATICS SINICA, Sensors,
and so on.

MICHAEL GALLIMORE received the B.Eng.
degree (Hons.) in mechanical and computer aided
engineering from Sheffield Hallam University,
Sheffield, U.K., in 2006, and the Ph.D. degree in
engineering from the University of Lincoln, Lin-
coln, U.K., in 2016, where he is currently the Head
of School of Engineering. His research interests
include intelligent diagnostics and prognostics,
signal processing, optimization, and biomedical
engineering.

17066 VOLUME 7, 2019


	INTRODUCTION
	UNDERLYING PRINCIPLES OF PE, MPE AND CMPE
	PERMUTATION ENTROPY (PE)
	MPE AND CMPE

	FINE-TO-COARSE MULTISCALE PERMUTATION ENTROPY (F2CMPE)
	WAVELET PACKET DECOMPOSITION (WPD)
	F2CMPE ALGORITHM
	PARAMETER SELECTION OF F2CMPE

	THE PROPOSED BEARING DIAGNOSIS METHOD
	LAPLACIAN SCORE (LS) FOR FEATURE SELECTION
	THE PROPOSED ROLLING BEARING FAULT DIAGNOSIS METHOD

	COMPARATIVE ANALYSIS OF F2CMPE AND CMPE BASED ON SYNTHETIC SIGNALS
	ANALYSIS OF GAUSSIAN WHITE NOISE AND 1/F NOISE
	ANALYSIS OF SIGNALS WITH DIFFERENT SNRS

	EXPERIMENTAL DATA ANALYSIS
	EXPERIMENT SETUP
	EXPERIMENTAL RESULTS AND DISCUSSION

	CONCLUSIONS
	REFERENCES
	Biographies
	ZHIQIANG HUO
	YU ZHANG
	LEI SHU
	MICHAEL GALLIMORE


