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ABSTRACT In this paper, we propose an Arabic word segmentation technique based on a bi-directional
long short-term memory deep neural network. This paper addresses the two tasks of word segmentation only
and word segmentation for nine cases of the rewrite. Word segmentation with a rewrite concerns inferring
letters that are dropped or changed when the main word unit is attached to another unit, and it writes these
letters back when the two units are separated as a result of segmentation. We only use binary labels as
indicators of segmentation positions. Therefore, label 1 is an indicator of the start of a new word (split) in a
sequence of symbols not including whitespace, and label 0 is an indicator for any other case (no-split). This is
different from the mainstream feature representation for word segmentation in which multi-valued labeling
is used to mark the sequence symbols: beginning, inside, and outside. We used the Arabic Treebank data
and its clitics segmentation scheme in our experiments. The trained model without the help of any additional
language resources, such as dictionaries, morphological analyzers, or rules, achieved a high F1 value for the
Arabic word segmentation only (98.03%) and Arabic word segmentation with the rewrite (more than 99%
for frequent rewrite cases). We also compared our model with four state-of-the-art Arabic word segmenters.
It performed better than the other segmenters on a modern standard Arabic text, and it was the best among
the segmenters that do not use any additional language resources in another test using classical Arabic text.

INDEX TERMS Arabic word segmentation, bi-directional long short-term memory, deep learning, neural
network, word embedding.

I. INTRODUCTION
Word segmentation is a traditional problem in natural lan-
guage processing. It focuses on segmenting certain mor-
phemes, that is, affixes and clitics, from the beginning and end
of words and stems. Arabic word segmentation is essential for
various natural language processing and text mining tasks,
such as machine translation [1], text classification [2], and
parsing [3]. For instance, two words that are combined in
a single sequence need to be identified before the sentence
that includes them can be conveniently parsed. If a preposi-
tion is attached to a noun, then these two morphemes need
to be split to match the grammar rule PP → IN NOUN.
Without the two morphemes being split, this rule will not be
applied.

Arabic morphology is known for its rich and complex
inflection rules. Examples of such rules include the attach-
ment of a preposition, for example, ‘‘b’’ or ‘‘l,’’ to words;
the attachment of object pronouns to the preceding words, for
example, ‘‘h’’ in ‘‘>ETyth’’1 (I gave him) is attached

1Buckwalter Arabic transliteration

to ‘‘>ETyt’’ (I gave); and the coordinating conjunc-
tion ‘‘w,’’ which is conventionally attached to succeeding
words in formal Arabic orthography.

In Arabic phonology, there are phenomena in which some
symbols in words are dropped when these words are attached
to other words to make pronunciation easier. This is in turn
reflected in the orthography. For instance, the first letter ‘‘A’’
of the determiner ‘‘Al’’ is dropped when it is attached after
the preposition ‘‘l.’’ An example of this phenomenon is the
sequence ‘‘llbyt’’ (for the house), which is a combination
of the preposition ‘‘l’’ and determined noun ‘‘Albyt’’
(the house). When these words are split as a result of segmen-
tation, the resulting segments are ‘‘l’’ and ‘‘lbyt’’ (for
a house). However, the second segment is incorrect because
it must be ‘‘Albyt’’ (the house) and not ‘‘lbyt’’ (for
a house), but the first symbol ‘‘A’’ was dropped when the
two morphemes combined to make pronunciation smoother.
This symbol needs to be added back after the segmentation
to result in the correct word ‘‘Albyt’’ (the house). This
problem is referred to in the literature as segmentation with
rewrite.
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The proposed systems to solve the problem of Arabic word
segmentation typically consider the problem either within
part of speech (POS) tagging and morphological disambigua-
tion or as a standalone problem (see Section II). Segmentation
with rewrite is either ignored completely [4], considered for
a limited number of rewrite [5], considered with the help of
a morphological analyzer [6], considered with the help of
dictionaries [7], or considered with the help of dictionaries
and rules.

In this paper, we propose a deep learning approach
based on a recurrent neural network (RNN), specifically
bi-directional long short-term memory (Bi-LSTM), to solve
the problem of Arabic word segmentation without rewriting
and with rewriting. The contribution of this paper is twofold.
First, we use a simple representation scheme and show its
effectiveness for Arabic word segmentation. The common
practice for word segmentation is to use the IOB labeling
scheme to mark the symbols in the sequence. Label ‘I’
denotes ‘inside,’ which indicates the continuation of the
sequence. Label ‘O’ denotes ‘outside,’ which indicates that
the symbol is outside the sequence. Label ‘B’ denotes ‘begin-
ning,’ which indicates the beginning of the sequence. Instead
of using this scheme, we use a binary labeling scheme. In this
scheme, ‘1’ indicates a splitting position, which defines the
beginning of a new morpheme that is attached to another
morpheme in the original corpus, and ‘0’ is used otherwise.
To the best of our knowledge, this work is the first to use
a binary labeling scheme and deep neural network (DNN)
for this problem. Second, we consider a wider range of cases
of segmentation rewriting (nine cases) than have been pre-
viously reported for Arabic word segmentation based on the
output of the deep learning model without the use of any type
of morphological analyzer, dictionary, or rules. To train our
model, we used Arabic Treebank (ATB) data and an ATB
clitics segmentation schema. The resulting model achieved
high F1 values for both segmentation without rewriting and
for most cases of segmentation with rewriting. The model
also achieved a competitive F1 value when compared with
state-of-the-art Arabic word segmentation systems.

This paper is organized as follows: In Section II, we present
the related literature. In Section III, we provide some back-
ground information about linguistic and neural networks.
In Sections IV and V, we explain the proposed method and
the dataset used in the experiments. In Sections VII and VIII,
we illustrate the experimental results.

II. RELATED WORK
This work is related to two research topics: Arabic word
segmentation and using deep learning for word segmentation.
Arabic word segmentation is typically considered as a part of
the POS tagging problem. Two approaches have been con-
ducted in the field of Arabic POS tagging research to manage
Arabic word segmentation: rule-based and statistical. For the
rule-based approach, different methods have been used. For
instance, Khoja [8], Zribi et al. [9], Alqrainy et al. [10],
Al-Taani and Al-Rub [11], and Hadni et al. [12] used the

lexicon approach and a predefined set of morphological rules
to identify affixes and clitics. Other rule-based methods have
been used, such as transformation-based learning [13], reg-
ular expressions [14], and the first solution provided by the
morphological analyzer [15].

For the statistical approach, two methods have been used
for Arabic word segmentation. The first method separates
the segmentation process from the POS tagging process.
In this method, segmentation is considered as a classification
problem and machine learning (ML) methods are applied
to train the chosen classifier. Different ML algorithms have
been applied, such as SVM ([16]–[18]), k-nearest neighbor
algorithm ([19], [20]), conditional random fields (CRF) [21],
and maximum likelihood model [22]. For the second method,
the process of choosing the correct segmentation is conducted
within the process of choosing the correct morphology anal-
ysis, which contains the segmentation information and POS
tagging decision. For instance, Habash and Rambow [23] and
Roth et al. [24] used the SVM algorithm to choose the best
solution of BAMA, Zalmout and Habash [6] used Bi-LSTM,
and Freihat et al. [25] used a maximum entropy POS tag-
ger. All the aforementioned studies have either relied on the
Buckwalter morphological analyzer or dictionaries with rules
to solve the issue of segmentation with rewriting.

Some studies have focused only on Arabic word segmen-
tation, such as those undertaken by Lee et al. [26], and
Benajiba and Zitouni [4]. In both studies, they used the same
approach, in which they built a seed segmenter based on
a language model and tables for affixes, clitics, and stems.
Both of the seed segmenters were trained on small manually
segmented corpora (10K and 572K). To improve the accuracy
of both segmenters, the seed segmenters were then used to
segment a large corpus containing 155Mwords to enhance
the stems table in the seed segmenters by acquiring new
stems. Neither of these two studies considered the problem
of rewriting. Lee et al. [26] reported 97% segmentation accu-
racy for both affixes and clitics on a test corpus comprising
28,449 words extracted from the LDC ATB: Part 1 v 2.0.
Benajiba and Zitouni [4] reported the accuracy for two exper-
iments. In the first experiment, they achieved 98.1% accu-
racy for affixes and clitics segmentation, and for the second
experiment, they achieved 99.4% for clitics segmentation.
Both experiments used a 42,591 word corpus extracted from
Parts 1–3 of the ATB.

Monroe et al. [5] developed an Arabic word segmenter for
both modern standard Arabic (MSA) and the Egyptian dialect
using the CRF algorithm. For MSA, they used Parts 1–3 of
the ATB and the Broadcast News ATB (BN) to train their
segmenter to segment all clitics as provided by the ATB.
They used five values for segmentation representation and
considered only three cases of segmentation rewriting. The
reported F-measure for MSA was 98.30% using ATB and
97.17% using BN.

The most recent work that has focused on Arabic word
segmentation only is Farasa [7]. Farasa considers the seg-
mentation of clitics as provided by ATB in addition to some
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affixes, such as the definite article ‘‘Al’’ and taa marbuttah
‘‘p,’’ among others. Farasa was built based on SVM-rank

using linear kernels and the following features: likelihood
of stems, prefixes, suffixes, and their combination; presence
in lexicons containing valid stems and named entities; and
underlying stem templates. Farasa was trained on different
parts of ATB and tested on a corpus comprising 70WikiNews
articles containing 18,271 words. The error rate was 1.06%
(accuracy equals 98.94%). Farasa uses lexicons to solve the
problem of segmentation with rewriting.

Several researchers have used DNNs to manage word
segmentation. RNNs with different configurations of hid-
den units and window sizes have been used for standalone
Chinese word segmentation [27], and for Chinese word seg-
mentation and POS tagging as a single task [28]. The claimed
performance in both studies is competitive with that for state-
of-the-art approaches. Long short-termmemory (LSTM) net-
works with different layers have also been used for Chinese
word segmentation [29]. The reported experiments show F1
values above 94% with some network architectures and con-
figurations on all the datasets. Yao and Huang [30] proposed
different Bi-LSTM architectures with single, double, and
three layers for Chinese word segmentation. They reported
that Bi-LSTM with three layers achieved the highest perfor-
mance on all the test sets in the experiments, attaining an F1
value above 97%.

III. BACKGROUND
A. ARABIC MORPHOLOGY
Generally, there are two groups of morphemes that Arabic
word segmentation can manage: affixes and clitics. Affixes
are certain morphemes that can be added to the beginning
(prefixes), middle (infixes), or end (suffixes) of the word stem
to form a new word or word form. For example, the mascu-
line singular noun ‘‘TAlb’’ (student) can be changed to
the feminine singular noun by attaching the suffix ‘‘p’’ to
become ‘‘TAlbp’’ (student), and can be changed to the
dual masculine singular noun by adding the suffix ‘‘An’’ at
the end to become ‘‘TAlbAn’’ (students). The past tense
verb ‘‘kataba’’ (wrote) can be changed to present tense
by adding ‘‘A,’’ ‘‘n,’’ ‘‘y,’’ or ‘‘t’’ to the beginning to
become, for example, ‘‘yaktub’’ (writes).
Clitics, like affixes, are morphemes that are attached to the

beginning (proclitics) or end (enclitics) of a word. Unlike
affixes, clitics do not change or affect the word form or
meaning, or create a new word. Furthermore, Arabic clitics
have POS, whereas affixes do not have this property. Clitics,
if needed, are attached to a word after the affixation process.
Thus, word segmentation can work on two levels: the first
is the separation of clitics from the word, and hence word
identification, and the second is the separation of affixes
from the word, and hence the identification of the word stem.
In this paper, we consider the first level of word segmentation,
that is, the identification and separation of clitics.

Because of the rules of the Arabic writing system, when
clitics are attached to a word, the letters attached to the

clitics may be omitted or changed. For example, the word
‘‘lljAmEp’’ (for the university) was originally

‘‘l+AljAmEp,’’ but the letter ‘‘A’’ was omitted because of
the attachment of the clitic ‘‘l’’ to ‘‘AljAmEp.’’ The
letter ‘‘t’’ before the clitic ‘‘h’’ in the word ‘‘syArth’’
(his car), for example, needs to be re-written to be ‘‘p’’ after
segmentation: ‘‘syArp+h.’’

Attaching clitics to Arabic words can form two, three,
or four words, or even a complete sentence. For example,

‘‘fsykfykhm’’ (So will suffice you against them) is
a complete sentence containing four clitics ‘‘f, s,
k, hm’’ and one word ‘‘ykfy’’ (suffices). This case is rare,
there are much simpler forms for the concatenation of clitics
in Arabic writing system, where certain single morphemes
can be concatenated at the beginning of a word, such as
‘‘w,’’ ‘‘f,’’ and ‘‘k,’’ or at the end of a word, such as ‘‘h,’’
‘‘hm,’’ and ‘‘na.’’ It is also possible that single or multiple

morphemes can be concatenated at the beginning and end of
a word, such as ‘‘w+b’’ at the beginning and ‘‘hma’’
at the end.

Clitics can be a single letter, such as ‘‘w,’’ ‘‘b,’’ and
‘‘h;’’ two letters, such as ‘‘wA,’’ ‘‘hA,’’ and ‘‘hm;’’ or
three letters, such as ‘‘hmA,’’ ‘‘tmA,’’ and ‘‘kmA.’’
Word POS specifies the clitics that can be concatenated at the
beginning and/or end. For instance, singular common nouns
can accept ‘‘w,’’ ‘‘b,’’ and ‘‘f’’ at the beginning and
‘‘hA,’’ ‘‘hmA,’’ and ‘‘kmA’’ at the end. Clitics also

belong to certain POS tags in the Arabic language. Arabic
proclitics can be grouped under particles and enclitics under
pronouns.

B. DEEP LSTM NETWORKS
A DNN is a network of multiple layers of nonlinear trans-
formations of data. Given a set of instances of the form
{(x, y)}nt=1 , where xt is a feature vector and yt is a vector
representing an instance label, the DNN aims at approxi-
mating a function that transforms xt into yt with the least
amount of error. In our case, that is, word segmentation,
the feature vector is a set of symbols from some alphabet
and the label is a scalar, that is, a one-component vector,
that indicates the segmentation type. There are different
types of network architecture. One type that is suitable for
processing sequences, and thus natural language, is RNN.
In this architecture, the context of an instance is consid-
ered during its processing. This is achieved by feeding the
result of the mapping from each time step to the succeeding
step, as shown in Fig. 1. ht is a composition of nonlinear
transformations and U , V , and W are linear transformation
functions.

There are different types of networks based on which the
hidden layers in h are structured. One type that is commonly
used is LSTM ([31], [32]). This type is known for its ability
to capture long-distance contexts, thus making it possible to
label the current data instance based on a large window of pre-
ceding and succeeding instances. To achieve this, an LSTM
state consists of the following functions (Fig. 2 shows how
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FIGURE 1. Recurrent neural network.

FIGURE 2. LSTM cell.

these functions interact inside the LSTM cell):

ft = sigmoid
(
Vt .ht−1 + Uf xt + bf

)
(1)

it = sigmoid (Vt .ht−1 + Uixt + bi) (2)

ot = sigmoid (Vo.ht−1 + Uoxt + bo) (3)

ct = ft � ct−1 + it � tanh(Vc.ht−1 + Ucxt + bc) (4)

ht = ot � tanh(ct ) (5)

where f is the forget gate, which is trained to adjust how the
information that comes from the previous states is memorized
and passed on. i and o are the input and output gates, respec-
tively. ct and ht are the state and output of cell t , respectively.
The black circles in Fig. 2 represent element-wise multipli-
cation. A deep RNN may contain multiple hidden layers of
this form. It is obvious from Fig. 2 that the memorization
direction is forward. This allows the consideration of the
previous data points in the sequence. However, in many
language processing tasks, including the one that this work
considers, we want to consider the enclosing context from
both directions. Therefore, a Bi-LSTM has been proposed
in the literature [33]. In this architecture, each hidden layer
of the forward LSTM sequence is stacked with a sequence
of backward LSTM cells, as shown in Fig. 3. Recent devel-
opment in deep learning suggests that multiple layers of
LSTM cells for both directions are used to model multiple
non-linear transformations with context capturing. Therefore,
deep LSTM networks have recently been used extensively in
natural language processing tasks [27]–[30].

IV. METHOD
Our proposed method is based on a Bi-LSTM neural network
with three layers: an input layer, hidden layer, and output
layer. During the training phase, and starting from a random
state, the hidden layer attempts to learn to map the input to the
output using the error backpropagation algorithm. The input

FIGURE 3. Bi-directional LSTM network.

TABLE 1. Lookup table entry example for four characters.

layer accepts time series data. Each time series example
represents a single sentence. The sentence is fed into the
network in several time steps, one character representation at
a time. Character data are encoded as vectors to store context
information.

The input vector includes a representation of the character
itself and its neighbor characters. For example, in our chosen
representation, in a window of size five, there are representa-
tions for the current character and four other characters, that
is, two from each side of the current character.

We use a lookup table to represent characters. In a dictio-
nary of size 50 characters, there are 50 binary features for
each character. These characters include Arabic letters, num-
bers, and punctuation. The first character in the dictionary is
encoded to have the value one for the first feature and zero
for the remaining features. Similarly, the second character has
the value one only for the second feature. The all-zero feature
representation is reserved for a special character that indicates
the beginning and end of the sentence. Using these settings,
for a window size of five, the input vector has 250 binary
features (50 features for each of the five characters). The input
vector can be further extended with features for word embed-
ding information, as explained in Section IV. Table 1 shows
examples from the lookup table.

The output is the label of the current character.We have two
label schemes: a basic scheme and an extended scheme. For
the basic scheme, the label is either split or no-split. For the
split label, we segment the word before the current character.
The extended scheme adds eight rewrite labels, as described
in Section VI.

A. NETWORK CONFIGURATION
We attempted several settings for the network and we tested
it using a development dataset. The best result was achieved
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using a Bi-LSTM neural network with three hidden layers.
Each hidden layer had 100 nodes. We generally trained the
network for three full epochs, with the learning rate value
set to 0.1. We used the Deep Learning for Java (DL4J)
library2 for network implementation, training, development,
and evaluation.

B. WORD EMBEDDING
We also used the DL4J library to build a word2vec model.
The model was built using a data dump from Wikipedia for
2013 for Arabic content. The corpus contained over 48M
tokens, with approximately 311K distinct tokens. The corpus
was used in its original form without segmentation. We built
the word2vec model using different window sizes, with a
vector size of 100 features and a minimum frequency of
five occurrences. Based on our experiments, we found that
a window size of three tokens (one before the word and one
after the word) was sufficient for the present task. The size of
the final model was approximately 490MB. Table 2 lists some
words with their closest words using this word2vec model.

TABLE 2. Example of the closest words using the word2vec model.

Theword2vec datawere added to the character information
in the input vector. For each character, we added theword2vec
data of the word to which the character belonged. Thus, with
an input vector of size 250 features of context data of five
characters, we added 100 features. This increased the size of
the input vector to 350 features.

V. DATASET
The dataset used in our experiments was ATB (Parts
1–3)3 [34]. It contains approximately 22K sentences that
include approximately 620K words. For the experiments,
we split the data into three datasets: training (60%), devel-
opment (20%), and evaluation (20%).

Word segmentation occurred in 98,597 words (approx-
imately 16%) in the dataset. Approximately 94% of
these words had a single segmentation (e.g., ‘‘w+
muHam∼ad’’ ‘‘and Mohammad’’). Most of the remaining
words had two segmentations (e.g., ‘‘b+byt+k’’
(in your house), and there were only a few occurrences

2The DL4J library can be downloaded from https://deeplearning4j.org .
3The Penn ATB parts have several versions. In this paper, we used Part 1

version 3.0, Part 2 version 2.0, and Part 3 version 2.0.

TABLE 3. Counts of all the clitics in the corpus with example words.

of words with three segmentations (e.g.,
‘‘w+l+>TfAl+hm’’ ‘‘and for their children’’). Table 3 shows
all the clitics in the corpus and their counts. Because of the
ambiguity of some clitics and the fact that we used simple
text patterns for counting, the count may not be very precise.
However, these numbers provide an excellent estimation of
the distribution of all the clitics in the corpus. As an example
of clitic ambiguity, the word ‘‘kam’’ in ‘‘w+kam’’ is
counted as an instance of the clitic ‘‘km+’’ as in
‘‘vyAb+km’’ (your clothes).

Table 3 shows that the coordinator ‘‘w+’’ was the most
frequent clitic in the corpus. It represented approximately
41% of the clitics. Four other frequent clitics were the prepo-
sitions ‘‘l+’’ and ‘‘b+,’’ and the singular pronouns
‘‘+h’’ and ‘‘+hA.’’ These five frequent clitics represented
approximately 90% of the clitics in the corpus. The remaining
14 clitics covered less than 10% of the clitics in the dataset.
These statistics suggest twomain conclusions. First, anyword
segmenter should precisely manage the five frequent clitics
for it to be a successful segmenter. Second, it would be
difficult for a machine learning-based segmenter to learn a
sufficient amount about the less frequent clitics that, most of
the time, have very few examples in the dataset.

A. DATA FORMAT
We extracted the segmentation data from the ATB and stored
it in text files, sentence by sentence. Each file contained infor-
mation for a single sentence. Each sentence was considered
as a time series instance. The file contained a number of lines
equal to the number of characters in the sentence. In each line,
we stored the input vector data and output label.
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The output label is the tag of the current character, which
can be either 1 or 0 for the spilt/no-split scheme, or a value
from 0 to 9 for the extended rewrite scheme.

B. REWRITE INFORMATION
Character rewrite information is not provided in the ATB;
the information in the ATB only marks the split positions.
We used MADAMIR (Version 2.1) to collect the rewrite
information and added it the corpus. MADAMIR can pro-
cess segmentations that require rewriting with good accu-
racy. We identified all the rewrite cases in the corpus and
used MARAMIRA to provide solutions, and reviewed and
corrected these solutions manually.

TABLE 4. Labels for the extended scheme with counts and examples.

Table 4 shows examples and counts for all the segmentation
and rewrite cases in the corpus. Approximately 89% of the
segmentation cases required no rewrite. The most frequent
rewrite case in the corpus was the preposition ‘‘l’’ when
added to a noun with the definite article ‘‘Al’’ (approx-
imately 6%). The other two frequent rewrite cases were the
letters ‘‘y’’ and ‘‘t.’’ ‘‘ ’’ The remaining cases had a low
frequency in the dataset, particularly the letter ‘‘|,’’which
only had six examples. As mentioned previously, the low
frequency of some rewriting cases made it difficult for the
model to predict it.

VI. EXPERIMENTS
We used the development data to select the best settings for
the proposed method. Table 5 shows the main configuration
of the best settings that were used for all the experiments
in this paper. Using this configuration, we conducted two
main experiments. In the first experiment, we investigated
the performance of word segmentation without rewriting.
In the second experiment, we investigated the performance
of word segmentation with 10 cases of rewriting.

A. SEGMENTATION WITHOUT REWRITING
In this experiment, we built models for the basic scheme.
Table 6 shows the scores for two models. The basic configu-
ration achieved a very good result (F1= 97.65%). Adding the
word embedding information to the model slightly improved
the result by 0.38 points to reach 98.03%.

TABLE 5. Basic network configuration for the proposed method.

TABLE 6. Results for the basic model with and without word embedding.

TABLE 7. Results for the rewrite model using two datasets.

B. SEGMENTATION WITH REWRITING
The results for the rewrite model are shown in Table 7. The
scores are shown for each label in the extended scheme.
The second column shows the results for the first rewrite
model. This model was trained for 10 epochs instead of
three. Using the development data, we noticed that we needed
more epochs to enhance the accuracy for low-frequency
labels in the training dataset. With the exception of low-
frequency labels, the model achieved excellent scores. Five
labels scored above 95% on the F1 scale. The model failed
to learn any knowledge about the least frequent label in the
dataset, Label 8, which only had six examples in the corpus.

As an attempt to improve the score for the low-frequency
labels, we attempted to train the model using more data.
Thus, we combined the training data and development data
in one dataset and used it for training. The results for this
model using the evaluation dataset are shown in the third col-
umn of Table 7. These results show an overall improvement
of 4 points. Most results for the individual labels showed
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slight changes or remained unchanged. The results for the
less frequent labels were mixed. Label 9 had an excellent
boost of approximately 46 points. By contrast, the score for
Label 7 declined by almost the same amount: 43 points. Even
though these outcomes may not lead to clear conclusions,
the results for less frequent labels are most likely to improve
with substantially more training data.

VII. COMPARISON WITH STATE-OF-THE-ART
ARABIC WORD SEGMENTERS
In this section, we compare the proposed method with the
main and state-of-the-art methods in the literature. Most of
these methods, including in this study, were trained and/or
tested using ATB. However, the results may not be directly
comparable for several reasons, such as using a different split
or different version of the corpus. A fair comparison requires
using new testing data that were never processed by any
of the methods. Therefore, we selected two texts, one from
MSA and the other from classical Arabic, and preformed
the required word segmentations manually and used them for
comparison.

We compared our proposed method with the following
state-of-the-art methods:

1) Farasa4 [7]
2) MADAMIRA [18] (version 2.1)
3) Stanford Arabic Segmenter [5] (version 3.3.1)
4) IBM Arabic Word Segmenter [26]

A. MSA TEST
We randomly selected an article from the Al Riyadh newspa-
per to prepare the first test. The article was short to allow for
a rough comparison. The article had 646 tokens with 129 seg-
mentation cases. We only considered common segmentation
cases that were shared among all the methods. For example,
we did not count ‘‘Al’’ segmentation case because it was
not considered by all the methods.

All the tested methods achieved excellent results in this
test. Out of the 129 segmentation cases, there were only
20 segmentation cases that were somehow challenging.
Table 8 shows the results for this test. Our proposed model
achieved the best results, with only two segmentation errors.
Farasa and MADAMIRA were ranked next, with three and
four errors, respectively. Both, IBM and Stanford, generated
nine errors. However, most of the IBM errors were rewrite
errors. The IBMmethod only performs segmentation without
rewriting.

B. CLASSICAL ARABIC TEST
The results of the comparison for the previous test may not be
sufficient because of the small size of the test. Therefore, for
this experiment, we chose another text and made it as difficult
as possible.

4An online demo of Farasa can be accessed at http://
qatsdemo.cloudapp.net/farasa/demo.html

TABLE 8. Comparison of five segmentation methods using a newspaper
article. Segmentation errors are shown for each method.

The new text was a famous classical Arabic poem by Imru’
al-Qais from the sixth century. As mentioned previously,
the test was difficult because it contained different vocabulary
and syntax patterns that may never have been seen in the
training data. Despite this, classical and modern Arabic still
share many common features that make it possible to make
the required connections.

The classical poem contains 791 tokens with 294 segmen-
tation cases. We ran the test using the five methods, and the
results showed lower performance than was expected. Out
of the 294 cases, there were 156 segmentation cases with
errors based on one ormoremethods. Farasa achieved the best
accuracy, with only 39 segmentation errors. MADAMIRA
ranked second with 51 errors. Our proposed method, IBM,
and Stanford generated 63, 80, and 91 errors, respectively.

Table 9 shows the results of this experiment. The table
shows the unique segmentation errors for each method. These
words were correctly segmented by all the methods, except
for the given method. Most of MADAMIRA unique errors
were for rare classical Arabic words. MADAMIRA worked
better with common words. Farasa had only two unique
errors, which means it was good for both rare and common
(non-rare) words.

Our proposed method achieved the best result among the
three non-dictionary-based ML methods. Most of the unique
errors for these threemethodswere for commonwords, which
means that rare and common words were considered in the
same manner by these methods.
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TABLE 9. Comparison of five segmentation methods using a classical
Arabic poem. Unique segmentation errors are shown for each method.

VIII. CONCLUSIONS
In this paper, we addressed the problem of Arabic word
segmentation, both as a standalone approach and with a
rewrite. Our approachwas based solely on learning from data.
We used a Bi-LSTM neural network. Our proposed method
obtained a competitive result compared with state-of-the-art
systems. In our experiments, the proposed method attained
the lowest number of segmentation errors for an MSA test.
On a text from classical Arabic, a poem, the proposed method
attained the lowest number of errors among the systems that
do not rely on language resources, but it was third following
Farasa and MADAMIRA, which use language resources.
Based on our observations, a robust Arabic word segmenta-
tion system can be learned from data if the training set covers
a large vocabulary of the intended language and most of the
segmentation rules.
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