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ABSTRACT Neurosensory retinal detachment (NRD) is a separation of the neurosensory retina from the
retinal pigment epithelium (RPE) because of the subretinal fluid that can result in significant vision loss. The
detachment of the neurosensory retina is known to alter the topology as well as the intensity continuity of
the retinal layers. This nature of NRD makes the layer segmentation of NRD affected eyes difficult. In this
paper, we presented a fully automated three-dimensional (3D) method to segment the retinal layers and
NRD associated subretinal fluid from a spectral domain optical coherence tomography (SD-OCT) image.
The proposed method has three phases, including a prior information model; an NRD associated subretinal
fluid segmentation; and layer segmentation. The graph search and graph cut techniques were employed to
segment the retinal layers and NRD associated sub-retinal fluid, respectively. To reduce the computational
cost of graph-based optimization, the ‘divide and merge’ approach was introduced. The experiment shows
that while maintaining the segmentation accuracy, the ‘divide and merge’ approach considerably decreases
the computational cost. Ourmethodwas evaluated on 20 SD-OCT cubes diagnosedwithNRD, and the results
were compared with the manual segmentation results from experts. The layer evaluation showed an overall
absolute surface position difference of 6.34 ± 2.6µm, which is comparable with the inter-expert variability
of 6.39± 5.9 µm. The segmentation result of the NRD associated sub-retinal fluid was assessed in terms of
the dice coefficient and achieved means of 90.78% and 92.04% in comparison to two experts.

INDEX TERMS Graph cut, graph optimization, graph search, neurosensory retinal detachment (NRD),
retinal layer segmentation.

I. INTRODUCTION
Central serous chorioretinopathy (CSC) is a vision-
threatening disease among middle-aged male individuals [1].
CSC is mainly characterized by a decompensation of the
retinal pigment epithelium (RPE), resulting in neurosensory
retinal detachment (NRD) [2]. Segmentation of retinal layers
and the boundary of NRD associated subretinal fluid are
crucial for themedical assessment as well as research analysis
of the retina.

Spectral domain optical coherence tomography (SD-OCT)
is a non-invasive imaging modality that provides volumetric

images of retinal structures with high spatial resolution. The
macular centered SD-OCT image provides a clear structure
of the NRD as a well-demarcated fluid region that separates
the neurosensory retina from the retinal pigment epithelium
(Fig. 4(A)). Despite its advantage, SD-OCT produces a rela-
tively low signal-to-noise ratio that requires careful selection
of segmentation techniques.

A number of approaches have been presented for the
segmentation of retinal layers from OCT images [3]–[11].
Dufour et al. [5] presented an automated graph search based
multi-surface segmentation method to delineate five retinal
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layers. They used soft and hard smoothness constraints to
add prior information from a learned model. The smooth-
ness constraints improve the accuracy of the segmentation
and increase the robustness to noise by regularizing the
shape of the surface and the distance between surfaces. From
retinal time-domain optical coherence tomography images,
Garvin et al. [6] identified six surfaces using a 3D graph
search. Followed by the innovation of SD-OCT imaging,
this work was extended to segment seven surfaces from
SD-OCT images [8]. To increase the flexibility of the smooth-
ness constraints in handling the shape change of the layers,
Garvin et al. [8] applied a smoothness constraint that varies
across the surface. For the retinal layer segmentation from
normal eyes, He et al. [12] developed a cascaded deep net-
work which applies U-net to generate a probability map and
regression net to learn the shape and topology of the layers’.
Fang et al. [26] delineated nine retinal boundaries using a
graph search from the probability prediction generated using
FCN. The Iowa Reference Algorithms [3] is an automated
algorithm developed to segment 11 retinal surfaces. The
implementation of this algorithm is publicly available and the
results have comparable accuracy with manual segmentation.
Note that by definition, 11 retinal surfaces demarcate ten
retinal layers (Fig. 1(B)).

FIGURE 1. (A) B-scan sample from normal eyes of an SD-OCT image.
(B) 11 surfaces (Surf) from The Iowa Reference Algorithms [3] overlaid on
the B-scan. The 11 surfaces delineate ten retinal layers, namely, the Nerve
Fiber Layer (NFL), the Ganglion Cell Layer (GCL), the Inner Plexiform Layer
(IPL), the Inner Nuclear Layer (INL), the Outer Plexiform Layer (OPL),
the Outer Nuclear Layer (ONL), the Inner Segment (IS), and the Outer
Segment (OS), Outer Photoreceptor (OPR), Retinal Pigment
Epithelium (RPE).

Despite their effectiveness in the segmentation of layers
of normal eyes and layers with less topology deforming
disease (such as drusen), the methods presented in [3]–[8],
[10], and [11] do not achieve the same performance when
the eyes are affected by a disease such as NRD. When NRD
exists, the morphology of layers significantly changes and
the continuity of a layer’s intensity value may be highly
interrupted. As a result, the segmentation of retinal layers is
difficult.

For the segmentation of fluid associated abnormali-
ties of the retina, a couple of references [13]–[21] have
been presented. A 3D approach that uses probability con-
strained graph search and graph cut was presented [17]. The
layer-dependent stratified sampling approach for intrareti-
nal and subretinal fluid segmentation was presented in [16].
The serous pigment epithelial detachments (PED) segmenta-
tion framework that integrates the AdaBoost algorithm with
multi-scale graph search and shape-constrained graph cut
was presented in [18]. A recent study in [13] reported a
NRD associated subretinal fluid segmentation method from
SD-OCT images with significant accuracy.

The segmentation of layers and fluid regions has been
addressed by some of the previous works. Zhang et al. [20]
integrated 3D graph search and a supervised voxel classi-
fication method to segment the outer retinal-subretinal and
fluid-filled abnormalities, respectively, from eyeswith exuda-
tive age-related macular degeneration. Antony et al. [22]
presented a method that segments microcystic macular
edema and inner retinal surfaces using a graph-theoretic
approach. Novosel et al. [15] presented an algorithm that uses
the local attenuation coefficient contrast of layers surround-
ing the surface to segment the four surfaces between retinal
layers and to delineate the boundaries of fluid-associated
pathologies. Shi et al. [19] developed a method that seg-
ments 11 retinal surfaces and the PED volume from SD-OCT
images. The 3D multi-scale graph search was applied to the
layer segmentation. The intensity threshold and the height
difference between the final two consecutive surfaces were
used to detect PED. Roy et al. [23] used fully convolutional
networks (FCN) to generate pixel-wise labeling for eight
retinal layers and fluid regions.

However, to our knowledge, previous works do not address
the segmentation of all discernible retinal layers from an
SD-OCT image of NRD affected eyes. The proposal of a
method that segments all noticeable retinal layers and NRD
associated subretinal fluid is a very important contribution to
clinical investigation. Compared to previous works, the inno-
vative achievements of our work are as follows: (1) a novel
method that learns constraints from normal eyes in order to
segment 11 retinal surfaces, as well as the subretinal fluid
from NRD affected eyes, was presented. (2) The ‘‘divide and
merge’’ approach was introduced to reduce the computational
cost of graph-based optimization. (3) The easy yet effective
technique was introduced to locate the fovea region from
the thickness map. (4) The combination of k-means cluster
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and the rigid hard constraint was applied to estimate the
interrupted and missed retinal layers.

II. METHODS
A. OVERVIEW OF THE PROPOSED METHOD
The proposed method consists of three phases including the
prior information model; NRD associated subretinal fluid
segmentation, and layer segmentation. Fig. 2 shows the
flowchart of the proposed method. The prior information
model calculates the mean and variance of the smoothness
constraint from the layers of normal eyes segmented using
The Iowa Reference Algorithms [3]. The graph cut technique
was employed to segment the NRD associated subretinal
fluid. Finally, in the layer segmentation phase, the graph
search method was applied to segment the 11 retinal surfaces.
The details of each phase were explained in the following
sections.

FIGURE 2. The flowchart of the proposed algorithm.

B. PRIOR INFORMATION MODEL
In this phase, the mean and variance of the distance smooth-
ness constraint were calculated as the interval between a given
surface and the reference surface. The purpose of a distance
constraint is to limit the search area of the intended surface
with respect to the reference surface. The constraint was
learned from the fovea-centered 20 SD-OCT cubes of normal
eyes segmented using The Iowa Reference Algorithms [3].
Since the left and right eyes have slightly dissimilar orienta-
tion, the training dataset for each eye was adopted from the
eye with similar orientation. Alternatively, inverting around
the x-axis would be sufficient to compensate for the orienta-
tion difference for the left to right eye or vice versa.

The distance between the surfaces varies across the B-scan.
For example, surface 1 has a curvature shape around the fovea
region and the distance from the other surfaces is smaller
in this region (Fig. 3(C). Nevertheless, most of the clinical
SD-OCT scans are not perfectly centered in the fovea region.
To acquire an accurate prior information model, we find the
fovea center and align the training datasets by orienting the
fovea as the origin.

FIGURE 3. (A) Sample thickness map from a training dataset. The red line
shows the row where the fovea center was located. (B) The graph
representation of a thickness map row where the fovea center was
located. The fovea center and maximum peaks are shown using the red
asterisk and yellow lines, respectively. (C) The B-scan overlaid with the
fovea center and five slices including the fovea region. The vertical yellow
lines correspond to the boundaries where slices were partitioned. Note
that the two middle yellow lines and the red asterisk are the peaks and
the fovea center shown in panel (B).

The fovea center was estimated from the thickness map of
the retina obtained for each training dataset by calculating
the height difference of surfaces 1 and 11 Fig. 3(A). As a
retina has its smallest thickness in the fovea center, the A-
scan with minimum thickness was chosen as the fovea center.
For the correct approximation, some B-scans (first and last
30 B-scans) and A-scans (100 left and right A-scans) were
not considered.

The mean and variance of the distance constraint were
calculated per slice of the B-scan. In this context, a slice is
defined as a portion of a B-scan where a given surface and the
referenced surface have a relatively similar height difference
Fig. 3(C). Excluding the fovea region, the B-scan can be
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divided into a random number of slices, but it is important
to find the full fovea region and treat it separately. The full
fovea region was bounded from the fovea center within a
specified radius. The radius was assimilated by tracing two
maximum peaks in a B-scan where the fovea center is located
Figs. 3(A) & (B). This approach enables to find different
sized fovea regions without estimation of a fixed radius. The
Savitzky-Golay filter [28] was applied to the thickness map
to decrease the effect of small peaks.

For surfaces Si and Sj from n training datasets and
B-scan k , the mean distance (µh) of slice h with the width
of m was found using (1). The variance was also calculated
accordingly.

µ
i,j
h =

1
n

n∑
k=1

1
m

m∑
l=1

∣∣∣Ski (xl, yl)− Skj (xl, yl)∣∣∣ (1)

C. NRD ASSOCIATED FLUID SEGMENTATION
The segmentation of NRD associated subretinal fluid was
conducted using a 3D graph-cut technique. A graph cut
technique segments a region approximately with uniform
intensity values by integrating the regional and neighborhood
information. In this paper, we extended the interactive graph
cut algorithm presented by Boykov and Jolly [29] into a fully
automated approach. The details can be found in [29], but for
consistency here we summarized the main idea.

For the segmentation of a given region, it is normal to
consider the nature of the region and the property of its
boundary. According to [29], the region segmentation can
be formulated by using the energy minimization function,
as follows:

E (f ) =
∑
v∈V

Rv (fv)+
∑

v∈V ,u∈Nv

Bvu (fv, fu) (2)

where Rv (fv) and Bvu (fv, fu) are terms to describe the region
and boundary properties, respectively, and Nv is the set of the
neighborhood voxels of v.
The region term Rv (fv) evaluates the similarity of a voxel

to be labeled an object or background, and penalizes for
assigning a label fv to voxel v. The boundary term Bvu (fv, fu)
explains the continuity of the neighborhood pixels and penal-
izes for labeling a pair of voxel v and u with the labels of fv
and fu, respectively.

For the 3D graph cut, it is important to create a known
model for the voxels’ evaluation. For example, during binary
segmentation such as object and background, the sample
voxels from each label could be indicated as seeds, either
automatically or by the user. Then, during the evaluation,
if the voxel of the region is similar (e.g., in their intensity)
to the sample voxels of the label, then the value of the
region term is large and it is close to zero when they are
different [29].

To solve the problem using a s/t cut, the graph was con-
structed as follows. The weight of the t-links that connect
each node to both s and t terminals was calculated as the neg-
ative log-likelihood of the histogram of the intensity values

of the seed voxels.

Rv (obj) = −lnPr
(
Vinten | objseed

)
(3)

Rv (bkg) = −lnPr
(
Vinten | bkgseed

)
(4)

For the n-links that connect neighborhood voxels,
the boundary penalty was calculated using (5), in which
Iv and Iu are the intensity values of the neighbor pixels v
and u. Equation (5) assigns a large weight when the neighbor
voxels have similar intensity values and less weight when the
pixels have different intensity values. Hence, the lowest value
assigned for the boundary pixels that can be segmented using
the s/t cut method as presented in [30] and implementation
in [31].

B(v,u) = exp

(
−
(Iv − Iu)2

2σ 2

)
.

1
dist(v, u)

(5)

In the original work [29], the seeds were provided man-
ually by the user, but in our method, they were found auto-
matically by applying a k-means algorithm to the individual
B-scans. The k-means algorithm is a popular algorithm that
groups pixels of an image into k number of clusters. In the
k-means cluster, it is important to determine the number
of clusters k . To define the number of clusters, the three
major reflectivity profiles of a retina were considered. Each
B-scan displays the low reflectivity (vitreous fluid, sclera,
and subretinal fluid region for the NRD affected), medium
reflectivity (plexiform and the nuclear layers) and the high
reflectivity (the nerve fibers and the retinal pigment epithe-
lium) regions Fig. 4(B). As the k-means algorithm considers
only the intensity values of pixels, it is important to utilize the
3D spatial connectivity information of voxels to obtain true
subretinal fluid regions.

During the acquisition of an SD-OCT image, a very dark
sclera region may be included and it can result in incorrect k-
means clusters. To remove the possible incorrect clustering,
the top and bottom rows (100 rows) of each B-scan were
excluded.

The seeds for fluid (object) and retinal region (background)
were based on the threshold value from the low reflectivity
region. The threshold value can be the maximum value from
the low reflective region or determined by substituting the
mean and variance of the low reflectivity region into (6)
with various standard deviations (see section III (A) for
more details). The pixels with an intensity value less than
the threshold were seeds for the object, whereas those with
higher values were used for the background. During subreti-
nal fluid segmentation, all the layers were considered to be
background.

T = µlr + α0.
√
σ lr (6)

where T stand for the threshold value. µlr and σlr are mean
and variance from the low reflective region. α0 stands for the
standard deviation intervals that assumes the intensity distri-
bution in the low reflective region is normally distributed.
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FIGURE 4. NRD associated fluid segmentation. (A) The B-scan shows the
retinal region affected by NRD (the blue arrow indicates NRD related
subretinal fluid). (B) The result from k-means clustering. Low, medium
and high reflectivity regions were indicated using black, gray and white
colors, respectively. (C) The binary image of detected NRD associated
subretinal fluid. (D) B-scan overlaid with the results of subretinal fluid,
surface 1, 9 and 11 (outlined in yellow, red, cyan and green colors
respectively). The purple arrow shows the lower boundary of the fluid.

In this segmentation, because of the reduced intraretinal
reflectivity, the outer nuclear layer (ONL) might be seg-
mented as fluid. To remove the ONL region, the distance
between the lower boundary of the segmented fluid region
(Ex. the purple arrow in Fig. 4(D)) and surface 11 was
checked. If the distance is greater than the minimum possi-
ble distance between surfaces 11 and 9 based on the prior
information model, then it was removed. In other words,
the fluid regions with the lower boundary above surface 9
(cyan color in Fig. 4(D)) were omitted. Since the NRD asso-
ciated subretinal fluid appears below surface 9, this technique
successfully removes the possible ONL segmentation. The
maximum distance was calculated from the prior informa-
tion model, preventing the user from having to estimate a
threshold for different sized subretinal fluid. We applied the
level set [32], [33] to smooth the boundary of the final result
(Fig. 4(C) & (D)).

D. LAYER SEGMENTATION
Assume that X,Y, and Z denote the sizes of the SD-OCT
images in the x, y, and z directions, respectively (Fig. 5.(A)).
The boundary between layers was modeled as a terrain-like
surface that intersects each column at exactly one voxel.
This surface can be defined by a function → f : (x, y) z.
To ensure an accurate representation of the surface, the shape
information can be enforced.

The graph search method was used to segment the reti-
nal surfaces. To apply the graph search, finding the optimal
surface was transformed into the minimum closure problem
solved by the minimum s-t cut [34]. The weighted graph
G = (V ,E) with a set of vertexes V , and directed edges E of
non-negative weights was constructed as shown in Fig. 5(B).

FIGURE 5. Sample SD-OCT cube and the graph construction illustration.
(A) The orange arrows indicate the x, y, z directions. (B) The intra-column
edges are shown by yellow arrow whereas the inter-column edges are
shown using red (x-direction with a value of 1 for 1x) and green arrows
(y-direction with a value of 2 for 1y).

The voxels of images represent the vertexes of the graph and
the edges were defined as follows. The intra-column (yellow
arrows) edges between a vertex V (x, y, z) and V (x, y, z− 1)
were created to ensure the intersection of the surface with
each column exactly once. Given two columns (x, y) and
(x
′

, y) adjacent in the x-direction, the inter-column (red
arrows) edges were added from V (x, y, z) to V (x ′, y, z −
1xmin) and V (x ′, y, z + 1xmax). 1xmin and 1xmax are the
minimum and maximum height changes of the adjacent
columns in the x-direction. The same method was used in
the y-direction (green arrows). The inter-column edges were
intended to enforce the shape information of the surfaces.

The cost function C(x, y, z) of each vertex was calculated
as the inverse likelihood of the surface and its weight, formu-
lated as Eq. (7). Each vertex was connected to the additional
s and t nodes. The s node was connected to every vertex
through a t_link with a weight of wv and every vertex was
connected to a t node with a weight of−wv. The intra-column
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and inter-column edges are commonly called the n_ links and
were assigned infinite weight.

wv (x, y, z) =

{
cv (x, y, z) if z = 0
cv (x, y, z)− cv (x, y, z− 1) , otherwise

(7)

The gradient function that enhances the boundary of layers
based on the transition from dark-to-bright or bright-to-dark
was used to define the cost function. From top to bottom,
surfaces 2, 4, 6, 8 and 10 have a bright-to-dark transition,
whereas surfaces 1, 3, 5, 7 and 9 have a dark-to-bright tran-
sition. The anisotropic filter [35] was applied to each B-scan
to reduce the noise, and then a Sobel operator was used to
calculate the gradient.

In the case of multiple surface segmentations, we consider
the distance between the surfaces to improve the segmen-
tation result. For instance, if the surfaces are non-crossing,
we can assume that a given surface is always below or above
another surface. Thus, the distance between the surfaces can
be incorporated by introducing additional smoothness con-
straint 1d, which imposes a minimum (dmin) and maximum
(dmax) distance between the surfaces (8). If the minimum and
maximum distance between a given surface and its reference
surface are known, the search area of the surface can be
limited to be within that range.

1dmin≤vi(x, y, z)− vj(x, y, z) ≤ 1dmax (8)

where vi(x, y, z) and vj(x, y, z) are voxels on the surfaces of
Si and Sj, respectively. and 1dmax > 1dmin > 0.
In our method, the distance smoothness constraint was

learned in the prior information model phase. The mean
and variance of the constraint from the prior information
model enable us to determine the minimum and maximum of
the constraints using Eq. (9). The distance information was
applied to limit the search area of the surface with respect to
the reference surface.

δmin (x, y) = µ(x,y) − α1.
√
σ (x,y)

δmax (x, y) = µ(x,y) + α2.
√
σ (x,y) (9)

where δmin (x, y) and δmax (x, y) represent the upper and
lower boundary of the search area, µ(x,y) and σ(x,y) are the
mean and variance from the prior information model, and
α1 and α1 are the standard deviation intervals. Assuming the
prior information model is normally distributed, α1 and α2
represent the standard deviation intervals.

Including the prior information model, three approaches,
the potential possible pixel extraction (for surfaces 1 and 11),
the prior information model (for surfaces 2 through 6 and
8 through 10) and the combination of the two approaches
(for surface 7) were employed to limit the search areas of the
layers. Each approach was followed by a 3D graph search to
obtain the final segmentation result.

The potential possible pixels of surfaces were located from
binary images that were generated using threshold values
from the k-means algorithm. For surface 1, the maximum

FIGURE 6. The eleven retinal surfaces from the NRD affected eye. (A)
Original B-scan. The red line is an example of an A-scan (B) B-scan where
the subretinal fluid was removed. The blow arrow shows the choroid
region (C) The eleven retinal surfaces are overlaid on the original image.

intensity value of a low reflectivity cluster was used as the
threshold, and from the resulting binary image, the first
occurring non-zero pixels in the A-scan (Fig. 6(A)) were
chosen as potential possible pixels. The potential possible
pixels of surface 11 were estimated from the last occurring
pixel on the binary image generated using the minimum value
of high reflective cluster in a high reflectivity cluster. The
existence of a higher intensity valued choroid (Fig. 6(B))
may cause incorrect potential possible pixel estimation for
surface 11. To reduce the effect of the choroid, the morpho-
logical operators were applied to the binary images and rigid
shape constraints were used in the 3D graph construction.
To increase the search area, a fixed number of pixels (ten
pixels) were allowed above and below the potential pixels and
then the 3D graph search was applied to find the layers

TheNRD associated subretinal fluid is known for changing
the topology of layers. For instance, the curve nature of
surface 1 around the fovea region may significantly alter
when the subretinal fluid exist (Fig. 6(A)). For this reason,
following the detection of the NRD related subretinal fluid,
it was removed to attain the correct topology of the retina
(Fig. 6(B)). In the A-scans where the subretinal fluid was
removed, the height of surface 1 was adjusted. At this point,
it is possible to locate the fovea center (as described in
section II (B)) and align the image with the training datasets
to adopt the prior information model.

In addition to the topological change, the distances
between layers might deviate from the regular distance range,
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which can affect the search area limitation using the con-
straint learned from normal eyes. To overcome this condition,
we allow an extra search area by finding the upper and lower
boundaries of the search area using the reference surface and
the surface that is nearer and has a different transition than the
intended surface. For example, surface 2 is under a bright-
to-dark transition, whereas surface 3 is under a dark-to-
bright transition. To determine the search area for surface 2,
the lower boundary can be the maximum possible distance
between surfaces 1 and 3, whereas the upper boundary is the
minimum distance between surfaces 1 and 2. The maximum
and minimum distance is calculated from the prior informa-
tion model. The list of reference surfaces and chosen nearer
surfaces are shown in Table 1.

The search areas of surface 7 utilize both the potential
pixel finding approach and the prior information model.
In other words, first, the search area was limited and then the
occurrence of potential pixels was checked to guarantee the
continuity of surfaces in each A-scan. The potential pixels,
in this case, are the first occurrences of high reflectivity pixels
in the bounded area; if these pixels are not found, they were
searched for in the medium reflectivity cluster. Their absence
in both clusters shows the pixels are missing, so we use inter-
polation to complete the missing values. This combination is
important because in severe NRD, the intensity continuity of
this layer is highly deteriorated and the gradient information
was affected. Similar to surface 11, a fixed number of pixels
were allowed above and below the potential pixels and the
rigid constraint was applied in the 3D graph construction.

The accurate segmentation of the layers also depends on
the shape smoothness constraints, which were modeled as
the height changes of the surface between two consecu-
tive A-scans both in the x-direction (1x) and y-directions
(1y). In the x-direction, the surface shape changes smoothly
when it was moved from one column to another. But in
the y-direction, in addition to the shape changes, the eye
movement artifacts can cause height changes. In the imple-
mentation of the proposed method, we have tested vari-
ous combinations of shape smoothness constraints and the
details were explained in the parameter estimation section.
Finally, after the segmentation of all layers, the Savitzky-
Golay filter [28] was applied to smooth the layers.

E. THE ‘‘DIVIDE AND MERGE’’ APPROACH
The main challenge in 3D graph-based approach is the com-
putational time cost spent on graph optimization. In this
work, we have used the ‘‘divide and merge’’ approach that
decreases the computation time by reducing the graph size
in the y-direction (Fig. 5). The diagrammatic representation
is shown in Fig. 7. Upholding its order, the ‘‘divide and
merge’’approach splits the B-scans (the area between the
dotted lines) of a cube into mini-batches (the area between
red lines) to contain a limited number of B-scans for a given
execution. The execution of the mini-batches was conducted
by keeping the natural order of B-scans. After each execution,
in order to maintain the topological continuity of the layers,

FIGURE 7. The diagrammatic representation of the ‘‘divide and merge’’
approach. MB stands for mini-batch. The area between the dotted lines
represents the B-scans in the cube whereas the area between two red
lines stands for the mini-batches for a given execution. The shaded
regions are for the merged B-scans from consecutive mini-batches.

the last few B-scans from preceding batch were merged to
its succeeding batch (shaded area). That means, in addition
to its B-scans, the execution of each succeeding mini-batch
includes the B-scans from its preceding mini-batch. The
dividing technique is to reduce the size of the graph whereas
the merging preserves the topological continuity of layers.

We have tested the ‘‘divide and merge’’for different
mini-batch and merging sizes and the result shows that accu-
racy of the result is not significantly affected by the batch
based implementation (see the result in section III (E)). In our
assumption, the reason for less effect of the batch system
on accuracy is the structural anatomy of the retina which
changes smoothly across the B-scan. The smooth shape
enables the graph constructed from local B-scan to represent
the structures of the layers.

III. EXPERIMENTS AND RESULT ANALYSIS
The proposed method was tested on 20 SD-OCT cubes of
eyes diagnosedwith NRD. The SD-OCT cubes were obtained
from a Cirrus SD-OCT machine (Carl Zeiss Meditec,
Inc., Dublin, CA). Each SD-OCT cube has 128 B-scans
of 512 × 1024 pixels (512 A-scans where each A-scan com-
prises 1024 pixels).

To evaluate the proposed method, for the surfaces between
the layers and the boundaries of NRD associated subretinal
fluid, two experts created manual results. Surfaces 1, 2, 4,
5, 6, 7 and 11 were traced. The remainders of the surfaces
were excluded because in the most severely affected retinal
areas they are not visible to the human eye. The results of the
algorithm, both surfaces and NRD associated subretinal fluid,
were compared with the manual results from the experts. The
accuracy of the results was further compared with published
works. The surface segmentation was compared with the
results from a fully convolutional network (FCN) [36] and
‘DeepLabv3’ [27] whereas the subretinal fluid segmenta-
tion is in accordance with the recently published work by
Wu et al. [13].
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The precision of the surfaces’ locations was examined
by the metrics of the correlation coefficient (cc), p-value
and absolute surface position difference (ASPD). For the
segmentation results of the same B-scan from the manual
segmentation result (Y ) and the proposed method (X), the
absolute surface position difference measures the mean dif-
ference in the axial direction (i) for each A-scan was calcu-
lated using (10). K represents the number of B-scans used
for the evaluation and n is the number of columns across the
B-scan. The standard deviation calculated in the usual way.

ASPD (x, y) =
1
K

∑K

k=1

1
n

∑n

i=1

∣∣∣X ik − Y ik ∣∣∣ (10)

The accuracy of the NRD volume segmentation was
calculated in terms of Dice-coefficient (DC), overlap ratio
(Ovrlap), overestimated ratio (Ovrest) and underestimated
ratio (Undest). [37], [38]. The overlap ratio indicates the
amount of NRD region available both in the results of the
algorithm and of manual segmentation.

A. PARAMETER SELECTION
The parameters were fine-tuned on additional 13 manually
segmented validation datasets.

The seeds for the subretinal fluid segmentation were
obtained using threshold values estimated by (6), with the
mean and variance of the low reflectivity region from
the k-means cluster. Although the NRD is shown as a
well-demarcated fluid region in SD-OCT images, severe
cases commonly weaken the intensity distribution of the ONL
and lead to miss cluster of this region under a low reflectivity
cluster. Depending on the level of ONL interruption, various
standard deviation intervals (α0) can be replaced to esti-
mate the threshold in (6). Assuming that the low reflectivity
k-means region is normally distributed, a lower value of stan-
dard deviation interval can be substituted to promote uniform
region segmentation and discourage the inclusion of a weak
ONL as a fluid region. For a stronger boundary, the maximum
value from a low reflectivity cluster or a threshold using a
higher standard deviation interval can be substituted.

On the validation datasets, we have used the standard devi-
ation of 2.5 for two cubes where ONL is strongly deteriorated
and for the remainder of the testing datasets the maximum
value of the low reflectivity cluster was used. For the reported
results in section III (C & D), the maximum value of the low
reflectivity cluster was used.

The estimation of the upper and lower boundaries of the
layer search area uses (9). The standard deviation intervals
of 2.7 for the lower boundary (α1) and 2.9 for the upper
boundary (α2) were used so that 99 % of the possible search
area was included. This enables us to locate the surfaces even
when the thickness of the layers largely deviates from normal
eyes because of the NRD related subretinal fluid. The list
of reference surfaces and chosen nearer surfaces are shown
in Table 1.

To determine the shape smoothness constraints, the shape
variation of the layers and the strength of the gradient

TABLE 1. Details of shape constraint, reference surface and chosen
nearer surface for search area limitation.

information were considered. Since in the x-direction the
shapes of the surfaces change smoothly, 1x is set to 2 for all
surfaces except surface 7 and 11 which were set to the value
of 1.

The effect of 1y value selection on the absolute surface
position difference was tested by setting its values from one
to ten. As shown in Fig. 8, for surfaces 1, 2, and 6 the errors
are smaller as the value of 1y increases and become stable
for further increments of the values. This depicts that higher
values of 1y can be tolerated by layers with higher gradient
information. Surface 11 showed an increase in the error as
1y is larger because of the false positive potential pixels
from the high reflectivity choroid region during the k-means
cluster. The values of 1x and 1y are set to one to reduce the
effect of false positive potential pixels. Due to intense value
degradation in the severely affected retinal regions, surface 7
exhibited stability for small to medium values of 1y, but the
highest error for larger values of 1y. Surfaces 4 and 5 are
relatively stable in all ranges of the values, but we have used
a small value since the gradient strength of these layers is
weak.

FIGURE 8. The absolute surface position difference (ASPD) of retinal
surfaces with respect to various 1y values.

The surfaces prone to intensity value interruption
(surfaces 8 through 10) have small values of the shape
smoothness constraint, as shown in Table 1. By reducing the
flexibility of the graph search, a small value of 1y controls
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the possible wrong segmentation because of a disrupted
intensity value. The surfaces 7 and 11 have 1y of 1 which
impose rigid graph construction. Note that these results were
obtained by changing the values of the intended surface while
maintaining the values of the reference and nearer surfaces at
the values listed in Table 1. Henceforth, the error propagation
between layers was not considered.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
We have compared the proposed method with two CNN
models named FCN [36] and ‘DeepLabv3’ [27]. As described
in section II (D), for the proposed method, the constraints
were learned from normal eyes and the retinal surface seg-
mentation was conducted after the detection and removal of
the subretinal fluid region. For a fair comparison, we followed
the same rule for CNN architectures such that they were
trained using the retinal layers of normal eyes obtained from
The Iowa Reference Algorithms [3] and tested on subretinal
fluid-free B-scans in which the subretinal fluid was first
detected and removed by the proposed method. During the
evaluation phase (section III (C & D)) the fluid region was
retained to attain the topology of the retina that matches the
manual segmentation result. It is important to note that for
the proposed method, the prior information was calculated
as the distances between eleven retinal surfaces segmented
using [3], whereas the training sets of CNN architectures are
the ten retinal layers from [3], (see Fig. 1(B)).

CNN involves a number of hyper-parameters which
requires careful selection to achieve an optimal solu-
tion. In practice, for different CNN architectures and
datasets, the subset of hyper-parameters that matter
most are different, but it is often the case that a few
hyper-parameters made a significant difference [39]. In our
experiment, we have fine-tuned the hyper-parameters listed
in Table 2 using the random grid-based approach. The rest
of the hyper-parameters are the default values suggested
by the authors. The CNN architectures run on NVIDIA
GeForceGTX 1080 GPU

TABLE 2. The list of hyper-parameters and chosen values.

The codes for the CNN architectures were implemented
using Tensorflow and downloaded from [40] and [41] for [36]
and [27], respectively. We have used 2050 images for training
and 500 for validation. The images were down-sampled by 2
to get the size of 512 × 512.

In both architectures, after 30,000 training iterations the
overfitting started by increasing the validation error while

keep decreasing the training error. To overcome the over-
fitting issue, we have used an early stop approach and con-
strained the training iteration number for the values mention
in Table 2. For both [36] and [27] the training and validation
accuracy curves with respect to the number of the iteration
are shown in Fig. 9.

FIGURE 9. The training and validation loss of the CNN architectures.

C. QUALITATIVE AND QUANTITATIVE EVALUATION OF THE
PROPOSED METHOD WITH CNN
The qualitative evaluation of the surface segmentation result
of the proposed method was presented in contrast to [36]
and [27].

Fig. 10 shows the example of the qualitative comparison
of the proposed method with [36] and [27]. The proposed
method provided accurate surface segmentations in contrast
to [36] and [27] for most of the surfaces. Although the
topology of the retina was retained by removing the sub-
retinal fluid, the layers’ thicknesses change and the intensity
value interruption of the NRD affected region remain, which
could be the reason for the incorrect surface segmentation
using [36] and [27]. The results from CNN architectures
experience a discontinuity in the cases of NRD associated
fluid region (Figs. 10(C) & (D)). The CNN architectures
segment surface 1 relatively well because the NFL layer was
less interrupted by the NRD related subretinal fluid. The
proposed approach is capable of tolerating structural as well
as intensity value interruption of NRD affected regions.

The qualitative comparison of the subretinal fluid from the
proposedmethodwith [13] is shown in Fig. 11. The algorithm
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FIGURE 10. Examples of surface segmentation results from the proposed
method, [36] and [27]. (A) the original B-scans, (B) the results of the
proposed method, (C) and (D) are the results of [36] and [27] respectively.
The red arrows on the last column show the discontinuity of surfaces.

FIGURE 11. Examples of NRD associated subretinal fluid segmentation
results. From left to right: the original B-scans, the results of the
proposed method and [13].

in [13] failed to segment small subretinal regions (the red
dashed boxes), whereas the proposed method successfully
segmented the small regions.

D. QUALITATIVE EVALUATION
Table 3 shows themean and standard deviation of the absolute
surface position difference (ASPD) between the results of
the proposed method (Alg.) and CNN with the baseline from
the manual segmentation of the first expert (Exp. 1), and the
inter-experts variability (Exp. 1 and Exp. 2). Compared to
CNN, the proposed method depicted smaller ASPD for all
the surfaces. The overall absolute position difference of the

proposed method is 6.34±2.6µ m with the first expert and
the inter-expert variation is 6.39±5.9µm, which is statisti-
cally comparable with the overall absolute position differ-
ence of the proposed method. The overall ASPD of [36] is
50.72±57.75 µm and for [27] it is 92.24±57.5 µm, which
is larger than both the proposed method and the inter-expert
variability. ‘DeepLabv3’ [27] showed a larger deviation from
manual results compare to FCN [36].

Compare to the values presented in Table 3, the result
in Fig. 8 may show a visually better result. Yet it is important
to mention that Fig. 8 was anticipated to demonstrate the
discontinuity of only surfaces 7-9. In other testing images,
the rest of the layers were also not detected properly which is
the reason for the higher value of ASPD in Table 3.

Table 4 presents the evaluation of the retinal surfaces vari-
ability in terms of p-value and correlation coefficient (cc).
The higher p-value in the U-test indicates that the surfaces
from the methods do not have a statistically significant dif-
ference. The correlation coefficient of the proposed method
is higher and comparable with that of the inter-expert vari-
ability. FCN [36] showed a higher p-value and correlation
coefficient for surface 1, and has significantly smaller values
for the other surfaces whereas ‘‘DeepLab’’ [27] showed less
co-relation with manual results. The p-value (p < 0.05) in
the U-test indicates that there is a statistically significant
difference compared to the baseline.

The quantitative evaluation of the absolute surface position
difference in Table 3 and the p-values with the correlation
coefficients in Table 4 show that the proposed method has
higher accuracy than [27] and [36], and it is comparable with
the inter-expert variability. Therefore, the proposed method
is sufficiently accurate to segment layers from NRD affected
eyes.

The result of the quantitative evaluation of NRD associated
subretinal fluid is shown in Table 5. The results from the
proposed method (Alg.) and those obtained by running the
algorithm presented by [13] were compared to the manual
segmentation results from two experts. The overlap and dice
coefficient shows that the results from the proposed method
showed statistically significant overlap with the results from
the experts. The overlap and underestimate ratio of our
method with the experts is comparable to that of [13]. Our
method showed less overestimate compared to [13], which
shows that the proposed method segments less false positive
NRD regions compared to [13].

E. EVALUATION OF THE ‘‘DIVIDE AND MERGE’’
APPROACH
The proposed method was implemented using Matlab
R2014b and C++, and run on an Intel i5-3317 CPU @
1.70 GHz PC with 4 GB memory. To achieve efficient com-
putational time, the B-scans were down-sampled by two.

The computational time (Cm. time in seconds) and abso-
lute surface position difference (ASPD in µm) for different
combinations of mini-batches (16, 32 and 64) and merge size
(2 and 5) were shown in Table 6.
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TABLE 3. Absolute surface position difference for NRD affected data.

TABLE 4. P-value and correlation coefficient for NRD affected data.

TABLE 5. Volumetric segmentation result of NRD associated subretinal fluid compared with manual and wu’s method [13].

TABLE 6. The computational time and absolute surface position difference for different combinations of minibatches and merge sizes (mean ± SD).

For comparison purpose, the testing datasets were also
executed without applying the ‘‘divide and merge’’ in which
the ASPD was 8.4±4.08µm and the computational time was
3484.03±735.80s. The evaluation of the ‘‘divide and merge’’
approach shows that the computation time for the ‘‘dive and
merge’’is lower and the ASPD values have no significant
difference.

IV. DISCUSSION AND CONCLUSIONS
We presented an automated 3D segmentation method for
11 retinal surfaces and subretinal fluid from SD-OCT images
affected byNRD. The 3D graph searchmethodwas employed

to segment the surfaces. The distance smoothness constraint
for graph construction was found from the prior information
model. The prior information model calculates the mean and
variance of the constraint from retinal surfaces of normal
eyes.

The NRD related subretinal fluid segmentation was con-
ducted using a graph cut in which the seeds for the object
and background were automatically found with a k-means
clustering algorithm. The k-means algorithm partitions the
B-scans into low, medium and high reflectivity clusters. The
pixels with intensity values less than the maximum value of
the low reflectivity cluster were used to find seeds for the
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object and background. The results of the NRD associated
subretinal fluid were compared with manual segmentation
results and Wu’s method [13]. The proposed method showed
better achievement.

The main challenge for the layer segmentation of NRD
affected eyes is the unpredictable change of the layers’ topol-
ogy and their intensity information interruption because of
the subretinal fluid. The method showed that the detection
and removal of fluid can be integrated with the classification
result of the k-means cluster to retain the natural topology
of the layers and estimate the layers’ boundary where their
intensity values were interrupted. We have introduced the
‘‘divide and merge’’ approach to reduce the computational
time of graph optimization. This approach was evaluated and
showed reasonable execution time improvement.

To evaluate the effectiveness of the approach we have
trained two CNN models, FCN [36] and ‘DeepLabv3’ [27]
with layers from normal eyes and tested the subretinal
fluid free B-scans from our proposed method. The proposed
method utilizes the distance information from [3], yet for [27]
and [36] the ten retinal layers were used for training. Com-
pared to CNN models, the overall absolute surface position
difference of the proposed method is statistically indistin-
guishable from the inter-observer variability.

Obviously, many research works [12], [23]–[26] have
demonstrated the effectiveness of deep learning for retinal
layer segmentation. The lower performance of the CNN in
this test might be because of the used training datasets. For
the tasks such as layer segmentation fromNRD affected eyes,
since layers experience structural changes, it is important to
train the CNNwith training dataset from NRD affected rather
than the normal eyes. CNNwould produce optimal solution if
it was trained on a large number of accurate training datasets
fromNRD affected eyes that can represent different topologi-
cal changes of layers for the model to extract feature that rep-
resents layers thickness changes and possible intensity value
interruptions. For a larger number of training datasets, CNN
provides better accuracy, yet because of the time-consuming
nature of manual segmentation, finding training data for ten
layers is very difficult.

For the discontinuities of layers as shown in Fig. 8,
the CNN architectures also may produce a better result if
post-processing like boundary tracing on probabilitymapwas
applied.

Our proposedmethod reveals that graph searchmethod can
still be valuable for layers segmentation from NRD affected
eyes with prior information that can be found using the pub-
lically available software as described in section II (B).

When the iteration number and the datasets were small the
CNN models run on CPU. Though it is possible to run on
CPU, on our training dataset we have seen that both FCN
and ‘‘DeepLabv3’’barely run on the computer used to run the
proposed method (see the specification of the computer in
see section III (E)). The FCN model iterated only 10 training
iteration steps whereas ‘‘DeepLabv3’’ didn’t run even single
iteration in 12 hours. This is presumably because of the higher

training time and resource demanding nature of the deep
learning models. CNN requires higher training time com-
pared to graph search and it is also computationally resource
demanding because it needs high-performance graphics pro-
cessing units and large amounts of storage. The proposed
method can be used on any standalone computer.

The proposed method is sequential, in which subretinal
fluid was segmented and then retinal surfaces segmenta-
tion follows. This architecture can lead to error propagation
because incorrectly detected subretinal fluid can affect the
retinal layer segmentation Fig. 12. Although the proposed
methodworks well for subretinal fluid detection, the presence
of blood vessels, which have a relatively similar intensity
distribution as NRD associated subretinal fluid, can affect the
results by increasing the overestimation term and resulting
in an incorrect layer segmentation result. In future work,
the proposed method can be extended to utilize the effective
feature extraction ability of CNN to segment retinal layers
from eyes affected by other subretinal fluids, such as the
mostly co-occurring disease called serous pigment epithelial
detachments (PED).
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