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ABSTRACT The artificial intelligence (AI) techniques have been widely used in the transient stability
analysis of a power system. They are recognized as the most promising approaches for predicting the
post-fault transient stability status with the use of phasor measurement units data. However, the popular
AI methods used for power systems are often ‘‘black boxes,’’ which result in the poor interpretation of the
model. In this paper, a transient stability prediction method based on extreme gradient boosting is proposed.
In this model, a decision graph and feature importance scores are provided to discover the relationship
between the features of the power system and transient stability. Meanwhile, the key features are selected
according to the feature importance scores to remove redundant variables. The simulation results on the New
England 39-bus system have demonstrated the superiority of the proposed model over the prior methods in
the computation speed and prediction accuracy. Finally, an algorithm is proposed to interpret the prediction
results for a specific fault of the power system, which further improves the interpretability of the model and
makes it attractive for real-time transient stability prediction.

INDEX TERMS Feature importance scores, model interpretation, XGBoost model, transient stability
prediction.

I. INTRODUCTION
With the development of the power grid, the dynamic char-
acteristics of the power system become more complex and
the stability analysis and control of the power system is
more difficult to be performed. When the power system
suffers various disturbances, the stability problems will be
caused to a different extent. Thus, it is of great significance
to predict the transient stability of power system quickly
and take emergency control actions after suffering a severe
disturbance. The commonly used methods of transient sta-
bility assessment (TSA) include time domain simulation and
direct methods [1]. The time domain simulation method
is currently the most robust method available for transient
stability assessment. However, it cannot make a trade-off
between time-consuming and resource-intensive while using
the parallel computation-based time domain simulation [2].

The direct methods include the transient energy function [3],
the extended equal area criterion [4], etc. They work fast
but the results are conservative. These methods cannot fully
meet the actual requirements of online TSA [5].

In recent years, artificial intelligence (AI) has been intro-
duced into power system, which has improved the solu-
tions in many applications. As a competitive technology for
accomplishing these applications, PMU provides the syn-
chronized parameters measurements with high sampling rate
in the milliseconds range. With the sampling data from PMU,
AI can be used to create the mapping between features of
power system and post-fault stability status.

With the development of machine learning theory, artifi-
cial neural network [6]–[8], support vector machines (SVM)
[9]–[11], decision tree [12]–[14] and other classical mod-
els are widely applied to transient stability prediction.
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Artificial neural network (ANN) based method is devel-
oped for quickly estimating the long-term voltage stability
margin [6]. The grey wolf optimization and particle swarm
optimization are introduced in [8] to train feedforward neu-
ral network. The work presented in [9] has shown that the
transient stability status of power system suffering a large
disturbance can be predicted timely by using the model of
SVM method based on the measured state parameters of the
generators. However, the number of input variables of the
model is related to the scale of the power system. Much
longer time will be spent to predict the transient stability
when the scale of power system is large. The method of SVM
with combinatorial trajectory inputs was trained to predict
the transient stability status, and also give the credible area
and incredible area of classifier [10]. In [12]–[14], an out-of-
step detection technique based on decision tree has been pro-
posed. The method presented in [12] has been applied to Iran
national grid. In [15], the random forest and recursive feature
elimination are proposed to select the key features of transient
stability assessment. Based on [15], a weighted random forest
is introduced to assess transient stability in [16]. In [17],
SVMs are used as weak classifiers in adaptive boosting algo-
rithm and they are further improved by a newweight updating
strategy based on fuzzy clustering threshold technique. The
ensemble learning machine is used to improve the prediction
accuracy by combining a series of weak base learners into a
strong one. However, with the expansion of power system,
the amount of PMU data is increasing greatly. Thus, it is hard
for the AI methods mentioned above to utilize the real-time
data for online TSA because of the low prediction accuracy
and long training time. Another reason is that many AI mod-
els are ‘‘black boxes’’, so that the decision rules obtained
by the models cannot be understood from the perspective of
human.

XGBoost is an efficient and scalable implementation of
the Gradient Boosting Machine (GBM), which has been a
competitive tool among artificial intelligence methods due
to its features such as easy parallelism and high prediction
accuracy [18]. Furthermore, the following advantages make
it adaptable to deal with the transient stability prediction:

(1) In XGBoost model, multithreading parallel computing
can be automatically called, which is faster than the tradi-
tional ensemble learning to predict the transient stability with
large amounts of data in the actual power grid.

(2) That the regularization term addition to XGBoost,
makes its generalization ability be improved, which makes
up for the shortcoming that the decision tree is easy to be
over-fitted.

(3) XGBoost is the tree structure model, which doesn’t
need to normalize the data collected by PMU in the power
system. Furthermore, it can effectively deal with the missing
values, which is suitable for PMU-based transient stability
prediction to discover the relationship between features and
transient stability.

This paper makes three main contributions to alleviate
some of the drawbacks discussed above. First, the XGBoost

model with high efficiency and accuracy in transient stability
prediction is introduced. Second, feature selection strate-
gies are implemented by two methods: correlation filtering
and model-based feature selection. Third, the paper gives
the explanation to the prediction result of the model in the
perspective of human. This paper is organized as follows.
Feature selection techniques are discussed in Section II. The
principles of XGBoost are presented in Section III. Section IV
and Section V respectively describe the model evaluation and
the flow chart of transient stability prediction. Section VI
presents some case studies and Section VII is the conclusion
of this paper.

II. FEATURE SELECTION PROCEDURE
PMU data is high-dimension time series, which is not suit-
able for large-scale system analysis. How to select useful
information from massive data to generate raw input features
is the premise of machine learning for transient stability
prediction. The following principles should be followedwhen
creating the raw input features: 1) features can reflect the
transient stability well; 2) the number of features does not
increase with the scale of the power system; 3) the calculation
of features should be fast enough. According to principles,
table 1 shows the 21 features selected with reference to
experience [19]–[21] of the researchers in features selection.
In table 1, t0 is the beginning time of the fault, tc is the cutting
time of the fault.

According to the features of table 1, the correlation
between every two features is analyzed to determine whether
the information among features is redundant. The correlation
coefficient indicates the linear correlation between two ran-
dom variable fi and fj, and the formula is shown as:

c =

n∑
l=1

(
f (l)i − f̄i

) (
f (l)j − f̄j

)
√

n∑
l=1

(
f (l)i − f̄i

)2 n∑
l=1

(
f (l)j − f̄j

)2 (1)

The values of c range from −1 to 1. Usually, if |c| > 0.5,
it indicates that the two features have a strong correlation;
if |c| is close to 0, it indicates that there is no linear correlation
between the features. Correlation matrix diagrams between
features are shown in Figure 1 and the values in the figure are
obtained according to formula (1).

The correlationmatrix is computed to check the linear rela-
tionship between the variables, which is used to identify the
highly correlated variables. The darker the color in the graph
is, the higher the correlation between the two features is.
Two variables have extremely high correlations magnitudes
which indicate that they are containing similar information.
The correlation filtering is intended to remove the redundant
variables. Some algorithms will be used to build unstable
models and decelerate the training process if the model has
redundant variables. Therefore, if a pair of variables has high
correlations (|c| > 0.98), one of the two will be removed.
Here, f0, f1 and f19 are removed accordingly.
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TABLE 1. Feature sets.

FIGURE 1. Correlation matrix between features.

III. PRINCIPLES OF XGBOOST MODEL
XGBoost has been widely used in many fields to achieve
state-of-the-art results on some data challenges (e.g., Kaggle
competitions), which is a high effective scalable machine
learning system for tree boosting [22]–[24]. XGBoost is opti-
mized under the Gradient Boosting framework and devel-
oped by Chen and Guestrin [18], which is designed to
be highly efficient, flexible and portable. The main idea
of boosting is to combine a series of weak classifiers
with low accuracy to build a strong classifier with better
classification performance. If the weak learner for each step
is based on the gradient direction of the loss function, it can
be called the Gradient Boosting Machines.

Assuming that a data set is D = {(xi, yi) :i=1 . . .n, xi∈Rm,

yi ∈ R}, we have n samples withm features. Let ŷi be defined
as the predict value by the model:

ŷi =
K∑
k=1

fk (xi) , fk ∈ F (2)

where fk represents an independent regression tree and
fk (xi) denotes the prediction score given by the k-th tree to
the i-th sample. The set of functions fk in the regression tree
model can be learned by minimizing the objective function:

Obj =
n∑
i=1

l
(
yi, ŷi

)
+

K∑
k=1

�(fk) (3)

The l herein is a training loss function, which measures
the difference between the prediction ŷ and the object yi.
To avoid over-fitting, the term � penalizes the complexity
of the model:

�(fk) = γT +
1
2
λ ‖w‖2 (4)

where γ and λ are the degrees of regularization. T and w are
the numbers of leaves and the scores on each leaf respectively.

The tree ensemble model can be trained in an additive
manner. Let ŷ(t)i be the prediction of the i-th instance at the
t-th iteration, it needs to add ft to minimize the following
objective:

Obj(t) =
n∑
i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+�(ft) (5)

The equation (6) is obtained by using the second order
Taylor expansion to simplify the equation (5) and remove the
constant term:

Obj(t) =
n∑
i=1

[
gift (xi)+

1
2
hift (xi)2

]
+�(ft) (6)

where gi = ∂ŷ(t−1)i
l
(
yi, ŷ

(t−1)
i

)
and hi = ∂2

ŷ(t−1)i

l
(
yi, ŷ

(t−1)
i

)
are the first and the second order gradient on l. Then the
objective is rewritten as:

Obj(t) =
n∑
i=1

[
gift (xi)+

1
2
hift (xi)2

]
+ γT +

1
2
λ

T∑
j=1

w2
j

=

T∑
j=1

∑
i∈Ij

gi

wj +
1
2

∑
i∈Ij

hi + λ

w2
j

+γT
(7)

where Ij = {i | q (xi) = j} denotes the instance set of leaf j.
For a fixed tree structure q, the optimal weight w∗j of leaf j
and the corresponding optimal value can be calculated by:

w∗j = −
Gj

Hj + λ
(8)

Obj∗ = −
1
2

T∑
j=1

G2
j

Hj + λ
+ λT (9)
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TABLE 2. Confusion matrix.

where Gj =
∑

i∈Ij gi, Hj =
∑

i∈Ij hi, obj presents the quality
of a tree structure q. The smaller the value is, the better the
structure of the tree is. Since it is impossible to enumerate
all the tree structures, a greedy algorithm is used to add
branches to the tree iteratively. IL and IR are the instance
sets of the left and right nodes after split. By enumerating
the feasible segmentation points and selecting the minimum
target function and the maximum gain partition, the gain
formula is shown as follows:

G =
1
2

[ (∑
i∈IL gi

)2∑
i∈IL hi+λ

+

(∑
i∈IR gi

)2∑
i∈IR hi+λ

−
(
∑

i∈I gi)
2∑

i∈I hi+λ

]
−γ

(10)

This formula is usually used in practice for evaluating the
split candidates. The XGBoost model produces many simple
trees, which are used to score a leaf node during splitting. The
first, second and third term of the equation stand for the score
on the left, right and the original leaf respectively. Moreover,
the termγ is the regularization on the additional leaf. It will
be used in the training process.

IV. MODEL OF TRANSIENT STABILITY ANALYSIS BASED
ON XGBOOST
A. CROSS VALIDATION
The simulation database is randomly divided into training
set (80%) and test set (20%). K-fold cross-validation is
used for the training set to find the best parameters of the
model. 10-fold cross validation is commonly used in practice.
In the 10-fold cross validation, the training set is split into
ten parts of approximately equal size, in which nine parts
are used for training and one part is used for validation. This
process is repeated ten times iteratively and the average of
these accuracy is taken as the expected prediction accuracy.

B. CONSTRUCTION OF EFFECTIVENESS EVALUATION
INDEX FOR TRANSIENT STABILITY PREDICTION
For a transient stability prediction model, the cores of the
model are high accuracy rate and superior computation speed.
It is hoped that the model can make a fast and accurate
determination of the transient stability status of post-fault
power system. The evaluation index proposed in this paper
is based on these two aspects. To evaluate the accuracy of the
classification model, the confusion matrix is listed in table 2.
The intersection of the rows and columns show one of the four
outcomes. For example, if we predict a case is stable, but it
actually is instable, this is a false positive (FP).

FIGURE 2. XGBoost-based transient stability prediction process.

It is considered that stable samples are less costly to predict
as unstable, and the unstable samples are more costly to
predict as stable. Once the instability case is omitted and
predicted to be stable without taking any measures, it would
perhaps lead to the disastrous consequences. Therefore, dif-
ferent evaluation indexes are considered as follows.

The missing alarm rate (MAR), which is used to measure
the fraction of unstable samples, are predicted to be security.
Here, the missing alarm rate is used to measure risk in tran-
sient stability status prediction of power system.

MAR =
TP

FP+ TN
(11)

The false alarm rate (FAR) measures the fraction of the
forecasted insecurity events that doesn’t occur. Its expression
is shown as:

FAR =
FN

TP+ FN
(12)

However, the overall accuracy that measures the total clas-
sification accuracy is needed, it is expressed as:

ACC =
TP+ TN

TP+ FN + FP+ TN
(13)

V. TRANSIENT STABILITY PREDICTION PROCESS
In this paper, an XGBoost-based transient stability predic-
tion model is proposed. The flowchart of the proposal is
depicted in Figure 2. The proposed model is implemented
via the following steps: 1) generator operating parameters
are obtained by simulating the expected faults, and all the
features are calculated according to table 1; 2) correlation
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FIGURE 3. New England 10-machine 39-bus power system.

analysis of original feature set; 3) XGBoost prediction model
is generated by training, and the trained transient stability
prediction model is evaluated by the test set.

1) DATA PRE-PROCESSING
The time-domain datum including generators speeds, rotor
angles and power are generated by the simulation of Power
System Analysis Software Package (PSASP). All the raw
input features are calculated according to table 1.

2) FEATURE SELECTION
Feature selection strategies are implemented by twomethods:
correlation filtering and the model-based feature selection.
Correlation filtering is intended to remove the redundant
features with extremely high correlations. The model-based
feature selection calculates the feature importance scores of
the model and filters redundant features with low scores
because they are regarded as unimportant variables.

3) MODEL TRAINING AND EVALUATION
The initial step of the training process includes a grid search
for finding the optimal parameters. The performance of the
proposed transient stability prediction model is evaluated by
the test set.

VI. CASE STUDY
In this paper, the New England 10-machine 39-bus power
system is used to illustrate the application of the proposed
XGBoost model. First of all, the datum are collected by
the simulation of PSASP. The contingencies considered are
mainly three-phase to ground faults happened at 60 different
locations. The above contingencies were repeated at five
different kinds of loading levels (80%, 90%, 100%,
110%, 120%). At each loading level, five different kinds of
active power of generators are changed randomly in the range
of 80%-120%. The simulations assume that the start time of
the fault is at 0.0s and the fault is cut off at 0.2s. The data
sampling period is 0.01s, and 1200 samples are collected.

TABLE 3. Performance of different classification models.

A large number of PMUs that can monitor generator oper-
ating parameters are being developed for predicting transient
stability in power system. The data collected will include
rotor angle, angular velocity, active power, reactive power
and mechanical power of generators. The stability of the
system is judged by whether the relative rotor angle of any
two generators is less than 360 degrees.

A. CLASSIFIER PERFORMANCE COMPARISON
In order to evaluate the effectiveness of the proposal, a test
between the XGBoost model and other popular machine
learning models is further carried out. The performance of
XGBoost model is compared with the other models, such
as random forest (RF), decision tree (DT), support vec-
tor machines (SVM) and back propagation neural network
(BPNN). The performance of different classification models
is summarized in table 3.

According to table 3, it can be found that in these models,
the XGBoost method has performed significantly better than
other models by the indexes MAR, FAR and ACC. Since the
decision tree is a single tree model, it takes a shorter training
time but performs worse than XGBoost and RF.

B. TRANSIENT PREDICTION MODEL ANALYSIS
In addition to training time and accuracy, interpretability is
also a vital factor to the transient stability prediction model.
However, interpretability tends to be neglected in many stud-
ies for the popular machine learning models (e.g., support
vector machines and Neural network) which are inherent the
‘‘black-box’’ systems. As the tree boosting model, the inter-
pretability of the XGBoost-based transient stability status
prediction model mainly has reflected in two aspects: deci-
sion rules and feature importance score.

This XGBoost-based model generates 100 basic tree mod-
els, as depicted in Figure 4. The feature importance scores
(F-score) denotes the number of times that a feature is used
for splitting in the training process. The features are sorted in
descending order of their relative importance scores, which is
shown in Figure 5.

A higher score indicates that the corresponding feature
is more important. Therefore, f9 (difference of max. and
min. generator rotor angle at tc) is valuable and should
be highlighted. By comparison, f10 (difference of max. and
min. kinetic energy at tc) is not a necessary feature in the
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FIGURE 4. Decision chart of XGBoost-based transient stability prediction
model.

FIGURE 5. Diagram of feature importance scores.

FIGURE 6. Distribution of f9 and f10 in stable and unstable conditions.

model and may be abandoned to speed up the training pro-
cess of the model. Figure 6 shows the distribution of f9
and f10 in the stable and the unstable conditions. If one
feature has the similar distribution under stable and unsta-
ble conditions, it means that this feature does not have the
ability to judge transient stability. It is obvious that the
distribution of f9 is more favorable for transient stability
classification.

According to the feature importance scores, three fea-
tures with the highest scores are selected to draw the three-
dimensional graph of the distribution of samples, as shown
in Figure 7. In Figure 7, red dots indicate unstable samples
and green dots indicate stable samples. It can be seen from

FIGURE 7. Three-dimensional distribution graph of samples under the
features of f5, f9 and f13.

FIGURE 8. Decision boundary of different classification models under the
two-dimensional graph of samples under features of f5 and f9. The
classification accuracy is shown in the lower right corner of every figure.

the Figure 7 that the three features can distinctly distinguish
unstable samples from stable samples. It means that this algo-
rithm can identify the key features of the transient stability of
power system.

For simplicity, two features (f5 and f9) are chosen to draw
the decision boundaries based on the different classification
models as shown in Figure 8. In Figure 8, the red dots
represent the unstable samples, and the blue dots represent
stable samples.

As is seen, the tree-based models have the similar decision
boundaries. The XGBoost model has the highest accuracy
among the models. It’s easy to find out the decision boundary
from the graph because it has only two features. If there are
many features, it is difficult to find out the decision boundary
and it is impossible to know why the model determines one
case to be stable or unstable in power system. Hence, there
appears a question that why we should trust the model?
In other words, if we do not trust a classifier, we won’t
use it. Of course, the best way of earning the trust of a
human would be that the AI can explain how it comes
to a given decision. One approach is LIME, which stands
for Local Interpretable Model-agnostic Explanations and is
a tool that helps to understand and explain the decisions
made by machine learning models [25]. This algorithm is
used to explain the prediction results in the last part of this
section.

13154 VOLUME 7, 2019



M. Chen et al.: XGBoost-Based Algorithm Interpretation and Application

FIGURE 9. Relationship between numbers of features and predictive
performance.

FIGURE 10. The rotor angle for Generator1-10 when fault occurred
at line 5-7.

C. PREDICTION MODEL PERFORMANCE WITH DIFFERENT
NUMBER OF FEATURES
According to the ranking of feature importance scores,
the features are added one by one from high to low and the
corresponding prediction accuracy is calculated. The number
of features and the prediction performance curve are shown
in Figure 9. The prediction performance tends to be stable
when the number of features reaches three.

D. TRANSIENT STABILITY ANALYSIS OF A THREE-PHASE
FAULT OCCURRED ON TRANSMISSION LINE
Assuming that the faults are occurred at line 5-7 and
line 1-9 and they will last 0.2s respectively, the data of rotor
angle, angular velocity, active power, reactive power and
mechanical power of generators are collected. The curves of
the generator angle are shown in Figure10 and Figure 11.

Traditionally, the most direct method to judge the stability
of power system is to observe the rotor angle of generator.
Therefore, Figure10 and Figure 11 show the change of rotor
angle for generator 1-10 when the three-phase short-circuit
fault happens respectively at line 1-9 and line 5-7. From
Figure 10, it can be seen that the line 1-9 remains stable after
the fault. While the fault occurs at line 5-7, the Gen2 reaches
360 degrees at about 0.73s, and loses its step. It means that the
power system is unstable in this case. By this method based

FIGURE 11. The rotor angle for Generator 1-10 when fault occurred at
line 1-9.

TABLE 4. Prediction results of stability after fault.

on XGBoost in this paper, the prediction results about the
stability of power system after fault is shown in table 4.

In table 4, the samples used in XGBoost model come
from the PMU. During this period that the three-phase
short-circuit fault occurs and disappears, the PMU in
plant collects all the operating parameters of generators.
Based on these data, features are calculated. Under the
operating condition that load level of the whole sys-
tem reaches 120% and the fault at line 5-7 is cleared
at 0.2s, the prediction results show that the system is unstable.
However, with the operating condition that 90% load level
and the fault at line 1-9 being cleared at 0.2s, the system is
judged to be still stable by the prediction results. By com-
paring with the result from Figure10 and Figure 11, the same
result has been obtained. However, the direct judgment by
observing the rotor angle needs much time. Only when the
rotor angle reaches some value, one can draw conclusions that
if it is stable or not. In this case, it takes 0.73s to get the result.
Furthermore, in Figure 10 or 11, it is not easy to judge if there
is the abnormal generator in a short time if the monitor has no
much experience. Hence, more time will be taken to observe
the curve for a still stable system after fault. The results for the
proposed method based on XGBoost show that only 2.81ms
has been taken to get the conclusion when system is unstable
after fault. However, less time 2.25ms has been taken to give
the result when system is still stable after fault. Therefore,
the XGBoost-based model shows an overwhelmed advantage
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FIGURE 12. LIME is used to explain the prediction results of the two
cases. The header of each figure gives the case detail, in which class label
is predicted and the corresponding probability is given.

on improving the computation time by comparing with the
traditional method.

AnXGBoost-based predictionmodel is built and themodel
has achieved about 97% accuracy on test data. Technically,
it is satisfactory. But wewant to understandwhy a certain case
of disturbance in power system is predicted to be unstable
and why others are not. An electrical engineer would then
be able to assess whether what the model learned makes
intuitive sense and can be trusted. To achieve this, LIME is
applied here. According to table 4, the LIME output for the
six most important features within the two cases are shown in
the Figure 12.

The artificial intelligence method used for transient sta-
bility prediction of power system is often a black box, for
it does not go deep into the mechanism of power system.
However, the method in this paper tries to explain the pre-
diction results for system operators who are familiar with the
mechanism of power system. The interpretable predictions is
important to make humans trust and use machine learning
effectively, if the explanations are faithful and intelligible.
The Figure 12 shows the explanation for the prediction of the
two cases. The first figure shows the case 1 (fault occurs at
line 5-7), which is classified as instability with 99% prob-
ability. Here, the close relationship between the weight of
features and the operating state of system in time domain is
constructed. The feature f9 is the difference of maximum and
minimum generator rotor angle at the cutting time of the fault.
The large difference between rotor angles will result in large
weight for the value of f9 to predict the case as ‘‘instability’’.
The feature f5 is the total system ‘‘energy adjustments’’.
In general, the power system tends to be unstable while the
value of f5 is large. The feature f13 is the total mechanical
power before the fault incipient time and it indicates the
load level which represents the general static stability level.

All features have different weights and they are combined to
predict transient stability accurately.

The process of interpreting individual predictions is illus-
trated in the Figure 12. It is much easier for the system
operator to position the status and make a decision with the
help of a model if intelligible explanations are provided.
In this case, an explanation is about some import features
with relative weights that either contribute to the prediction
(in green) or are evidence against it (in red). System opera-
tors usually have prior knowledge about the power system,
which they can use to accept or reject a prediction if they
understand the reasoning behind it. A model predicts that
the case is stable, and LIME highlights the features among
other features that led to the prediction. The values of f9, f5,
f14 and f18 are portrayed as contributing to the ‘‘instability’’,
while the values of f13 and f10 are evidence against it. By this
process, a system operator can make an informed decision
about whether to trust the model’s prediction.

VII. CONCLUSION
This paper presents a transient stability prediction method
for power system based on XGBoost. Firstly, the important
features of generator operating state during transient process
have been extracted by analyzing the dynamics of generator.
Meanwhile, the redundant features are removed based on the
correlation filtering and the model-based feature selection.
Then, the relationship between the features and transient
stability has been explained by the decision rules and feature
importance scores. At last, the XGBoost model constructed
is used to predict the transient stability based on the selected
features under the specific operating cases. By the simulation
results, the following conclusions can be drawn.

(1) By comparing with the traditional method, more fea-
tures can be considered in the XGBoost-based method, which
is attractive in complex power system, especially in the power
system with new energy source penetrated.

(2) By this proposed method, the important features can
be extracted among the massive features, which has the most
direct correlation with transient stability.

(3) As the outstanding advantage for the XGBoost-based
method, the fast computation makes it more possible to apply
in the online prediction of a comprehensive power system.

So the further research for this method will be as follows.
(1) In order to make the model easier to understand, some

more interpretative initial features can be constructed.
(2) Other hyper-parameter optimization approaches (e.g.

random search) can be introduced in the XGBoost model to
improve its adaptability in comprehensive power system.

(3) After the judgment for system stability, the deep learn-
ing methods can be introduced to combine with power system
to locate the fault when the power system suffers fault.
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