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ABSTRACT Generalized eigenvalue proximal support vector machine (GEPSVM) and its improvement
IGEPSVM are excellent nonparallel classification methods due to their excellent generalization. However,
all of them adopt the square L2-norm metric to implement their empirical risk or penalty, which is sensitive
to noise and outliers. Moreover, in many real-world learning tasks, it is a significant challenge for GEPSVMs
when the data appears highly correlated. To alleviate the above issues, in this paper, we propose a novel trace
lasso regularized robust nonparallel proximal support vector machine (RNPSVM) for noisy classification.
Compared with GEPSVMs, our RNPSVM enjoys the following advantages. First, the empirical risk of
RNPSVM is implemented by the robust L1-norm metric with a maximum margin criterion. Namely, it aims
to maximize the L1-norm inter-class distance dispersion while minimizing the L1-norm intra-class distance
dispersion simultaneously. Second, to capture the sparsity and the underlying correlation of data, a trace
lasso (adaptive norm-based training data) is further introduced to regularize RNPSVM. Third, an iterative
algorithm is designed to solve the maximization optimization problem of RNPSVM, whose convergence is
guaranteed theoretically. The extensive experimental results on both synthetic and real-world noisy datasets
demonstrate the effectiveness of RNPSVM.

INDEX TERMS Support vector machines, L1-norm, regularization, robustness, classification algorithms.

I. INTRODUCTION
Support Vector Machine (SVM) [1], [2] is an excellent
maximum-margin learning method for pattern recognition,
which originates from statistical learning theory. The central
idea of SVM is to construct an optimal separating hyperplane
by optimizing the soft margin using the hinge loss and a
regularization term, such that themargin between two parallel
support hyperplanes is maximized, while the instances are
pushed as far as possible away from thismargin.With the help
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of structural risk minimization (SRM) principle, the upper
bound on the generalized error of SVM is guaranteed the-
oretically. Formally, the optimization problem of SVM for
finding a max-margin separation can be stated as a quadratic
programming problem (QPP), whose global optimum can be
achieved. During the last decades, SVM has already achieved
good performances in various practical application domains,
such as bioinformatics [3], [4], computer vision [5], fault
diagnosis [6], and so on [7], [8].

However, there are two major bottlenecks in SVM. One
is the training procedure of SVM needs to optimize a larger
QPP, and another is SVM cannot capture the underlying
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distribution of heterogeneous data well, such as the ‘‘XOR’’
problem. To alleviate above issues, so far, many effi-
cient optimization algorithms and tools have been pro-
posed to improve the learning efficiency of SVM, e.g.
SMO [9], SVMlight [10], LIBSVM [11], LIBLINEAR [12]
and Pegasos [13]. On the other hand, a series of excellent
SVMmodels has been put forward, such as least square SVM
(LSSVM) [14], proximal SVM (PSVM) [15], smooth SVM
(SSVM) [16] and Lagrangian SVM [17].

Different from the parallelism condition in the origi-
nal SVM, recently, a novel nonparallel hyperplane learn-
ing (NHL) paradigm has been proposed [18]–[20]. The goal
of NHL is to seek an optimal nonparallel hyperplane for each
class, such that each hyperplane is closest to its own class
while as far as possible from the other class. The pioneering
work of NHL can be dated back to the generalized eigen-
values proximal support vector machine (GEPSVM), which
was proposed by Mangasarian and Wild [19]. It relaxes the
requirement of hyperplanes generated by SVM should be
parallel, and aims to construct a pair of nonparallel proximal
hyperplanes by solving two generalized eigenvalue problems
instead of a large scale QPP. The results in [19] demonstrate
the effectiveness of GEPSVM, especially on the ‘‘XOR’’
problem.

Recently, the advantages of GEPSVM has brought many
efforts to its various improvements. Ye and Ne [21] presented
a new method via singular value decomposition (SVD) to
overcome the singularity problem that may encounter in
GEPSVM. To improve the stability of GEPSVM, Guarra-
cino et al. [22] proposed a regularized general eigenvalue
classifier (ReGEC) by introducing a new regularization term.
Subsequently, Shao et al. [23] proposed an improved general-
ized eigenvalue SVM (IGEPSVM) according to themaximum
margin criterion [24]. Specifically, IGEPSVM reformulates
the optimization problems of GEPSVM by replacing the
‘‘ratio’’ formulations with ‘‘difference’’ ones, and an extra
meaningful parameter is introduced. As a result, IGEPSVM
owns the better generalization than GEPSVM theoreti-
cally. Additionally, GEPSVM has also been extended to
deal with the semi-supervised learning [25] and multi-view
learning [26]. For more related works on extensions of
GEPSVM and NHL, we refer the readers to [27]–[36].

However, it is worth noting that all the aforementioned
GEPSVMs are utilized the L2-norm metric to measure their
loss function or penalty, resulting in sensitivity to outliers.
The reason is that the L2-norm will magnify the effect of
outliers by square operation, which leads to the bias classi-
fication result. Statistically speaking, the L1-norm is usually
deemed as a more robust way than the L2-norm, since the
absolute value operation in the L1-norm will mitigate the
impact of outliers compared with the L2-norm [37]–[42].
Therefore, to improve the model robustness, Li et al. [43]
proposed a L1-norm nonparallel proximal support vector
machine (L1NPSVM) for noisy classification. A gradient
ascending (GA) iterative algorithm was further proposed to
solve the L1-norm ratio optimization problem of L1NPSVM.

However, both the need of the non-convex surrogate function
and the difficult selection of step-size in GA may not guaran-
tee the optimum solution.

On the other hand, in practice, difference datasets may
have difference correlation structure. However, the existing
GEPSVMs ignore this underlying correlation information
at all, which may degrade their performance. Although the
L2-norm regularization is considered to control their model
complexity, such regularizer cannot automatically satisfy the
data distribution [44]–[47]. That is, the L2-norm regularizer
is blind to exact correlation structure of data, since it is not
uniformly required for all features and is not adaptive for
correlation of features.

The above analysis motives us to improve the performance
of GEPSVM [19], [23], and propose a novel robust nonpar-
allel proximal SVM via trace lasso for noisy classification,
termed as RNPSVM.Comparedwith the existingGEPSVMs,
our RNPSVM owns the following merits:

1) The empirical risk of RNPSVM is implemented by
the L1-norm measurement with maximum margin cri-
terion. Namely, it aims to maximize the L1-norm
inter-class distance dispersion while minimize the L1-
norm intra-class distance dispersion simultaneously.
The L1-norm formulation makes RNPSVM enjoy the
robustness to outliers.

2) To further improve the performance, a trace lasso is
introduced to regularize RNPSVM by considering the
sparsity and correlation of data simultaneously. Trace
lasso is also known as an adaptive norm, which can
automatically balance the L1-norm and L2-norm reg-
ularization based on the data distribution. To our best
knowledge, RNPSVM is the first NHL classifier that
considers the data correlation, which is a useful exten-
sion of GEPSVM.

3) Our RNPSVM can avoid the singularity problem effec-
tively, whichmay encounter such problem inGEPSVM
by solving eigenvalue problems.

4) An efficient iterative algorithm is designed to solve the
corresponding L1-norm maximization problem with
trace lasso regularization, whose convergence is guar-
anteed theoretically.

5) Last but not the least, extensive experimental results on
both synthetic and real-world noisy datasets demon-
strate that, compare with its peers, our RNPSVM can
effectively suppress the impact of the outliers and
achieve better performance.

The rest of this paper is organized as follows: Section II
briefly dwells on GEPSVM and IGEPSVM methods.
Section III proposes our RNPSVM approach, and the feasi-
bility of algorithmic procedure is also theoretically analyzed.
Experimental results are described in Section IV and conclud-
ing remarks are given in Section V.

II. BACKGROUNDS
In this section, we first describe the notations used through-
out the paper. Then, briefly introduce GEPSVM [19] and
IGEPSVM [23].
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A. NOTATIONS
Upper (lower) bold face letters are used for matrices (column
vectors). All vectors will be column vectors unless trans-
formed to row vectors by a prime superscript (·)′. A vector of
zeros of arbitrary dimensions is represented by 0. In addition,
e is denoted as a vector of ones and I as an identity matrix of
arbitrary dimensions.

Consider a binary classification problem in the
n-dimensional space Rn. Denote the set of training data as

T = {(xi, yi)|1 ≤ i ≤ m} ∈ (X × Y)m, (1)

where xi ∈ X ⊂ Rn is an input instance with its associated
label yi ∈ Y = {+1,−1}. For simplification, denote Ik as
the set of indices such that if an instance xi belongs to the k-th
class, i.e., i ∈ Ik , where k = 1 or 2 corresponds to the positive
or negative class. Otherwise, j ∈ Ik̄ means that an instance
xj does not belong to the k-th class. Moreover, suppose that
matrix A = {xi}i∈I1 with size of m1 × n represents instances
of class 1 (class +1), while matrix B = {xj}j∈I2 with size of
m2×n represents instances of class 2 (class−1). DenoteX =[
A′ B′

]′ as all the training instances, where m1 + m2 = m.
Furthermore, define a diagonal conversion operation Diag(·)
that converts a vector d ∈ Rn into a diagonal matrix D ∈
Rn×n, whose diagonal elements Dii = di.

B. GEPSVM
GEPSVM [19] is an excellent classifier for classification,
which relaxes the requirement of hyperplanes generated by
SVM should be parallel and attempts to seek a pair of non-
parallel proximal hyperplanes

w′kx+ bk = 0, k = {1, 2} (2)

where wk ∈ Rn is the normal vector, and bk ∈ R is the
bias term. The optimization goal of GEPSVM is that each
hyperplane in (2) should be closest to its class while as far
as possible from the other class simultaneously. GEPSVM
utilizes the ‘‘ratio’’ criterion to implement its empirical risk,
leading to the following optimization problem for the k-th
class hyperplane

min
(wk ,bk )6=0

∑
i∈Ik ‖w

′
kxi + bk‖

2
2∑

j∈Ik̄ ‖w
′
kxj + bk‖

2
2

. (3)

For sake of simplicity, we augment the input spaceX from
Rn to Rn+1: x̃ = [x′ 1]′ and define zk =

[ wk
bk

]
, then the

corresponding proximal hyperplanes (2) can be expressed as
z′k x̃ = 0.

Note that, solving problem (3) may suffer the singularity
problem. Therefore, a Tikhonov regularization term is fur-
ther introduced in (3) to improve the stability of GEPSVM.
It yields

min
zk 6=0

z′k
(∑

i∈Ik x̃ix̃
′

i
)
zk + δ‖zk‖22

z′k
(∑

j∈Ik̄ x̃jx̃
′

j

)
zk

, (4)

where δ is a small positive parameter. The above minimiza-
tion problem (4) is exactly Rayleigh quotient [19], whose

solution can be obtained via the following generalized eigen-
value problem∑

i∈Ik

x̃ix̃′i + δI

 zk = λ

∑
j∈Ik̄

x̃jx̃′j

 zk . (5)

The optimal solution to problem (4) is the eigenvector
corresponding to smallest eigenvalue of problem (5). Once
the solution zk is obtained, hyperplanes (2) of GEPSVM are
constructed. For an unseen instance x ∈ Rn, its class label is
assigned according to which of the hyperplanes (2) it is closer
to, i.e.,

Class k = arg min
k=1,2

|w′kx+ bk |
‖wk‖2

, (6)

where | · | is the absolute value.

C. IMPROVEMENT OF GEPSVM (IGEPSVM)
It is observed from (3) that GEPSVM utilizes the ‘‘ratio’’
criterion to measure the differences of distances between
instances of two classes and k-th class hyperplane, whichmay
encounter the possible singularity. To alleviate this, in light of
themaximummargin criterion [24], Shao et al. [23] proposed
an improved version of GEPSVM, termed as IGEPSVM.
Specifically, its empirical risk is implemented in the ‘‘minus’’
form instead of ‘‘ratio’’, which yields the following optimiza-
tion problem for the k-th class hyperplane

min
zk
νz′k

∑
i∈Ik

x̃ix̃′i

 zk − z′k

∑
j∈Ik̄

x̃jx̃′j

 zk , (7)

where ν > 0 is a penalty parameter that determines the trade-
off between the two loss terms in (7) and k = {1, 2}. Com-
pared with GEPSVM, this meaningful parameter ν allows
IGEPSVM to have a bias factor for different data class.

Let Ak = {x̃i}i∈Ik and Bk = {x̃j}j∈Ik̄ , then problem (7) can
be rewritten in the matrix formulation as

min
zk
νz′kMkzk − z′kHkzk , (8)

where the symmetry matricesMk and Hk are defined by

Mk = A′kAk =
∑
i∈Ik

x̃ix̃′i, (9)

Hk = B′kBk =
∑
j∈Ik̄

x̃jx̃′j. (10)

Similar to GEPSVM, a regularization term ‖zk‖22 is intro-
duced to control the norm of the problem variable zk , then
the primal problem of IGEPSVM can be formulated as

min
zk
νz′kMkzk − z′kHkzk + δ‖zk‖22, (11)

where δ > 0 is a regularization parameter. Minimize problem
(11) is equal to solve the following related eigenvalue prob-
lem (EP)

(νMk −Hk + δI)zk = λzk , (12)
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whose solution is the eigenvector corresponding to small-
est eigenvalue of problem (12). Note that, the generalized
eigenvalue decomposition (5) in GEPSVM is replaced by
the standard eigenvalue decomposition (12) in IGEPSVM,
resulting in simpler optimization problem without the pos-
sible singularity.

III. ROBUST NONPARALLEL PROXIMAL SUPPORT
VECTOR MACHINE VIA TRACE LASSO
A. PROBLEM FORMULATION
Obviously, the optimization problem (11) of IGEPSVM can
be rewritten in its equivalence maximum formulation accord-
ing to (9) and (10) as

max
zk
‖Bkzk‖22 − ν‖Akzk‖

2
2 − δ‖zk‖

2
2, (13)

Remark 1: From (13), we can see that IGEPSVM utilizes
the L2-norm criterion to implement its empirical risk to find
a pair of optimal hyperplane (2). For k-th class proximal
hyperplane (k = {1, 2}), it aims to maximize the L2-norm
distances from instances of the other class to this hyperplane
(the first term in (13)), meanwhile minimize the L2-norm
distances for its own class instances (the second term in (13)).
In fact, such an L2-norm measurement is a square operation,
which causes it sensitive to outliers. Fig. 1 illustrates that
the employment of L2-norm tends to exaggerate the effect of
outliers, which leads to the large loss penalty dominating the
sum in IGEPSVM.

FIGURE 1. Illustration of the exaggeration effect of the L2-norm versus
the L1-norm.

To improve model robustness in the presence of outliers,
the L1-norm measurement is usually considered as a more
efficient way than the L2-norm [37]. From Fig. 1, it can be
observed that the L1-norm can reduce the influence (loss
penalty) of outliers compared with the L2-norm.
The above analysis motives us to propose a robust non-

parallel proximal SVMmodel with trace lasso regularization,
termed as RNPSVM. In particular, our RNPSVM utilizes the
robustness L1-norm measurement to implement its empirical
risk, which leads to the following optimization problem for

k-th class hyperplane

max
zk
‖Bkzk‖1 − ν‖Akzk‖1 −

δ

2
‖zk‖22 − η‖X̃Dz‖∗, (14)

where ν, δ, η > 0 are parameters, k = {1, 2}, ‖ · ‖1 is the L1-
normmeasurement, ‖·‖∗ is the nuclear norm,1 X̃ = [X ′ e]′ is
the augmented input matrix, and Dz = Diag(zk ) is a diagonal
matrix with its diagonal elements zk .

To deliver the mechanism of RNPSVM, we now carry
out the analysis and intuitive explanation for optimization
problem (14):
• For the first and second terms in problem (14), the L1-
normmeasurement is employed to implement the empir-
ical risk of RNPSVM, which is robust to outliers.

• Maximizing the first L1-norm based term ‖Bkzk‖1 =∑
j∈Ik̄ |z

′
k x̃j| aims to push instances x̃j∈Ik̄ of the other

class as far as possible away from the k-th class proximal
hyperplane z′k x̃ = 0.

• Minimizing the second L1-norm based term ‖Akzk‖1 =∑
i∈Ik |z

′
k x̃i| hopes to make instances x̃i∈Ik of the k-th

class as close as possible to this hyperplane.
• The third term in objective function is the L2-norm of
zk , which is utilized to control the model complexity of
RNPSVM and obtain a more appropriate model.

• The nuclear norm of matrix X̃Dz in last term is
utilized to capture the underlying information of
data. Moreover, this term is known as trace lasso
regularization [44]–[47], which makes our RNPSVM
consider the sparsity and correlation of data simultane-
ously. Trace lasso naturally clusters the highly correlated
data together.

B. MODEL OPTIMIZATION OF RNPSVM
In this subsection, we discuss how to optimize our RNPSVM.
Due to the non-smooth L1-norm loss and nuclear norm terms,
it is difficult to achieve the global optimum of (14) directly
by traditional optimization algorithms. Therefore, to optimize
problem (14), we now consider its equivalent formulation by
Proposition 1.
Proposition 1: Problem (14) is equivalent to

max
zk ,S
‖Bkzk‖1 − ν‖Akzk‖1 −

δ

2
‖zk‖22

−
η

2
z′kDszk −

η

2
tr(S), (15)

where Ds is a diagonal matrix with its diagonal elements
extracted from the corresponding diagonal elements of matrix
X̃
′
S−1X̃ .
Proof: To prove it, we first introduce Lemma 1 [44].

Lemma 1: For any matrix Q ∈ Rm×n, the following vari-
ational equality for the nuclear norm of Q holds:

‖Q‖∗ =
1
2
inf
S>0

{
tr(Q′S−1Q)+ tr(S)

}
, (16)

1The nuclear norm of matrix Q ∈ Rm×n is the sum of its singular values
σ (Q), which is defined as ‖Q‖∗ = tr

(√
Q′Q

)
=
∑min{m, n}

i=1 σi(Q).
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and its infimum is achieved at S =
√
QQ′, where tr(·) is the

trace operator of a matrix.
Let Q = X̃Dz in Lemma 1, then the nuclear norm ‖X̃Dz‖∗

in problem (14) can be formulated as

‖X̃Dz‖∗ =
1
2
inf
S>0

{
tr(D′zX̃

′
S−1X̃Dz)+ tr(S)

}
=

1
2
inf
S>0

{
z′kDszk + tr(S)

}
, (17)

where Ds is defined as a diagonal matrix with its correspond-
ing diagonal elements extracted from the diagonal elements
of X̃

′
S−1X̃ and the infimum of (17) is obtained at S =√

X̃D2
z X̃
′
.

Finally, substituting (17) into problem (14), it yields

max
zk
‖Bkzk‖1 − ν‖Akzk‖1 −

δ

2
‖zk‖22

−
η

2

(
inf
S>0

{
z′kDszk + tr(S)

})
,

⇒ max
zk ,S
‖Bkzk‖1 − ν‖Akzk‖1 −

δ

2
‖zk‖22

−
η

2
z′kDszk −

η

2
tr(S).

The proof is established.
Remark 2: Although problem (15) is convex, it is challeng-

ing to optimize variables zk and S simultaneously. However,
from Lemma 1, we can see that, when fix zk , the objective
function of problem (15) achieves maximum on the condition

of S =
√
X̃D2

z X̃
′
.

The above analysis motives us to design an iterative algo-
rithm to optimize zk and S alternatively, summarized in
Algorithm 1. More specifically, once obtaining zk , we update
S according to the latest zk (Step 3). On the other hand, once
updating S, we computeDs and then solve zk by the following
L1-norm problem (Step 4)

max
zk
‖Bkzk‖1 − ν‖Akzk‖1 −

δ

2
‖zk‖22 −

η

2
z′kDszk . (18)

Note that, due to the convexity of problem (15) w.r.t. zk
and S, fixing one and maximizing another in Algorithm 1 will
guarantee the increasing of its objective function. Therefore,
the optimal solution zk to problem (15) can be achieved
via Algorithm 1, i.e., the updating operation in Step 3 and
4 iterates alternately until it converges.

Remark 3: In Algorithm 1, S =
√
X̃D2

z X̃
′
can be cal-

culated easily via eigenvalue decomposition of X̃D2
z X̃
′
.

However, as for zk , problem (18) is non-smooth due to the
L1-norm loss terms ‖Bkzk‖1 and ‖Akzk‖1. As a result, it is dif-
ficult to obtain its optimal solution zk directly by traditional
gradient-based optimization techniques.

In what follows, we focus on the optimization of problem
(18). Note that the L1-norm loss terms in problem (18) can
be unfolded as ‖Bkzk‖1 =

∑
j∈Ik̄ |z

′
k x̃j| and ‖Akzk‖1 =∑

i∈Ik |z
′
k x̃i|. Inspired by [37], we present an efficient iter-

ative algorithm to maximize problem (18) via Algorithm 2,
which updates the solution zk iteratively until it converges.

Algorithm 1 The Procedure of RNPSVM for k-th Class
Hyperplane
Input: The training data matrices Ak = {x̃i}i∈Ik and Bk =
{x̃j}j∈Ik̄ , and parameters µ, δ, µ > 0.

1: Initialize zk ∈ Rn as a random vector and then normalize
it with unit length, i.e., zk = zk/‖zk‖2.

2: while not converged do
3: Update S according to zk by

S = U diag(
√

λ)U ′, (19)

where eigenvalues λ and eigenvectorsU are computed
by the eigenvalue decomposition of X̃D2

z X̃
′
, and Dz =

diag(zk ).
4: Update zk according to S by solving problem (18)

via Algorithm 2, where Ds is the diagonal elements
of matrix Ds = X̃

′
S−1X̃ and S−1 = U diag(1/

√
λ)

U ′.
5: Check the convergence condition: the objective func-

tion value of problem (14) does not increase anymore,
then terminate the loop.

6: end while
Output: The optimal solution z∗k to problem (14).

Algorithm 2 The Procedure for Solving Problem (18)
Input: The training data matrices Ak = {x̃i}i∈Ik and Bk =
{x̃j}j∈Īk , parameters µ, δ, µ > 0, and the matrix Ds.

1: Set the iterator t = 0, and initialize zk ∈ Rn as a random
vector and then normalize it with unit length, i.e., zk =
zk/‖zk‖2.

2: while ‖zk (t + 1)− zk (t)‖ > 10−4 do
3: Calculate two polarity functions pi(t) and qi(t) to

unclose the absolute value operations in problem (18)
according to zk (t)

pj(t) =

{
1, zk (t)′x̃j ≥ 0
−1, zk (t)′x̃j < 0

(j ∈ Ik̄ ), (20)

and

qi(t) =

{
1, zk (t)′x̃i ≥ 0
−1, zk (t)′x̃i < 0

(i ∈ Ik ). (21)

4: Update zk (t + 1) by

zk (t + 1) = (νV (t)+ δI + ηDs)−1 u(t), (22)

where V (t) and u(t) are calculated as

V (t) =
∑
i∈Ik

x̃ix̃′i
|zk (t)′x̃i|

and u(t) =
∑
j∈Ik̄

pjx̃j. (23)

5: end while
Output: The optimal solution z∗k for problem (18).

Remark 4: In very few cases, the denominator of V (t) in
(23) may become zero. Thus, similar to [37], to ensure the
well-defined of V (t), we will set |zk (t)′x̃i| =

√
(zk (t)′x̃i)2 + ε
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when this situation occurs (ε is a very small positive float).
Namely, when ε ≈ 0, it will approximate the original value.

C. CONVERGENCE ANALYSIS
In this subsection, we will focus on the convergence of
Algorithm 2. Denote the objective function of (18) as

J(zk ) = ‖Bkzk‖1 − ν‖Akzk‖1 −
δ

2
‖zk‖22 −

η

2
z′kDszk . (24)

The updating rule (22) guarantees the convergence of
Algorithm 2, i.e., J(zk (t + 1)) ≥ J(zk (t)), which is justified
by Theorem 1. To prove it, we introduce Lemma 2 [48].
Lemma 2: For any vector v = (v1, · · · , vn)′ ∈ Rn, the fol-

lowing variational equality holds

‖v‖1 = min
x̃∈Rn+

{
1
2

n∑
k=1

(
v2k
uk

)
+

1
2
‖u‖1

}
. (25)

and the minimum is uniquely achieved at uk = |vk |, where
u = (u1, · · · , un)′.
Theorem 1: Algorithm 2 monotonically non-decreases

the objective function J(zk ) in each iteration, namely,
J (zk (t + 1)) ≥ J (zk (t)).

Proof: Suppose that zk (t) is the optimal solution
obtained in the t-th iteration, and the corresponding objective
function (24) can be expressed as

J(zk (t)) = ‖Bkzk (t)‖1 − ν‖Akzk (t)‖1

−
δ

2
‖zk (t)‖22 −

η

2
zk (t)′Dszk (t). (26)

The first and second L1-norm loss terms in (26) can be
further rewritten as

‖Bkzk (t)‖1 =
∑
j∈Ik̄

|zk (t)′x̃j|

= zk (t)′
∑
j∈Ik̄

pj(t)x̃j = zk (t)′u(t), (27)

and

‖Akzk (t)‖1 =
∑
i∈Ik

|zk (t)′x̃i|

=
1
2
zk (t)′

∑
i∈Ik

x̃ix̃′i
|zk (t)′x̃i|

 zk (t)+
1
2
‖Akzk (t)‖1

=
1
2
zk (t)′V (t)zk (t)+

1
2
‖a(t)‖1, (28)

where u(t) and V (t) are defined in (23), and vector a(t) =
Akzk (t). Substituting (27) and (28) into (26), it yields

J (zk (t)) = zk (t)′u(t)−
ν

2
zk (t)′V (t)zk (t)

−
ν

2
‖a(t)‖1 −

δ

2
‖zk‖22 −

η

2
z′kDs(t)zk . (29)

However, it is difficult to directly calculate the derivative of
function J (zk (t)) due to the non-smooth L1-norm. Therefore,
we introduce the following surrogate function as

Lt (ξ ) = ξ ′u(t)−
ν

2
ξ ′V (t)ξ −

ν

2
‖a(t)‖1

−
δ

2
ξ ′ξ −

η

2
ξ ′Ds(t)ξ . (30)

FIGURE 2. Synthetic ‘‘XOR’’ dataset (a) without and (b) with outliers. The
red ‘‘+’’ and blue ‘‘×’’ scatter plot of the instance from Class 1 and
Class 2, respectively. (a) ‘‘XOR’’ without outliers. (b) ‘‘XOR’’ with outliers.

It is worth noting that Lt (ξ ) has only one variable ξ with
fixed u(t), v(t), a(t) and Ds(t). Therefore, to obtain the max-
imum of Lt (ξ ), we set the derivative of Lt (ξ ) with respect to
ξ be zero

∂Lt (ξ )
∂ξ

= u(t)− νV (t)ξ − δξ − ηDsξ = 0. (31)

From (31), we have

ξ = (νV (t)+ δI + ηDs(t))−1 u(t). (32)

Let zk (t+1) = (νV (t)+ δI + ηDs(t))−1 u(t) as the updating
rule (22) of zk in Algorithm 2. Based on the above derivation,
we will justify that J(zk ) monotonically non-decreases with
this updating rule.

Since the maximum of Lt (ξ ) is attained for ξ = zk (t + 1)
in the t-th iteration, we have Lt (zk (t + 1)) ≥ Lt (ξ ) for any ξ .
Thus, we derive

Lt (zk (t + 1))

= zk (t + 1)′u(t)−
ν

2
zk (t + 1)′V (t)zk (t + 1)
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FIGURE 3. The learning results on ‘‘XOR’’ dataset without outliers: hyperplanes are learned by (a) IGEPSVM, (c) L1NPSVM and (d) RNPSVM, and
projections are learned by (b) RPTSVM.

−
ν

2
‖a(t)‖1 −

δ

2
‖zk (t + 1)‖22 −

η

2
zk (t + 1)′Dszk (t + 1))

≥ zk (t)′u(t)−
ν

2
zk (t)′V (t)zk (t)−

ν

2
‖a(t)‖1

−
δ

2
‖zk (t)‖22 −

η

2
zk (t)′Dszk (t))

= Lt (zk (t)) = J(zk (t)). (33)

Now, we proof J(zk (t + 1)) ≥ Lt (zk (t + 1)) as follows.
Since pj(t + 1) is the sign of zk (t + 1)′x̃j, we can conclude

that, for any j ∈ Ik̄ , it always has pj(t + 1)zk (t + 1)′x̃j ≥ 0.
However, for some j ∈ Ik̄ , the corresponding pj(t)zk (t+1)′x̃j
may be negative. That is,

‖Bkzk (t + 1)‖1 = zk (t + 1)′
∑
j∈Ik̄

pj(t + 1)x̃j

≥ zk (t + 1)′
∑
j∈Ik̄

pj(t)x̃j = zk (t + 1)′u(t)

(34)

On the other hand, from Lemma 2, we have

‖Akzk (t + 1)‖1
=

∑
i∈Ik

|zk (t + 1)′x̃i|

= min
u∈Rn+

{
1
2

n∑
k=1

(
(zk (t + 1)′x̃i)2

uk

)
+

1
2
‖u‖1

}

≤
1
2

∑
i∈Ik

(zk (t + 1)′x̃i)2

|ai(t)|
+

1
2
‖a(t)‖1

=
1
2
zk (t + 1)′V (t)zk (t + 1)+

1
2
‖a(t)‖1, (35)

Combining (34) and (35), yields

J(zk (t + 1))

= ‖Bkzk (t + 1)‖1 − ν‖Akzk (t + 1)‖1

−
δ

2
‖zk (t + 1)‖22 −

η

2
zk (t + 1)′Dszk (t + 1)
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FIGURE 4. The distance scatter of instances on ‘‘XOR’’ dataset without outliers: (a) IGEPSVM, (b) RPTSVM, (c) L1NPSVM, and (d) RNPSVM. (a) IGEPSVM.
(b) RPTSVM. (c) L1NPSVM. (d) RNPSVM.

≥ zk (t + 1)′u(t)−
ν

2
zk (t + 1)′V (t)zk (t + 1)−

ν

2
‖a(t)‖1

−
δ

2
‖zk (t + 1)‖22 −

η

2
zk (t + 1)′Dszk (t + 1))

= Lt (zk (t + 1)). (36)

Then, by using (33), we have

J(zk (t + 1)) ≥ J(zk (t)) (37)

Thus, the objective function J(zk ) non-decreases via each
iteration, which establishes the proof.
Note that, the objective function J(zk ) of (18) has a lower

bound. Hence, Theorem 1 indicates that zk will converge to
a local optimal solution of problem (18) by the proposed
Algorithm 2.

IV. EXPERIMENTAL RESULTS
To evaluate the robustness of the proposed RNPSVM,
we investigate its classification accuracy2 and efficiency3

on both noisy synthetic and real-world datasets. In our
experiments, we carry out comparisons between RNPSVM
and three nonparallel SVMs, including IGEPSVM [23],
RPTSVM [49] and L1NPSVM [43]. All the experiments
are implemented by Matlab (2017b) on a personal com-
puter (PC) with an Intel Core-i7 processor (2.9 GHz) and
32 GB random-access memory (RAM). The eigenvalue prob-
lem in IGEPSVM is solved by Matlab function ‘‘eig(·)’’.
For RPTSVM, we resort Matlab function ‘‘quadprog(·)’’ to

2Classification accuracy (%) is defined as: Acc = TP+TN
TP+FP+TN+FN , where

TP, TN, FP and FN are the number of true positive, true negative, false
positive and false negative, respectively.

3We use the learning time (not include the parameters tuning time) to
represent the training CPU time (s.) for each algorithm.
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FIGURE 5. The learning results on ‘‘XOR’’ dataset with outliers: hyperplanes are learned by (a) IGEPSVM, (c) L1NPSVM and (d) RNPSVM, and projections
are learned by (b) RPTSVM.

solve QPP.With regard to the parameter selection, we employ
the standard ten-fold cross-validation technique.4 Similar
to [19], [27], [28], we use grid-based approach to obtain the
optimal parameters for classifiers. The parameters δ, c1, c2
in GEPSVM, RPTSVM and RNPSVM are selected from
{2i|i = −5,−4, . . . , 5}, while the learning rate in L1NPSVM
is chosen from the set {0.0005, 0.001, 0.005, 0.01, 0.05}.
Once selected, we returned them to learn the final decision
function.

A. EXPERIMENTS ON SYNTHETIC DATASETS
To investigate the robustness of RNPSVM, in this subsection,
we construct two types of synthetic ‘‘XOR’’ dataset, as shown
in Fig.2, which is usually used to demonstrate the effective-
ness of nonparallel SVM [19], [20], [29]. One is the original
‘‘XOR’’ dataset, which is generated by perturbing points from

4In detail [1], each dataset is partitioned into ten subsets with similar sizes
and distributions. Then, the union of nine subsets is used as the training set
while the remaining subset is used as the test set. The experiment is repeated
10 times such that every subset is used once as a test set.

two intersecting lines

Class 1: yi = 0.7× xi + ξ,

Class 2: yi = −0.3× xi + ξ,

where the Gaussian noise ξ ∼ N (0, 0.2) is randomly
added to each instance. Another is the contaminated ‘‘XOR’’
dataset, which is polluted by some outliers.

The learning results of each classifier on the original
‘‘XOR’’ dataset are illustrated in Fig.3. It can be seen that
all classifiers can capture the underlying ‘‘XOR’’ distribution
and obtain the optimal nonparallel hyperplanes/projections
(the red and blue planes or directions in Fig.3) for non-outliers
case. Moreover, we record the distance of each instance
from two hyperplanes/projections learned by four classifiers,
as shown in Fig.4. It reveals that all classifiers could separate
the two classes well and obtain good performance.

In what follows, we turn to compare the performance of
RNPSVM with other classifiers on ‘‘XOR’’ dataset with out-
liers. The learning results and the distance scatter of instances
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FIGURE 6. The distance scatter of instances on ‘‘XOR’’ dataset with outliers: (a) IGEPSVM, (b) RPTSVM, (c) L1NPSVM, and (d) RNPSVM.

TABLE 1. Accuracy (%) and learning time (s) of each classifier on ‘‘XOR’’
dataset with or without outliers case.

are illustrated in Fig.5 and Fig.6, respectively. It can be seen
that the L2-norm based IGEPSVM and RPTSVM cannot
capture the ‘‘XOR’’ distribution well, and their proximal
hyperlanes/projections are affected greatly by outliers. On the
contrary, thanks to the L1-norm loss criterion, L1NPSVM and
our RPNSVM are less sensitive to the outliers. RNPSVM
can discover the more discriminate information from the
contaminated ‘‘XOR’’ than others.

For better comparisons, we also give the accuracy and
learning time of each classifier on the above two ‘‘XOR’’
datasets in Table.1. The results show that all classifiers

TABLE 2. Statistics for UCI datasets used in experiments.

perform well without outliers. However, when the dataset
is polluted by outliers, the performance of L2-norm based
IGEPSVM and RPTSVM decreases obviously compared
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TABLE 3. The average learning results of each classifier on UCI datasets with slight noisy-level m = 5%, in terms of testing accuracy (Acc) and learning
time (Time).

with the L1-norm based L1NPSVM and RNPSVM. More-
over, our RNPSVM obtain the best performance among
classifiers. As for learning time, RNPSVM is a bit
slower than IGEPSVM, but faster than L1NPSVM and
RPTSVM. The above results illustrate the robustness of
our RNPSVM.

B. EXPERIMENTS ON UCI DATASETS
To further validate the generalization performance of the
proposed RNPSVM, we consider twelve real-world datasets

from the UCI machine learning repository,5 whose statistics
are listed in Table 2. These datasets represent a wide range
of fields (include pathology, bioinformatics, finance and so
on), sizes (from 155 to 3163) and features (from 9 to 34).
The setting of our experiments is given as follows. Firstly,
the features of all datasets are normalized to zero mean
and unit deviation. Then, we divide each dataset into two
subsets: 70% for training and 30% for testing. Afterwards,

5The UCI datasets are available at http://archive.ics.uci.
edu/ml
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TABLE 4. The average learning results of each classifier on UCI datasets with heavy noisy-level m = 20%, in terms of testing accuracy (Acc) and learning
time (Time).

we randomly selectm ratio of instances of training subset, and
polluted their features with Gaussian noise to generate out-
liers. In this experiment, we consider two kind of situations:
slight noisy-level m = 5% and heavy noisy-level m = 20%.
Finally, we transform them into the noisy classification tasks.
Each experimental setting is repeated 10 times.

Table 3 and 4 list the average learning results of four
classifiers on UCI datasets with the noisy-level 5% and 20%,
respectively. The best performance is highlighted in bold.
From results, we can learn that the classification performance

for all classifiers will deteriorate generally with the aggrava-
tion of noisy-level. When datasets are polluted with the slight
noisy-level (5%), our RNPSVM obtains the comparable or
better performance than other three classifiers, as reported
in Table 3. More specifically, RNPSVM gains the best accu-
racy on 7 of 12 datasets, while IGEPSVM and L1NPSVM
only achieves that on 2 and 3 of 12 respectively.

When the noisy-level of datasets becomes more serious,
as shown in Table 4, the performance of L2-norm IGEPSVM
and RPTSVM are dramatically worse. For example, on the
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Wpbc dataset, IGEPSVM obtains the best accuracy
(75.23%), while its performance reduced to 67.15%when the
ratio of outliers is 20%.On the other hand, with the help of L1-
norm technique, RNPSVM and L1NPSVM are less sensitive
to outliers than IGEPSVM and RPTSVM. Observing from
Table 4, they can achieve satisfied performance even in
the heavy noisy-level case. Although both RNPSVM and
L1NPSVM are utilized the L1-norm measurement for their
empirical risks, the performance of RNPSVM is better than
that of L1NPSVM in the most case. That is, our RNPSVM
gains the best accuracy on 9 of 12 datasets. The reason may
be that the trace lasso assists our RNPSVM to capture more
underlying information, which makes it consider the spar-
sity and correlation of data simultaneously. Another reason
may be that the efficient algorithm guarantees RNPSVM
to optimize the convex sub-problem iteratively. Meanwhile,
L1NPSVM utilizes the GA algorithm to optimize its L1-
norm ratio optimization problem, and both the need of the
non-convex surrogate function and the difficult selection of
step-size in GA may not guarantee to obtain the optimum
solution.

As for the learning efficiency, we can observe from Table 3
and 4 that the noisy-level has little impact on the learning time
of each classifier. Compared with IGEPSVM, our RNPSVM
need spend a bit more time to solve the optimization problem
with L1-norm and trace lasso. In addition, althoughRNPSVM
is slower than IGEPSVM, it is faster than RPTSVM.

To provide more statistical evidence [30], [50], we employ
the Friedman’s test to check whether there are significant
differences between RNPSVM and other classifiers on the
whole datasets, according to the testing accuracies in Table 3
and 4. The bottom of Table 3 and 4 lists the average rank of
classifiers obtained by Friedman’s test. It can be seen that the
proposed RNPSVM is ranked first in both slight and heavy
noisy-level situations, followed by L1NPSVM successively.
These results confirmed the robustness of our RNPSVM
against the outliers.

V. CONCLUSION
In this paper, we propose a novel robust nonparallel proxi-
mal SVM with trace lasso regularization for noisy classifi-
cation, termed as RNPSVM. To improve the robustness of
RNPSVM, the L1-norm metric is utilized to implement its
empirical risk. In detail, our RNPSVM aims to maximize
the L1-norm inter-class distance dispersion and minimize
the L1-norm intra-class distance dispersion simultaneously.
Moreover, trace lasso [44]–[47] is further adopted as an adap-
tive norm to balance the L1-norm and the L2-norm regu-
larization for our model. This elegance formulation allows
RNPSVM to avoid the singularity problem effectively, which
may encounter in GEPSVM. To optimize the non-smooth
maximum problem of RNPSVM, an efficient iterative algo-
rithm is further designed, whose convergence is guaranteed
theoretically. Finally, the effectiveness and robustness of
RNPSVM is confirmed by extensive experimental results on
both synthetic and real-world noisy dataset.

One of our future work is to extend our model to deal
with the nonlinear noisy classification tasks. The extensions
to multi-class classification, regression, and semi-supervised
learning are also interesting and under our consideration.
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