
Received December 2, 2018, accepted December 23, 2018, date of current version January 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2890165

360◦ Semantic File System: Augmented Directory
Navigation for Nonhierarchical Retrieval of Files
SYED RAHMAN MASHWANI AND SHAH KHUSRO , (Member, IEEE)
Department of Computer Science, University of Peshawar, Peshawar 25000, Pakistan

Corresponding author: Shah Khusro (khusro@uop.edu.pk)

ABSTRACT The organization of files in any desktop computer has been an issue since their inception.
The file systems that are available today organize files in a strict hierarchy that facilitates their retrieval
either through navigation, clicking directories and sub-directories, in a tree-like structure or by searching
(which allows for finding of the desired files using a search tool). Research studies show that the users
rarely (4%–15%) use the latter approach, thus leaving navigation as the main mechanism for retrieving files.
However, navigation does not allow a user to retrieve files nonhierarchically, which makes it limited in terms
of time, human effort, and cognitive overload. To mitigate this issue, several semantic file systems (SFSs)
have been periodically proposed that havemade the nonhierarchical navigation of files possible by exploiting
some basic semantics but no more than that. None of these systems consider aspects such as time, location,
file movement, content similarity, and territory together with learning from user file retrieval behaviors in
identifying the desired file and accessing it in less time and with minimum human and cognitive efforts.
Moreover, most of the available SFSs replace the existing file system metaphor, which is normally not
acceptable to users. To mitigate these issues, this research paper proposes 360◦ SFS that exploits the SFS
ontology to capture all the possible relevant file metadata and learns from user browsing behaviors to
semantically retrieve the desired files both easily and timely. Based on user studies, the evaluation results
show that the proposed 360◦ SFS outperforms the existing traditional directory navigation and recently open
files.

INDEX TERMS Information management, information retrieval, file systems, recommender systems.

I. INTRODUCTION
Dealing with rapidly growing files on our desktop comput-
ers is becoming one of the most daunting tasks. The prob-
lem worsens due to the hierarchical organization of files
into directories and sub-directories. These files are either
retrieved through browsing in which a user navigates through
directories and subdirectors, or through searching using the
search functionality of file systems. For the ease of retrieval,
a desired file should be retrieved non-hierarchically, but this
is currently possible only through searching. The problem is
that people prefer navigation over searching [1]–[5] since it
involves less cognitive attention than searching [6]. In addi-
tion, searching can be used as an alternative to browsing if a
user is unable to retrieve files through navigation. However,
existing research [1], [2] has found no evidence that improved
desktop search engines have changed peoples’ minds and
that they still prefer navigation over search. In addition to
this significant contribution of navigation towards reducing
cognitive attention in locating files, navigation in traditional

file structure suffer from several limitations, including the
following:
• In large systems, it is not possible for a user to remember
the exact path of the stored files.

• If a file is saved at level n in the hierarchy, then the user
must navigate to the desired file by taking n navigational
steps to retrieve it. There is no way to navigate to the
desired file nonhierarchically.

• The importance of the stored files changes according to
the context inwhich the file is accessed. The contextmay
change due to several factors, including the geographical
location of the user, the day of the week and the time of
the day. For example, the files of interest for a user may
be different in normal office hours, in meeting times,
in the evening and in weekends with family.

To efficiently retrieve files in a file system, an intelligent
file system needs to dynamically organize files per their
importance at the current time. In addition, files stored deep
inside a hierarchy may be important, and therefore they must

9406
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-7319-1600
https://orcid.org/0000-0002-7734-7243


S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

be made easily accessible like any other files stored near or in
the root directory. Therefore, efforts are needed to reduce
the time and the human and cogitative efforts in navigating
to a file. In addition, traditional file systems neither provide
enough metadata nor a way to cope with this challenge [7].
To mitigate some of these issues in traditional file systems,
Semantic File Systems (SFSs) have been devised. A SFS
enables file retrieval based on the associated semantics rather
than its physical location in the hierarchy. Several SFSs have
been proposed to date. However, they are limited since they
replace the traditional file systemmetaphor, require extensive
manual annotations, or are unable to learn from user habits.
To mitigate these issues, we proposed 360◦-SFS, which pro-
vides enough metadata to augment navigation in hierarchi-
cal file systems by automatically learning from user habits.
It allows a user to navigate to the desired files nonhierarchi-
cally in less time (total time a user takes to retrieve a file,
starting from the first mouse movement made by a participant
until they clicked on the desired file), navigational steps
(each action a user takes until the target file is opened) and
cognitive attention. In addition, it does not replace traditional
hierarchical file organization but attempts to overcome some
of its limitations, including the following:
• Remembering exact file location: Users store informa-
tion at different locations in the hierarchy according
to their preferences at that time. However, they forget
the locations as time passes, hence making navigation
difficult, especially in large systems.

• Accessing a file from the exact stored location: Even
if a user knows where the required file is stored in the
file system, they must traverse the file system directory
tree to reach the exact location. It is a tedious job if the
required file is stored deeper in the directory’s hierarchy.
There is no mechanism to navigate to the files nonhier-
archically.

• Lack of support for recommendations: To reduce
retrieval time and human effort, no such mechanism
exists for the recommendation of the desired files to a
user while navigating.

• Cognitive overload: Although navigation requires less
cognitive attention than searching, it still requires
enough cognitive attention to navigate to the files in
large systems, especially if the file is stored deeper in
the hierarchy.

At a specific point in the navigation, a directory only shows
information items present at that level in the hierarchy and
hides all other information items contained in the directories
up or down the hierarchy. The 360◦-SFS intelligently finds
the important files from subdirectories and shows them in
virtual NOW directories. NOWs are special directories that
are automatically created in every directory of the file system.
The symbolic links to contextually related files are dynam-
ically created in NOW directories, thus making navigation
easy and enabling a user to navigate to the desired file in
less time, fewer navigational steps and with less cognitive
overload.

II. BACKGROUND AND RELATED WORK
SFS is a vision for the future of file systems where infor-
mation in the file systems is given explicit meaning to be
processed by machines automatically and consumed by the
users easily. SFSs extend traditional file systems to orga-
nize and retrieve information according to their semantics,
intentions and relationships with other resources rather than
their physical locations. Approaches to SFSs can be broadly
divided into two categories: integrated and augmented [8].
The former approach incorporates semantic features directly
within the file system by modifying the file system’s inter-
face. Since files and directories are manipulated via this
modified interface, these systems are not backward compati-
ble with traditional applications. Semantic features can only
be accessed through the modified file system’s interfaces.
Instead of replacing traditional file system interfaces, the later
approach augments the traditional file system interface to
incorporate semantic features in the file system. Hence, it is
backward compatible with traditional file manipulating inter-
faces and applications. Furthermore, augmented approaches
can directly use the improvements that are made to the: oper-
ating system related components and the existing traditional
file system layers [9]. Researchers focus on augmented file
systems because they place fewer demands on the end-user.
360◦-SFS falls in the category of augmented SFS. It is directly
usable with traditional applications. Our system works in
the background without affecting traditional applications.
A user can still use traditional applications, such as any of
his favorite word processors for documents, file managers for
manipulating files, etc.

The MIT-SFS [10] is known as the first SFS that allows
retrieval of files based on their attributes without replacing
the traditional hierarchical organization. File type specific
transducers mine and index the attributes from files. The
system maps user’s entered path into a query and the result
is displayed to the user with the help of the virtual directo-
ries and symbolic links to the files. MIT-SFS allows users
to access files via their attributes. For instance, a query
‘‘ls -F /sfs/owner:/Smith’’returns all files that are owned by
Smith.

The Context Aware File System (CAFS) [11] exploits the
time and location information for making data dynamically
available to a user. For instance, if a user has to present
at 3:00 PM at a conference room, then at that time when
he comes to the presentation stage his presentation file will
be automatically displayed on the screen. If during the pre-
sentation he moves from one location to another, then the
same slide is loaded on the screen close to him. In con-
trast, 360◦-SFS recommends the files that a user frequently
accesses at a particular time and location. This recommenda-
tion is done based on user’s previous interactions with file
system objects. Furthermore, CAFS is especially designed
for ubiquitous computing. Such file systems are designed to
support different types of interactions that ubiquitous com-
puting spaces introduce and enable. In our study, we target
the file systems of personal computers (i.e., desktop or laptop)

VOLUME 7, 2019 9407



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

with conventional peripherals (i.e., keyboard and mouse) and
environments. File systems that are especially designed for
ubiquitous computing and distributed computing are out of
the scope of this study.

The Semantic Desktop is a step towards addressing the
problem of information overload on our desktop computers.
Sauermann et al. [12] stated that the file system is one of the
building blocks for a Semantic Desktop. Ontology-based file
systems could enhance the capabilities of file systems [13].
Integrating ontologies into a file system enables one to share
file semantics with all stakeholders, thereby facilitating their
agreement on the same meaning. To use the features of the
ontology based file system, Ngo et al. [13] suggested a mod-
ification in the file system interface. However, this redesign
effort is not a primitive task and may make many existing
tools and procedures obsolete.

Tagsistant [14] is a tag-based SFS. It allows for the access
of the files from multiple paths with the help of logical OR
andANDoperators. For instance, the path ‘‘/a/AND/b’’ shows
all of the files tagged with both ‘‘a’’ and ‘‘b.’’ Similarly,
the path ‘‘/a/OR/b’’ shows all of the files tagged with either
‘‘a’’ or ‘‘b.’’ Tagsistant interprets Path ‘‘/a/AND/b’’ the same
as path ‘‘/b/AND/a’’. The early versions use Tag-Manager to
manage tags. However, it is discontinued in the later ver-
sions. The later versions also support comparison operators
and automatic tagging. SemFS [15] is a tag-based SFS that
is based on the same author’s previous work TagFS [16].
SemFS maps a user’s entered path to a query. For example,
the path ‘‘/a/b/c’’ executes the query and returns objects that
are tagged with a, b and c. It interprets path ‘‘/a/b’’ the
same as ‘‘/b/a/’’. The system allows one to access files via
more than one path and recommends tags while navigating on
the basis of overlapped tags. However, these methods suffer
from the limitations of mandatory manual tagging and the
inability of handling a large tag set over an extended period
of time. Albadri et al. [17] proposed the TreeTags model to
overcome some of the problems of hierarchical file systems.
They replace names with (multiple) tags and directories with
collections. Collections are organized as a tree. They also
introduce multiple tags for collections and a basic query
language.

LiFS [18] provides support for linking of files internally
in file system and provides support for arbitrary annotations.
Compared to other systems, it provides high performance
because of its in-memory implementation. LiFS is imple-
mented using FUSE API in Linux. To manipulate attributes
and links, the authors propose some new system calls. They
augment inodes using extent nodes, link nodes and attributes
nodes. It does not provide support for external links. Addi-
tionally, LiFS is only accessible via a modified POSIX
interface.

Soules and Ganger [19] stressed the need for annotating
files on the basis of context analysis. They outline different
approaches to capture file-related contextual information.
They observe that while storing files, users do not like to
spend extra time on annotating files. They just choose a name

and directory for the file. The name of the file and directory it
resides in can be exploited as the context of the file. Further-
more, if a file is accessed after accessing another file, then
both files can be declared as related. Such automatic annota-
tions could reduce the burden on users. Similarly, the findings
of Okoli and Schandl [20] show that if two files are opened
and a third file is modified or created with a specific time
frame, then all three files could be related. A user normally
retrieves files successively in the same context.

QMDS is a DBMS-based system in which Ames et al. [21]
propose a graph data model for file system metadata man-
agement and a query language. Memsy [22] was proposed
to address the problem of information fragmentation since a
user’s personal files are scattered among different devices and
web applications (for instance, Google Drive, Flickr, emails
and external portable storage devices, etc.). Memsy crawls
and indexes the local file system and cloud storage services
and presents different versions of the files in a single desktop
interface. However, currently the Memsy virtual file system
only considers local files. The Memsy file system allows one
to browse the collection of files using a regular Windows 7
file manager.

FindFS [23] provides a special query directory at its root.
A directory created in this directory acts as a virtual directory
and is treated as a query. The symbolic links to the files are
automatically created with this directory as per the user’s
entered query. The result of the query is accessible until a
user deletes the virtual directory. The system exploits the
extended attributes for storing users’ defined attributes as
name value pairs. The system is backward compatible with
almost all traditional applications. SileFS [24], [25] is based
on the concept of a sile (short for semantic file). A sile
replaces the traditional file in that it supports more metadata
attributes. However, access to the semantic model’s elements
is not possible through the normal file system interface. Sem-
plorer, a modified file manager, is used to manipulate a sile’s
semantic annotations. TripFs [26] links the files stored on file
systems with the Linked Data cloud by assigning globally
unique dereferenceable HTTP URIs to files.

Mizrachi and Deluca [27] described techniques for dis-
playing a directory icon to assist users to retrieve files easily.
Files are uploaded and shared to an external web server to
enable other users to annotate the files. The popularity of
a file is calculated based on the users’ manual annotations.
In the local file system, the system displays a file as having the
highest popularity as an icon for the directory where the file is
stored. If a popular file is an image file, then it is displayed as
an icon of the directory. In the case of a video file, the system
extracts a suitable image from the video and displays it as an
icon for the directory. The authors also suggest modifying the
icon size of a directory per its access frequency. If a directory
is accessed frequently, its icon needs to be larger in size and
vice versa.

TheGFS [28] is a tag-based SFS that automatically extracts
tags from a file’s path. Unlike other SFSs, it also allows users
to retrieve files in the traditional way, and it does not replace

9408 VOLUME 7, 2019



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

TABLE 1. Comparison of 360◦-SFS with other file systems.

the file system’s metaphor. However, the semantics in GFS
are limited to tags only. It does not consider semantics other
than tags, and it does not automatically learn a user’s habit.

Despite its many contributions, SFSs are yet to be success-
fully welcomed by common computer users. This is because
common computer users are used to and more familiar with
the file system metaphor of file organization (i.e., the anal-
ogy of files, directories and subdirectories), and they do not
want to replace them with a new paradigm [35]–[37]. Exten-
sive manual annotations and replacing file system metaphors
with a new paradigm makes it difficult to attract common
users. We support approaches that do not replace the file
system metaphor and the hierarchical organization, such as
MIS-SFS [10] and GFS [28]. However, they do not exploit
semantics other than basic file attributes and tags, and they
do not learn automatically from a user’s interaction with file
system resources. Tags are popular on the web for content
sharing, but in regard to Personal Information Management,
users prefer directories over tags [36].

However, in contrast to the existing SFSs, our system
mostly learns automatically from user’s interactions, and it
shows important files to users in NOW special directories
to improve navigation. This is done on the basis of different
semantics, such as the peak access time of a file, the previous
directory of a file, the user’s geographical location when

accessing a file, etc., discussed in detail in Section III. The
360◦-SFS is backward compatible with existing applications.
We do not force users to use the modified file managers, nor
have we replaced the file system metaphor for file organi-
zation. We try to improve information retrieval via naviga-
tion in traditional hierarchical file systems. This makes it
easy for a common computer user to understand and start
with the 360◦-SFS. We also propose the concept of territory,
which is a novel approach to address the growing number
of elements in other virtual directories. The system also
supports tag based navigation, but unlike existing tag-based
approaches [14], [15], [29], we do not replace the traditional
hierarchical directory navigation. Table 1 compares and eval-
uates 360◦-SFS with the state-of-the-art solutions and high-
lights our contributions.

III. 360◦ SEMANTIC FILE SYSTEM
For the ease of access and management, a user groups seman-
tically related files into directories and subdirectories of their
choice. We present the idea of using a NOW special direc-
tory at each level of the directory’s hierarchy, which will
intelligently aggregate the important and contextually related
files from different locations of the file system down the
hierarchy. Our proposed file system enables users to access

VOLUME 7, 2019 9409



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

files semantically using special directories and allows users
to access the files from their original locations.

Filtering out and ranking the important files among mil-
lions to be displayed in NOW is a challenging and complex
task. We perform this task by considering different features
such as the peak access time of a file, co-occurring files,
previous directories of a file, territory, user’s geographical
location at the time of accessing a file, etc. The following
subsections further elaborate on the 360◦-SFS.

A. TEMPORAL
The system keeps a record of file access time stamps. This
helps in generating file statistics based on the time of day
and the day of the week during which a particular file was
frequently accessed. A file becomes a candidate for the NOW
directory based on the peak access days and timings of the
file. Only higher ranked files are included in the NOW direc-
tory from the list of candidate files.

A file is considered as a candidate file only if both the cur-
rent day (i.e., Monday) and the current hour (i.e., 10:00 AM)
are marked as peak. Therefore, the computation is done in
two steps.

In the first step, the system determines whether the partic-
ular day of the week is among the peak days or not. Let ‘‘N ’’
denote the file-access count and ‘‘D’’ denote the total number
of days since the file was created or a maximum of 13 weeks
(91 days). Then, the threshold ‘‘T ’’ that represents the aver-
age access frequency of that file per day is defined as given
in Equation (1).

T =
N
D

(1)

The threshold ‘‘T ’’ is used to determine the peak day status
of the file. Now, let ‘‘c’’ denote the file-access count of a
particular day of the week and ‘‘d’’ denote the total number
of occurrences of that day since the creation of the file or a
maximum of 13 weeks (91 days). Then, the average access
frequency of the file on that day ‘‘Fd ’’ is defined as given in
Equation (2).

Fd =
c
d

(2)

Hence, if ‘‘Fd ≥ T ′′ for that particular day of the week,
then that day is considered as a peak day for the file.

In second step, the system determines whether the current
hour is a peak hour or not. This step only occurs if a day is
annotated as a peak day.

The threshold ‘‘t’’ that represents the average access fre-
quency of a file per hour on a particular peak day is defined
as given in Equation (3).

t =
Fd
24

(3)

The threshold ‘‘t’’ is used to determine the peak hour status
of a file. Let ‘‘m’’ denote the total file-access count at a
particular hour on a particular peak day. Then, the average

access frequency of the file at that hour and day ‘‘Fh’’ is
defined as given in Equation (4).

Fh =
m
d

(4)

where ‘‘h’’ represents any hour from 0-23.

Hence, if ‘‘Fh ≥ t ,’’ then the current hour is considered as
a peak hour for the file, which makes the file a candidate file
for the NOW directory.

If a user opens a file for a shorter amount of time and sec-
ond file for a longer amount of time, then normally a single
file-access is recorded for both files. To include the con-
tribution of the file that remained opened for longer times,
the system automatically records a single file-access each
time after time interval ‘‘I ,’’ which is computed by dividing
60 (minutes) by ‘‘t .’’

We restrict the values of ‘‘N ’’ and ‘‘c’’ to a maximum
of 91 days since a user’s priorities change over time and since
Agrawal et al. [38] showed that themedian age of a file ranges
between 80 to 160 days. Thus, we only consider the files that
are frequently accessed within a recent period of 13 weeks.
The system does not consider a file as a candidate if it has not
been accessed in the last 4 weeks.

Many applications support access to Recently Opened
Files (ROF). Our temporal based recommendation differs
from this in terms of the following.
• The ROF recommendation is done at application level,
which only restricts its usage for a particular applica-
tion. Every applicationmaintains its ownmetadata about
the ROF, and other applications cannot take advantage
of the ROF list maintained by an application. Since
our recommendation is done on the file system level,
it can be exploited by any application (even from the
command line) without any modification to traditional
applications.

• The ROF list only shows the most recently opened files.
Different applications restrict the ROF list to approx-
imately 3 to more files. Different applications show
the ROF list differently. For instance, some sort them
based on recency or frequency, and some group them
temporally (i.e., today, yesterday, last week, older, etc.).
In our case, the system shows files based on different
semantics, such as files that are frequently accessed
at the current time and current geographical location,
access patterns, previous directories of a file, etc.

B. GEOGRAPHICAL LOCATION OF THE USER
Each time the file is accessed, the system annotates it with
the user’s current geographical location. This lets the system
know which file is frequently accessed at which geographical
location.

Let ‘‘G = {g1, g2, g3. . . gn}’’ be a set of geographical
locations at which a file was accessed, where ‘‘gi"’’ denote
a particular location and ‘‘Fgi ’’ denote the access frequency
of a particular file at that location in last 13 weeks or since
its creation. Then the threshold ‘‘v’’ that represents the

9410 VOLUME 7, 2019



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

average file-access frequency per location is defined as given
in Equation (5).

v =

∑n
i=1 Fgi
n

(5)

The threshold ‘‘v’’ is used to determine the peak location
status of a file.

Hence, if ‘‘Fgi ≥ v,’’ then the current geographical location
‘‘gi’’ is considered as a peak location for the file, whichmakes
the file a candidate for the NOW directory.

The geographical location details could be captured from
the Wi-Fi/IP address or a laptop’s built-in GPS receiver. The
IP address-based location is not very accurate compared to
hardware-based solutions. Currently, a built-in GPS receiver
in laptops is not common, but we are expecting it in near
future.

Temporal and geographical location-based recommenda-
tions are most effective for multi-profile personalities, which
are those that retrieve particular files at particular times and
locations. For instance, consider the scenario of a person who
works in different portfolios within an organization or with
multiple organizations at a time.We can also consider the sce-
nario of a student who is working a part-time job along with
his studies. In both scenarios, the system will recommend the
appropriate files to the user at the right time and place.

C. FILE MOVEMENT BETWEEN DIRECTORIES
A user groups semantically related files in a directory. With
the passage of time, a user moves files between directories.
From this file movement, it can be inferred that a file is also
related to the directories where it was previously stored.

Let ‘‘M = {m1, m2, m3. . .mn}’’ be a set of distant direc-
tories at which the file was stored in 13 weeks or since its
creation, where ‘‘mi’’ denote a particular directory and ‘‘Smi ’’
denote the total time span of the file in that directory. Then,
the threshold ‘‘x’’ that represents the average time span of the
file in a directory is defined as given in Equation (6).

x =

∑n
i=1 Smi
n

(6)

The threshold ‘‘x’’ is used to determine the candidacy
status of a file for the NOW directory.

Hence, if ‘‘Smi ≥ x,’’ then the current directory ‘‘mi’’ is
considered as a related directory for the file and a candidate
directory for the NOW.

Furthermore, when relating a file to its previous directory,
two other relationships can also be deduced: directory to
directory (i.e., relating the current and previous directories of
a file) and file to files (i.e., relating a file to the files that are
currently saved in its previous directory).

Therefore, if a user accesses a file in this way, the system
can recommend its previous directories and the files stored in
previous directories. For instance, the file ‘‘360◦-SFS.pdf’’ is
saved in a directory named as ‘‘File System’’, and a user later
moves it to the ‘‘Semantic File System’’ directory and then
to the ‘‘Research Papers’’ directory. Therefore, after retriev-
ing the ‘‘360◦-SFS.pdf’’ file, the system can recommend its

previous directories (i.e., ‘‘File System’’ and ‘‘Semantic File
System’’). Similarly, all three directories can be declared as
related as well. Additionally, the file ‘‘360◦-SFS.pdf’’ can
also be directly related to the files saved within the ‘‘File
System’’ and ‘‘Semantic File System’’ directories.

D. FILE ACCESS PATTERNS
If a file is accessed in a specific time interval, right after
accessing another file, then both will be considered contex-
tually related to each other. Similarly, if two files ‘‘A’’ and
‘‘B’’ are open while another file ‘‘C’’ is newly created, then
all three are considered to be related, as also suggested in [19]
and [20]. In our proof of concept implementation, we relate
two files if they are accessed together or created within a pre-
defined temporal duration (also called the context scope) by a
human user. The study conducted in [20] states that choosing
a minimum value (5 min) for the context scope generates
less accurate relationships. Meanwhile, a maximum value
(30 min) generates a high number of relationships but will
cause an increase in the number false positives. Choosing a
medium value (12 min) for the context scope could render a
tolerable ratio between accuracy and the number of semantic
relationships. Therefore, in our experiment, we decide to set
the value of the temporal duration as 12 min.

Let ‘‘P = {p1, p2, p3, . . . pn}’’ be a set of files accessed
together with file ‘‘A’’ within duration of 12 minutes. Where
‘‘pi’’ denote a distinct file and ‘‘Fpi ’’ denote the access fre-
quency of that file together with file ‘‘A.’’

Then, the threshold value ‘‘u,’’ which is the average access
of file ‘‘A’’ with other files, is given in Equation (7).

u =

∑n
i=1 Fpi
n

(7)

From the value of ‘‘u,’’ the system computes whether
to relate two files with the ‘‘frequentlyAccessedWith’’ prop-
erty or not.

Hence, if ‘‘Fpi ≥ u,’’ then file ‘‘pi’’ is declared as ‘‘fre-
quentlyAccessedWith’’file ‘‘A,’’ and is a candidate file for the
NOW directory.

We declare the ‘‘frequentlyAccessedWith’’ property as
symmetric. Therefore, if file ‘‘pi’’ is ‘‘frequentlyAccessed-
With’’ file ‘‘A,’’ then the reasoner will deduce that file ‘‘A’’
is also ‘‘frequentlyAccessedWith’’ file ‘‘pi.’’

E. CONTENT SIMILARITY
Suppose that a user downloads files from the Web and later
forgets their location on the storage device. This makes them
download the same files again, thus resulting in wasted time
and bandwidth along with multiple copies of the same files.
In addition, a user sometimes maintains several versions of
the samefile for different purposes. Therefore, after accessing
one file, the system recommends its duplicate copies and ear-
lier versions of the file to the user. The system relates 100% of
the identical files via the ‘‘duplicateOf’’ relationship, whereas
the files with similarity less than 100% and greater than 70%

VOLUME 7, 2019 9411



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

are related through the ‘‘nearDuplicateOf’’ relationship of the
ontology.

F. MANUAL ANNOTATIONS AND TAGS
The system also allows themanual setting of the temporal and
geographical location based on the alerts on files. When the
condition matches, these files are shown in NOW directories
independent from their current path (territory). Since manual
annotations are more accurate than automatic annotations,
the system gives importance to these by showing them in all
NOW directories.

Attributes could be manually added by renaming the
file and adding double underscore symbols followed by
the attribute name and value. After renaming the file,
the system adds attributes accordingly and then automatically
renames the file back to its original name. For instance,
renaming a file as ‘‘FileName__SetManualPeakLocation:
University of Peshawar’’ and ‘‘FileName__SetTag: Review
Meeting’’ will set the manual peak location and tag the
file accordingly. Similarly, any attribute that is set either
manually or automatically could be removed by renam-
ing the file as ‘‘Filename__RemoveManualPeakLocation:
Peshawar,’’ ‘‘Filename__RemovehasTag: Review Meeting,’’
etc.

The special directory TAGS makes the file retrieval easier.
Like in NOW directory, TAGS is also displayed within every
directory. A TAGs directory contains subdirectories that are
actually the manual tags that the user had assigned to the files
via ‘‘FileName__SetTag:.’’ Renaming and deleting the subdi-
rectory respectively renames and deletes the tag in the RDF
triplestore. For instance, the Review Meeting subdirectory
within the TAGs directory will show the symbolic links to
the files tagged with Review Meeting. Deleting the Review
Meeting subdirectory will delete the Review Meeting tag
from all particular files to which the same tag is assigned.
An alternate way to tag a file is the copying of a file to a
tag subdirectory within the TAGs directory. If a particular tag
does not exist in TAGs, then a user can create a new tag by
creating a new subdirectory within TAGs.

As a result, the system automatically keeps track of users’
interactions with file system resources and recommends files
accordingly. To maintain privacy, if a user deletes the sym-
bolic link of a file in a NOW directory, then all its entries
in the RDF triplestore will be deleted. Likewise, if a user
wants to permanently stop the automatic recommendation
of certain files or directories, then a user can change the
status of that particular file or directory to private. Pri-
vacy status can be changed by renaming a file or directory
as ‘‘FileName__SetStatus: Private,’’ ‘‘FileName__SetStatus:
Normal’’ or ‘‘DirectoryName__SetStatus: Private,’’ among
others.

G. TERRITORY
A territory is a limit on the set of files presented in the
NOW and TAGs directories, that is given by the path already
navigated through by the user. The idea of territory is

introduced to control the number of items in the NOW and
TAGs directories by adopting the generalization/ specializa-
tion approach. The NOW directory on the root shows the
candidate files that are aggregated from the entire file system
hierarchy. A NOW directory within a directory excludes the
candidate files stored in parent directories (at upper levels).
It only includes the candidate files stored in that particular
directory and in its child directories. This means that if a user
navigates down in the hierarchy, then the number of files in
the respective NOW directory will shrink, and if a user goes
up in the hierarchy, then the number of files in the respective
NOW will grow.

For instance, if a user navigates to a directory
‘‘/books/semanticWeb/semanticFileSystems/,’’ then the NOW
directory in the same path will show the files that are
saved in the mentioned path and in the child directories of
the same path. All files stored in ‘‘/books/semanticWeb/,’’
‘‘/books/’’ or on the root will be excluded from the NOW
directory.

Each time a user opens a directory/subdirectory, it is con-
sidered as an input from the user. We give more preference
to the user’s input than the machine. If a user chooses to go
inside a directory, it means the she is narrowing down her
search for files, and therefore the system tries to assist her by
narrowing that recommendation. However, the restriction of
territory only applies to temporal and geographical location
based contextually related files. It does not apply to the
relationships that are created between files and directories via
content similarity, access patterns or file movement.

Like NOW directories, TAGs directories are also territory
dependent. A TAGs directory shows all the tags that are
within its territory. This enables a user to narrow down the
list of candidate items in the NOW and TAGs directories.
The dashed rectangles in FIGURE 1 indicate the territory of
each NOW and TAGs directory. The candidate files that were
excluded from the display in NOWat the upper levels because
of the lower ranking scores, might find a place in NOW at the
lower level directories down the hierarchy.

FIGURE 1. Territories.

H. CUSTOM VIRTUAL DIRECTORIES
In traditional file systems, if a user needs to bring together
some of the files in a separate directory from different loca-
tions of the file system’s hierarchy, then they do it manually.

9412 VOLUME 7, 2019



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

TABLE 2. 360◦-SFS operations.

Algorithm 1 Ranking
For each group of candidates of NOW

Directory
Temporal:
Show top five items based on highest
‘‘Fh” value
Geographical:
Show top five items based on highest
“Fgi” value
File movement:
Show top five items based on highest
“Smi” value
Access pattern:
Show top five items based on highest
“Fpi” value
End

With the help of custom virtual directories, our pro-
posed system allows a user to automatically aggregate
files from the entire file system on the basis of any or a
combination of file attributes. These are created like nor-
mal directories (Right click > create New Directory), but
their names must be post fixed with a user-friendly query.
The name and query parts are separated by double under-
score symbols. However, a user can leave the first part
blank. The Query Transformer module rewrites these user-
friendly queries into SPARQL queries accordingly. The
resulting files become the contents of the custom virtual
directory.

For instance, a directory named
‘‘DirectoryName__filePeakLocation:
University of Peshawar’’ aggregates the files with Univer-
sity of Peshawar as the peak geographical location and the

‘‘DirectoryName__hasTag: Review Meeting’’ obtains files
tagged with Review Meeting.

The ‘‘.,’’ ‘‘+’’ and ‘‘!’’ symbols are used for AND, OR and
NOT arithmetic operators, respectively. For instance, ‘‘Direc-
toryName__hasTag:Review Meeting + hasTag: Peshawar!
filePeakHour: 19’’ gets files tagged with either Review Meet-
ing or Peshawar but whose filesPeakHour is not 19:00.

I. RANKING IN THE LIST OF CANDIDATE FILES
From the list of candidate files, the system includes only
top-ranked files in the NOW directory. The algorithm for
selecting toped ranked files is provided as follows:

The algorithm shows the selection of the top five files
in each category, but application developers in the respec-
tive interfaces of their applications can increase or decrease
the number of files according to their requirements via
360◦-SFS API.

J. 360◦-SFS API FOR APPLICATIONS
API based access is also provided for application developers.
Through different API calls, applications like file managers,
desktop search engines and word processors can show rele-
vant files to users in their respective interfaces. For instance,
to show the semantically related files to a user within the word
processor interface, a customized word processor plugin can
be developed using 360◦-SFS API. Additionally, applications
can also show the files of NOWalongwith the ROF list within
the application.

IV. IMPLEMENTATION
We develop the ontology based 360◦-SFS that automatically
creates objects of classes and annotates them while the user
interacts with the file system’s resources. Table 2 depicts
some of the 360◦-SFS operations. In our proof of concept

VOLUME 7, 2019 9413



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

implementation, we store the actual files in a directory of
the underlying file system and their metadata in an RDF
store. The contents of NOW and other virtual directories are
symbolic links to the actual files. The problem with symbolic
links is that they become dead when the original file is
deleted, moved or renamed. In our case, these links are not
permanently stored but are created on the fly each time that
NOW and other virtual directories are browsed. This solves
the problem of dead symbolic links.

The names of the NOW and TAGs directories could be
prefixed with a symbol or a number so that these are dis-
played on top of other directories and files. The names of
the files in NOW are affixed with user friendly keywords that
indicate the reason for their inclusion. For instance, the file
name ‘‘semWeb�University of Peshawar.pdf’’ indicates that
the file ‘‘semWeb’’ is included in NOW because a user fre-
quently accesses it at the user’s current geographical location
(see FIGURE 2).

FIGURE 2. Contents of a NOW directory in a traditional file manager.

We implement 360◦-SFS in the user space using FUSE
Java binding, Apache Jena, Protégé and Java API for Google
Geocoder. An offline Geocoding database or custom local
cache could be used to accelerate the process. In our imple-
mentation, we extract the location information from the IP
address, but the GPS receiver of a user’s personal smartphone
can also be used for more accurate results.

FIGURE 3 depicts the architecture of 360◦-SFS. Both
the SFS-Ontology [39] and prototype of the 360◦-SFS are
available under a Creative Commons Attribution license
from https://w3id.org/sfs-ontology and https://w3id.org/
360-sfs respectively.

V. EXPERIMENTAL SETTINGS
Initially, we approached 115 users, most of them were stu-
dents and employees at the University of Peshawar. Out of
these 115, 7 users were dropped because of losing interest,
absences, or biased data. Finally, an evaluation was done
with 108 (25 females, 83males) highly motivated volunteers.
The median age of participants was 32.7, within the range of

FIGURE 3. 360◦-SFS architecture.

TABLE 3. Participants’ details.

23-38 years. Based on the subjective analysis of the exper-
tise of participants, they were categorized as intermediate,
advance and experts. Table 3 summarizes general information
about participants along with other indicators that include
information related to their education level, age, gender and
computer usage experience. The volunteers in this study have
given written informed consent. The Institutional Review
Board (IRB) of the authors’ institution has approved the
consent procedure for this study.

The evaluation was done with pre- and post-experiment
surveys on the same participants. After orienting users on

9414 VOLUME 7, 2019



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

360◦-SFS, we copied each user’s own files to 360◦-SFS and
asked them to continue their routine work using 360◦-SFS.
In addition to accessing files, users were also asked to man-
ually annotate and tag files for later retrieval. Two weeks
were given to users for their interaction with files so that
the system would be amply trained, and enough metadata
would be recorded for recommendation purposes. Then the
participants were asked to start retrieving files, from the
printed list of files that were retrieved during training period,
in different context(s) by changing system time and geo-
graphical location. For the experimental evaluation, we have
provided an option to users to manually set their pseudo geo-
graphical location. They were asked to retrieve files of their
own choices but in three different ways (i.e., traditional direc-
tory navigation, ROF and 360◦-SFS). Applications that were
mainly used were: Files (File Manager) 3.10, LibreOffice
4.2, GNOMERhythmbox Audio Player 3.0, GNOMEVideos
(Totem) Movie Player 4.10, GNOME Image Viewer 3.10,
Gedit 3.10, Document Viewer 3.10 and GNOME Terminal
3.6 of the Ubuntu 14 Operating System.

In our experiment, we evaluated the aforementionedmodes
of file retrieval on the basis of human efforts. While navigat-
ing to the desired files, the human effort was calculated based
on the time and navigational steps taken. The time taken, and
navigational steps followed were recorded manually by the
authors for each user for all modes of retrieval. We observed
that if exact location of a file is known to a user then she
retrieves it within a minute, otherwise she starts brute-force
navigation for the desired file. The purpose of experiment
was to compare retrieval of the files on which the system
was trained and the location of which were known to the
participants. Hence, the entry was discarded if a user was
taking more than a minute while retrieving or was failing to
retrieve a file via any of file retrieval mode.

On average 1,715 files with average depth of 2.9 ± 0.6
directories were copied per user to the 360SFS having aver-
age depth of files in directory tree was. On average 61 files
were retrieved in training phase and 9.41 files were success-
fully retrieved per user in testing phase (after the training
period).

In the case of file manager, opening a file in the current
directory ‘‘./file’’ was counted as a single navigational
step, and retrieving a file from the path ‘‘./directo-
ryA/directoryB/file’’ was counted as three steps. Simi-
larly, each command entered on the command line by a
user from root directory was recorded as a single nav-
igational step, retrieving a file from the path ‘‘./directo-
ryA/directoryB/file’’was counted as three steps. In the case
of ROF, a single action of a user was recorded as a single
navigational step. For example, opening a file from ‘‘file
menu > m recent sub menu > file in ROF List’’ was counted
as three steps. Time access of a file was measured from the
point when a user was asked to retrieve a specific file from
the printed list of files till the last action on the target file.
Based on the evidence collected, Section VI presents a brief
analysis regarding the performance of the 360◦-SFS.

VI. RESULTS AND DISCUSSIONS
Table 4 compares all the three modes of file retrieval based
on the time taken and the navigational steps followed. The
results show that on the average traditional directory naviga-
tion requires more human effort (4.1 ± 1.4 steps) and time
(22 ± 14 seconds) than the 360◦-SFS (2.2 ± 0.4 steps,
11 ± 03 seconds) and ROF (2.8 ± 0.3 steps, 09 ± 04 sec-
onds). On the average, 360◦-SFS gets 50% improvements in
retrieval time over traditional navigation. However, it falls
22.22% behind the ROF. In terms of number of steps,
360◦-SFS requires 22.46% and 46.36% less steps than ROF
and traditional navigation respectively. The main purpose of
the 360◦-SFS was to improve files retrieval by extending
traditional directory navigation, and the results clearly show
improvements.

TABLE 4. Results of files that are successfully retrieved via all three
modes of file retrieval.

To verify whether these differences are statistically signif-
icant we have fed the same data to the SPSS (version 20),
using three variables namely ‘‘Time_Taken’’, ‘‘Steps_Taken’’
and ‘‘Retrieval_Method’’. For comparison, the null and alter-
native hypothesis are:

H0 : µ360◦−SFS = µROF = µTraditional_Navigation

H1 : µ360◦−SFS 6= µROF 6= µTraditional_Navigation

Applying the one-way ANOVA test on confidence interval
of 95% resulted in significance value (p-value) of <0.001
for both ‘‘Time_Taken’’ and ‘‘Steps_Taken’’, which is <0.05,
hence, rejects the null hypothesis in favor of alternative and
shows that the difference among all the three modes of file
retrieval is statistically significant. The Tukey post hoc test
with p-value of<0.001 for both the variables (‘‘Time_Taken’’
and ‘‘Steps_Taken’’), which is <0.05 further reveals that the
difference between each two retrieval modes is statistically
significant.

In the pre-experiment survey, one question was: ‘‘out of
six most recently accessed files, how many of files did you
retrieve through ROF?’’ The results show that on average
21% of files are retrieved by ROF. The reason of its lower
usage is that the ROF is maintained by every application

VOLUME 7, 2019 9415



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

separately and differently in its own respective interface.
Some of the applications sort the ROF list based on recency,
some sort them on the basis of frequency and some group
them temporally (i.e., today, yesterday, last week, and older).
Furthermore, the way of accessing them is not uniform across
the applications, and the ROF is generally not accessible
from the command line. The study conducted in [1] shows
that on average, a user retrieves 56-68% of the files via
directory navigation. Since 360◦-SFS augments traditional
directory navigation, it is used as a companion to directory
navigation and is hence more effective than the ROF. Further-
more, the ROF only shows the recently opened files, while
360◦-SFS enables the retrieval of files based on different
semantics that were discussed earlier.

One of the objectives of the study was to reduce the
cognitive attention while navigating. The study conducted
in [6] shows that the deeper in the hierarchy the file is stored,
the more cognitive attention that the navigation requires.
360◦-SFS augments the traditional navigation and enables
the retrieval of the desired file in 2.2 ± 0.4 steps in a
location independent way. Hence, it helps in reducing the
cognitive attention of a user. To further support this evidence,
some statistical tests were performed upon the data collected
through the post-experiment survey. The users were asked
about the difficulty level because a difficult system requires
comparatively more attention than a simpler one. To assess
the difficulty, the questions asked include ‘‘Q1: How difficult
is it for you to find the file via traditional directory naviga-
tion?’’and ‘‘Q2: How difficult is it for you to find the file
via 360◦-SFS?.’’ They were answered on a scale from 1-5
(1 low, 2 minimal, 3 neither high nor low, 4 some, and 5 high),
whichwere ultimately fed to the SPSS (version 20), using two
parameters (variables) namely ‘‘Traditional_Navigation’’ for
Q1 and ‘‘SFS’’ for Q2. For comparison, the null and alterna-
tive hypothesis are:

H0: The 360◦ − SFS did not reduce cognitive attention

H1: The360◦ − SFS reduced cognitive attention

Applying the Chi-Square test on the two parameters on
confidence interval of 95%, resulted in χ2

= 20.76 with
p-value of 0.002 which is <0.05, hence, rejects the null
hypothesis and shows that the proposed 360◦-SFS signifi-
cantly reduces the cognitive attention compared to traditional
navigation.

However, we observed that participants did not take an
interest in manual annotations and tagging. Only 15% of the
files were retrieved by participants via the 360◦-SFS Tags
directories. Retrieving files via a custom virtual directory
was not part of the experiment as the concept was already
discussed in [10]. During the experiment, we also noted that
the desktop search engine crawlers and antivirus programs
were also accessing files for their own purposes. For accurate
recommendations, we were only needed to record the human
interactions with files instead of machines. On the web, if a
bot accesses a page, it can be easily distinguished since a log

file is maintained on a server, but there is no such type of log
maintained in a desktop. However, the accessing of files by
a machine can be distinguished by different techniques. For
instance, the file access pattern of a human is different from
machine. A human access a file in one directory, takes some
time, and then they open another file which is not necessary
from the same directory. In contrast, a machine accesses more
files in less time, possibly one after another and concurrently.
In our implementation, to capture clean metadata, we defined
a threshold of three seconds. Metadata was not recorded if the
difference between the recently and the last accessed file was
less than the threshold.

Because of the freely/opensource availability of the rel-
evant APIs for Linux OS and their rich online support we
had to implement the proposed system in Linux OS. But
unfortunately, the region where this study was conducted,
a common user normally usesWindowsOS. Therefore, all the
participants were native Windows OS users. So, to minimize
the effect of Linux OS environment on the participants to
greater extent, we majorly focused on expert computer users
(53.70%) with above 10 years of computer usage experience
(75.0%). However, further user studies would enable better
understand the effectiveness of the 360◦-SFS.
For the sake of backward compatibility with traditional

software applications, we proposed the virtual directories-
based solution, which may overburden a user with extra
directories. In addition, since we store metadata externally in
an RDF store, the system inherits the drawbacks of external
metadata. For instance, external metadata does not travel
along with a file itself. It is lost if a file is copied to external
media or sent via email [40]. Heuristics are needed to make
external metadata travel alongwith a file. Since recommenda-
tions are done based on user’s previous interactions, the sys-
tem faces cold start issue.

VII. CONCLUSION AND FUTURE WORK
Previous studies have shown that only 4-15% of files are
accessed via desktop search engines [1]. This shows that
people still prefer navigation over searching for file retrieval.
This paper highlighted some of the limitations of naviga-
tion in traditional hierarchical file systems and presented an
ontology-based 360◦ Semantic File System (SFS) to improve
navigation. The 360◦-SFS enables file retrieval by exploiting
semantics, intentions and relationships to other files instead
of its physical location, as in traditional file systems. Unlike
existing SFSs, 360◦-SFS neither replaces traditional file sys-
tem metaphors nor does it involve extensive user manual
annotations. Rather, it automatically learns from the behavior
of a user and predicts files that the user is likely to retrieve
next.

To achieve this, 360◦-SFS exploits features that were
ignored by the existing SFSs, such as filemovements between
directories, temporal and geographical locations, content
similarity and territory. The evaluation of 360◦-SFS shows
that it outperforms the existing file systems (especially in nav-
igation) in terms of access time, human effort and cognition

9416 VOLUME 7, 2019



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

attention. This enables the users to spend their valuable time
in using the file rather than searching for it. The 360◦-SFS
comes with certain limitations, which we plan to resolve in its
future prototypes. These are discussed in the next paragraph.

In the future we will be working to enable the system to
recommend relevant directories while organizing local files
and linking file system resources to Web of Data. A user
often faces difficulties while organizing files. To make the
machine assist a user while organizing files, the semantics
of directories need to be known to machine. If a machine
knows which directory holds what kind of contents, then it
can recommend related directories to user while organizing.
Similarly, a directory having name Tim Berners-Lee can be
linked (i.e., using owl:sameAs etc.) to his URI or any other
resource having Label ‘‘Tim Berners-Lee,’’ or a music album
directory in the file system can be linked to the URI of that
album in an Linked Open Data (LOD) set. Linking local
directories and files to LOD enables a user to explore addi-
tional related information, hence, dissolving borders between
desktop and Web of Data.

REFERENCES
[1] O. Bergman, R. Beyth-Marom, R. Nachmias, N. Gradovitch, and

S. Whittaker, ‘‘Improved search engines and navigation preference in
personal information management,’’ ACM Trans. Inf. Syst., vol. 26, no. 4,
2008, Art. no. 20.

[2] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger, ‘‘The per-
fect search engine is not enough: A study of orienteering behavior in
directed search,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst.,
2004, pp. 415–422.

[3] R. Boardman and M. A. Sasse, ‘‘‘Stuff Goes into the computer and doesn’t
come out’: A cross-tool study of personal information management,’’ in
Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2004, pp. 583–590.

[4] D. Kirk, A. Sellen, C. Rother, and K. Wood, ‘‘Understanding photowork,’’
in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2006, pp. 761–770.

[5] D. Barreau and B. A. Nardi, ‘‘Finding and reminding: File organization
from the desktop,’’ ACM SIGCHI Bull., vol. 27, no. 3, pp. 39–43, 1995.

[6] O. Bergman, M. Tene-Rubinstein, and J. Shalom, ‘‘The use of attention
resources in navigation versus search,’’ Pers. Ubiquitous Comput., vol. 17,
no. 3, pp. 583–590, 2013.

[7] M. Rinck, ‘‘Document DNA: Distributed content-centered provenance
data tracking,’’ Ph.D. dissertation, Univ. Waikato, Hamilton, New Zealand,
2015.

[8] V. Vasudevan and P. Pazandak. (1997). Semantic File Systems. [Online].
Available: http://www.objs.com/survey/OFSExt.htm

[9] N. Popitsch, ‘‘Building blocks for semantic data organization on the desk-
top,’’ Ph.D. dissertation, Univ. Vienna, Vienna, Austria, 2011.

[10] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O. James, ‘‘Toole,
‘‘Semantic file systems,’’ presented at the 13th ACM Symp. Oper. Syst.
Princ., Pacific Grove, CA, USA, 1991.

[11] C. K. Hess and R. H. Campbell, ‘‘An application of a context-aware file
system,’’ Pers. Ubiquitous Comput., vol. 7, no. 6, pp. 339–352, 2003.

[12] L. Sauermann, A. Bernardi, and A. Dengel, ‘‘Overview and outlook on the
semantic desktop,’’ in Proc. 1st Workshop Semantic Desktop ISWC Conf.,
2005, pp. 74–91.

[13] H. B. Ngo, C. Bac, F. Silber-Chaussumier, and T. Q. Le, ‘‘Towards
ontology-based semantic file systems,’’ in Proc. IEEE Int. Conf. Res.,
Innov. Vis. Future, Mar. 2007, pp. 8–13.

[14] Tx0. (Feb. 2007). Tagsistant: Semantic File System. [Online]. Available:
http://www.tagsistant.net

[15] S. Bloehdorn. (Feb. 2009). SemFS—Semantic File System. [Online]. Avail-
able: http://semanticweb.org/wiki/SemFS

[16] S. Bloehdorn, O. Görlitz, S. Schenk, M. Völkel, and F. I. Karlsruhe,
‘‘TagFS—Tag semantics for hierarchical file systems,’’ presented at the
6th Int. Conf. Knowl. Manage. (I-KNOW), Graz, Austria, 2006.

[17] N. Albadri, R. Watson, and S. Dekeyser, ‘‘TreeTags: Bringing tags to the
hierarchical file system,’’ presented at the Australas. Comput. Sci. Week
Multiconf., Canberra, ACT, Australia, 2016.

[18] S. Ames et al., ‘‘LiFS: An attribute-rich file system for storage
class memories,’’ in Proc. 23rd IEEE/14th NASA Goddard Conf.
Mass Storage Syst. Technol., 2006, pp. 1–14. [Online]. Available:
http://storageconference.us/2006/Papers/2006-006-Ames.pdf and http://
www.ssrc.ucsc.edu/Papers/ames-mss06.pdf

[19] C. A. N. Soules and G. R. Ganger, ‘‘Why can’t I find my files? New
methods for automating attribute assignment,’’ in Proc. HotOS, 2003,
pp. 115–120.

[20] A. Okoli and B. Schandl, ‘‘Extraction of contextual metadata from file sys-
tem interactions,’’ presented at theWorkshop Exploitation Usage Attention
Metadata, Lübeck, Germany, 2009.

[21] S. Ames, M. Gokhale, and C. Maltzahn, ‘‘QMDS: A file system metadata
management service supporting a graph data model-based query lan-
guage,’’ Int. J. Parallel, Emergent Distrib. Syst., vol. 28, no. 2, pp. 159–183,
2013.

[22] M. Geel, ‘‘Memsy: A personal resource management infrastructure,’’
Ph.D. dissertation, ETH-Zurich, Zürich, Switzerland, 2015.

[23] J. Chou, ‘‘FindFS: Adding tag-based views to a hierarchical filesystem,’’
M.S. thesis, Univ. British Columbia, Vancouver, BC, Canada, 2015.

[24] B. Schandl and B. Haslhofer, ‘‘Files are siles: Extending file systems
with semantic annotations,’’ Int. J. Semantic Web Inf. Syst., vol. 6, no. 3,
pp. 1–21, 2010.

[25] B. Schandl and B. Haslhofer, ‘‘The sile model: A semantic file system
infrastructure for the desktop,’’ presented at the 6th Eur. Semantic Web
Conf., Heraklion, Greece, 2009.

[26] B. Schandl and N. Popitsch, ‘‘Lifting file systems into the linked data
cloud with TripFS,’’ in Proc. 3rd Int. Workshop Linked Data Web (LDOW),
Raleigh, NC, USA, 2010, pp. 1–8. [Online]. Available: http://ceur-
ws.org/Vol-628/ldow2010_paper02.pdf

[27] B. Mizrachi and L. S. Deluca, ‘‘File folder display,’’
U.S. Patent 2017 0 109 010, Apr. 20, 2017.

[28] D. Di Sarli and F. Geraci, ‘‘GFS: A graph-based file system enhanced
with semantic features,’’ in Proc. Int. Conf. Inf. Syst. Data Mining, 2017,
pp. 51–55.

[29] S. Schenk, O. Görlitz, and S. Staab, ‘‘TagFS: Bringing semantic metadata
to the filesystem,’’ in Proc. 3rd Eur. Semantic Web Conf. (ESWC), 2006,
pp. 1–2.

[30] D. Garg, V. Mehta, S. Pandit, and M. De Rosa, ‘‘A writable semantic file
system,’’ School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA,
USA, Tech. Rep. 4, 2005.

[31] B. Rector. (Mar. 2004). WinFS. [Online]. Available: https://msdn.
microsoft.com/en-us/library/aa479870.aspx

[32] B. Schandl, ‘‘Representing linked data as virtual file systems,’’ in Proc.
2nd Int. Workshop Linked Data Web, Madrid, Spain, 2009, pp. 1–9.
[Online]. Available: http://events.linkeddata.org/ldow2009/papers/
ldow2009_paper1.pdf

[33] Y. Padioleau, B. Sigonneau, and O. Ridoux, ‘‘LISFS: A logical information
system as a file system,’’ in Proc. 28th Int. Conf. Softw. Eng., 2006,
pp. 803–806.

[34] P. Dourish, W. K. Edwards, A. LaMarca, and M. Salisbury, ‘‘Presto:
An experimental architecture for fluid interactive document spaces,’’ ACM
Trans. Comput.-Hum. Interact., vol. 6, no. 2, pp. 133–161, 1999.

[35] W. Jones, A. J. Phuwanartnurak, R. Gill, and H. Bruce, ‘‘Don’t take
my folders away!: Organizing personal information to get ghings done,’’
in Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI), 2005,
pp. 1505–1508.

[36] O. Bergman, N. Gradovitch, J. Bar-Ilan, and R. Beyth-Marom, ‘‘Folder
versus tag preference in personal information management,’’ J. Amer. Soc.
Inf. Sci. Technol., vol. 64, no. 10, pp. 1995–2012, 2013.

[37] K. Voit, K. Andrews, and W. Slany, ‘‘Why personal information manage-
ment (PIM) technologies are not widespread,’’ in Proc. PIM Workshop,
ASIS&T, 2009, pp. 60–64.

[38] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, ‘‘A five-year
study of file-system metadata,’’ ACM Trans. Storage, vol. 3, no. 3, 2007,
Art. no. 9.

[39] S. R.Mashwani and S. Khusro, ‘‘The design and development of a semantic
file system ontology,’’ J. Eng., Technol. Appl. Sci. Res., vol. 8, no. 2,
pp. 2827–2833, 2018.

[40] S. Khusro, S. R. Mashwani, A. Rauf, S. Mahfooz, and S. Ali, ‘‘A study
of file system objects metadata,’’ Life Sci. J., vol. 10, no. 11,
pp. 343–348, 2013, Art. no. 63. [Online]. Available: http://www.
lifesciencesite.com/lsj/life1011s/ and http://www.lifesciencesite.com/lsj/
life1011s/063_21572life1011s_343_348.pdf

VOLUME 7, 2019 9417



S. R. Mashwani, S. Khusro: 360◦ SFS: Augmented Directory Navigation

SYED RAHMAN MASHWANI received the
B.S. and M.S. degrees in information technol-
ogy from the Institute of Business & Manage-
ment Sciences, Agricultural University Peshawar,
Peshawar, Pakistan, and the Ph.D. degree from the
Department of Computer Science, University of
Peshawar, Pakistan. His research interests include
file systems, information semantics, information
retrieval, ontology engineering, and linked open
data.

SHAH KHUSRO received the M.Sc. degree
(Hons.) from the Department of Computer Sci-
ence, University of Peshawar, Peshawar, Pakistan,
and the Ph.D. degree from the Institute of Soft-
ware Technology and Interactive Systems, Vienna
University of Technology, Vienna, Austria. He is
currently a Professor of computer science with
the Department of Computer Science, Univer-
sity of Peshawar. His research interests include
information semantics, information retrieval, web

engineering, recommendation, search engines, ontology engineering, and
accessibility. He is a member of the IEEE, IEICE, and ACM.

9418 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND AND RELATED WORK
	360 SEMANTIC FILE SYSTEM
	TEMPORAL
	GEOGRAPHICAL LOCATION OF THE USER
	FILE MOVEMENT BETWEEN DIRECTORIES
	FILE ACCESS PATTERNS
	CONTENT SIMILARITY
	MANUAL ANNOTATIONS AND TAGS
	TERRITORY
	CUSTOM VIRTUAL DIRECTORIES
	RANKING IN THE LIST OF CANDIDATE FILES
	360-SFS API FOR APPLICATIONS

	IMPLEMENTATION
	EXPERIMENTAL SETTINGS
	RESULTS AND DISCUSSIONS
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	SYED RAHMAN MASHWANI
	SHAH KHUSRO


