
Received December 24, 2018, accepted January 11, 2019, date of publication January 18, 2019, date of current version February 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2893277

Rolling Bearing Performance Degradation
Assessment Based on Convolutional Sparse
Combination Learning
WENYI HUANG , JUNSHENG CHENG, AND YU YANG
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University,
Changsha 410082, China

Corresponding author: Junsheng Cheng (chengjunsheng@hnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51575168 and Grant 51875183, in part
by the Key Research and Development Program of Hunan Province under Grant 2017GK2182, in part by the Collaborative Innovation
Center of Intelligent New Energy Vehicle, and in part by the Hunan Collaborative Innovation Center for Green Car.

ABSTRACT A novel bearing performance degradation assessment method based on convolutional sparse
coding and combination learning is proposed in this paper, which can avoid the impact of the traditional fea-
tures on the assessment results under complex operation conditions. The vibration signal can be decomposed
into the convolution of the kernel sets and their corresponding sparse solutions using convolutional sparse
coding. The learned kernel sets based on the training signal samples are the comprehensive embodiment of
the information related to the operational complexity and the bearing healthy state, and the corresponding
sparse solutions indicate the energy of the kernel activation. A simulation experiment of bearing signal proves
that the activation energy of the kernels, which are more related to bearing healthy, will rise with the increase
of the bearing degradation degree; meanwhile, the error of reconstructed signal based on the learned kernel
sets and original signal will decrease since the description effect of convolutional sparse coding to the signal
will be enhanced with the periodic strengthen of signal caused by the fault. Thus, an index based on the
kernel sparse norms and the errors between the original and reconstructed signals has been proposed to
evaluate the degradation degree of the bearing in this paper. On the other hand, combination learning will
be fused into the convolutional sparse coding to improve the real-time performance of the index calculation
and obtain the best assessment result in the testing part by dividing the kernel dictionary set into multiple
sub-dictionaries. A bearing run-to-fail experiment is analyzed to verify the validity of the proposed method.
The testing results show that the proposed assessment index can clearly detect the initial fault, serve fault
and failure of the bearing in the whole life, and the proposed method is more self-adaptive and sensitive to
the fault degree. In addition, it is verified that the time consumption of the combination dictionaries is less
than that of a single dictionary set.

INDEX TERMS Bearing performance degradation assessment, complex operation condition, convolutional
sparse combination learning, convolutional sparse reconstruction.

I. INTRODUCTION
With the rapid development of science and technology and the
continuous development of industrial applications, mechan-
ical equipment is becoming more and more complex, pre-
cise and intelligent. Therefore, the requirements of industrial
condition monitoring and fault diagnosis system are higher
and higher in practical application and many researchers
dedicated to the study of engineering machinery degradation
model. For example, Wang et al. [1] etc provided statistics
of published papers related to multivariate statistical process

monitoring (MSPM) over the past decade because MSPM
methods such as principal component analysis (PCA), par-
tial least squares (PLS) and independent component analysis
(ICA) are significant for improving production efficiency and
enhancing safety. In addition, they [2] also proposed a novel
control performance assessment (CPA) method for iterative
learning control-controlled batch processes based on a 2-D
linear quadratic Gaussian (LQG) benchmark. The methods
mentioned above have contributed to the theoretical research
of maintenance and monitoring of engineering machinery.
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No matter in heavy machinery or light machinery,
the rolling bearing is the critical element of rotating machin-
ery since its fault probability is 30% in all faults of rotating
elements [3]. It is significant to monitor the bearing healthy
on the working state of rotating machine. Accordingly, many
researchers pay more and more attention to bearing fault
detection [4], remaining useful life prediction [5] and per-
formance degradation assessment in recent years. Especially
in bearing performance degradation assessment, lots of work
about this topic such as novel performance degradation
indexes, feature optimization methods and feature fusion
methods had been done, which provided potential directions
for future research [6]–[10].

Undoubtedly, the feature extraction of bearing vibration
signal is the key to accurately evaluate the bearing state. The
common features include the time domain features such as
mean, kurtosis, skew-ness and root mean square [11]–[13],
frequency domain features such as mean frequency, center
frequency [14]–[16] and time-frequency domain features
such as wavelet packet energy, wavelet packet entropy
and component feature of empirical mode decomposition
[17]–[22]. Their effectiveness directly affects the availabil-
ity of diagnosis model. However, the time domain features
and frequency domain features are easily affected by noise,
and the time-frequency domain features based on wavelet
transform also depends on the prior knowledge of wavelet
selection, which cannot make the bearing fault diagnosis
methods based on traditional features applicable to any
working environment.

With the rise of big data and the rapid development of
artificial intelligence, compressive sensing (CS) has been
widely used and has obtained state-of-the-art results in mul-
tiple fields such as machine learning, neuroscience, signal
processing, image and audio processing, classification, and
statistics [23]–[25] because its features are flexibility, sparse
and super-resolution. CS mainly consists two parts including
sparse coding and dictionary design. Sparse coding trans-
forms signal into a linear combination of basis kernels in
a redundant dictionary. It had been proved that the sparse
coding is a NP-hard problem [26] and it can be replaced by
the pursuit-based approximate solutions. The pursuit algo-
rithms mainly include greedy-based matching pursuit and
convex optimal-based basis pursuit. It has been proved that
the convex optimal-based basis pursuits are more suitable
for processing large-scale and high-dimensional engineering
signals [27]–[30]. Dictionary design is, as much as possible,
making the kernels learned from the data well match the
impulses embedded in the signal. The general methods for
constructing a dictionary include using amanually predefined
dictionary via signal transformation methods, and adaptively
learning a dictionary from the measured data itself (also
called explicit dictionary). The predefined dictionaries, such
as frequency dictionaries, time-scale dictionaries and time-
frequency dictionaries are widely used for computational
conveniences. However, an explicit dictionary is directly
inferred from the input data by machine learning techniques,

which can adapt to various kinds of operation conditions
without prior knowledge. Shift-invariant dictionary learning
(SIDL) is an extension of dictionary learning and it allows
each kernel to be shifted at each time offset within the signal,
which is suitable for extracting the impulses induced by the
rotational machine faults [31]. For rotating mechanical fault
diagnosis, CS based pursuit algorithms and SIDL can extract
the circular impulses submerged in the vibration signals of a
rotating machine system, which contain high-level structure
features. The extracted impulses have highly adaptability to
the complex conditions and can depict the detail information
of the signal, which are superior to the traditional features.
In addition, SIDL also has successfully been used to extract
double impulses embedded in the bearing vibration signals.
Thus, SIDL is a powerful signal processing method for cod-
ing impulse signals [32].

In the framework of CS, a novel convolutional sparse
coding (CSC) based on alternating-direction method of mul-
tiplier (ADMM) was proposed in 2016 [33]. Not only
does it have the excellent characteristics of SIDL but also
can enhance the ability of the shift-invariant sparse coding
(SISC). The ADMM based CSC had been applied in image
processing [34]. Meanwhile, CSC has the clear physical
meaning of representing the impulses generated by the cir-
cular interactions of faults. Therefore, CSC was applied to
fault detection of wheel set bearing in a high-speed train by
Jianming Ding. The decoding results of the bearing vibra-
tion signals showed that the proposed method can not only
effectively detect the wheel set bearing fault but also accu-
rately characterize the fault dynamic behaviors of the bearing
defects [35]. But the application of CSC to performance
degradation assessment of machine elements has not been
proposed yet. Affirmatively, the CSC can be used to evaluate
the fault degree because the activation times and strength of
the learned impulses with more relationship to fault will rise
as the fault deepens. Furthermore, with the periodic enhance-
ment of the signal caused by the fault, the description effect
of the CSC will be strengthened and the errors between the
original and reconstructed signals will be decreased. Thus,
in this paper, a bearing performance degradation method
based on CSC has been proposed. The assessment index
combines the impulses activation norm (sparse norms) and
signal reconstructed error.

However, there are two disadvantages of CSC based
methods. One is the long time consumption of sparse rep-
resentation in the training and testing parts, which decreases
the efficiency of on-line monitoring. Another one is the sin-
gle dictionary representation of signal, which decreases the
diversity of learned features and will lead the degradation
assessment to be local optimum. Thus, in order to deal with
the two issues, in this paper, combination learning is fused
into the CSC (CSCL) to deduce the calculation complexity of
the sparse model by dividing the impulse kernel dictionary set
into multiple sub-dictionaries. This combination can not only
reduce the time consumption of the computation in real-time,
but also provide more assessment indexes for selection within
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the several sub-dictionaries. A bearing run-to-fail test will
be used to verify the validity the performance degradation
assessment method based on CSCL.

II. BACKGROUNDS
A. CONVOLUTIONAL SPARSE CODING
Models based on sparse coding are widely used inmany fields
such as image processing [36] and fault diagnosis [37]. Since
the rolling bearing is periodic rotation, the features hidden
in the vibration signal are periodic. Periodic features are
usually considered to be the same, and they can be extracted
by convolution sparse coding (CSC) because CSC has the
characteristic of translation invariance. TheCSC can be stated
as a bi-convex problem as follows

mind,x
1
2

N∑
n=1

∥∥∥∥∥yn −
R∑
k=1

dk ⊗ xk,n

∥∥∥∥∥
2

2

+ β

N ,R∑
n=1,k=1

∥∥xk,n∥∥p
s.t. ‖dk‖22 ≤ 1 (1)

where yn is the observed sample, {y1, . . . yn, . . . , yN} is
the training set, xk,n are sparse coding representations, dk
are the corresponding convolution kernels, R is the number
of the kernels, {x1,n, . . . xk,n, . . . xR,n} are the sparse rep-
resentations of yn based on the kernels{d1, . . . dk , . . . dR},
⊗ is the convolution operator, β is the sparse weight and
it is set to be 1 and p is set to be 2 in this paper because
the L2 norm stands for the energy of the sparse solution,
which is beneficial for analyzing the energy distribution of
each kernel. Analogously to standard sparse coding and other
machine learning approaches, the convolution kernels can be
learned from the training data by solving the optimization
problem Eq. (1) as stated above. The role of kernel learning
is to estimate a priori signal distribution. Then in the feature
extraction phase, the kernels are fixed and the features are
computed only by minimization over feature maps, which
correspond to Bayesian inference from noisy measurements.

In sparse coding, the efficient methods of kernel learning
had been presented in many literatures [38], [39] by alter-
nately minimize over the feature maps while keeping the
filters fixed and over the filters while keeping the feature
maps fixed, taking the advantage that both sub-problems are
convex, which can make the optimal problems convergence.
In this way the feature extraction is essentially run to conver-
gent in the iterations of the kernel learning algorithm.

B. ADMM
ADMM is suitable for solving the distributed convex opti-
mization problems. The large global problem can be decom-
posed into multiple smaller local sub-problems which are
easily solved by decomposing and coordinating, and then the
large global solution can be obtained through the solution
of the coordination sub-problems. The optimization problem

can be stated as

min f (x)+ g(z)

s.t. Ax + Bz = c (2)

where x ∈ Rs, z ∈ Rn, A ∈ Rp×s, B ∈ Rp×n, c ∈ Rp, f (·)
and g (·) are convex functions, x and z are arguments, A and
B are coefficients and c is a constant. The iterative process of
solving the Eq. (2) by using ADMM can be stated as follows

xk+1 = argmin f (x)+
ρ

2

∥∥∥Ax + Bzk − c+ uk∥∥∥2
2

zk+1 = argmin g(z)+
ρ

2

∥∥∥Axk+1 + Bz− c+ uk∥∥∥2
2

uk+1 = uk + (Axk+1 + Bzk+1 − c) (3)

where k is the iteration times of ADMM, xk is the value of x
in the k th iteration, zk is the value of z in the k th iteration, u is
the dual variable, and ρ is the penalty factor. In the iterations
of ADMM, the values of zk and uk are calculated in the
k − 1th iteration. Firstly, the xk+1 is updated in the first
equation of Eq. (3). Then the zk+1 is calculated based on the
xk+1 in the second equation of Eq. (3). Finally, the uk+1 is
updated based on the third equation of Eq. (3).

C. COMBINATION LEARNING
If only one dictionary is generated in large-scale training set,
the number of kernels in the dictionary will become huge,
which will make the process of searching for kernels in large
dictionary time-consuming. In order to solve the problem of
low search efficiency, combinatorial learning has been used to
search for kernels in this paper. The concept of combinatorial
learning [40] is to generate a dictionary set consisting of
multiple compact sub-dictionaries from large-scale training
data, and then search for the most matching sub-dictionary
in parallel in the testing data. It can effectively reduce the
time complexity of the model by convert a huge dictionary
into multiple compact sub-dictionaries. On the other hand,
for bearing performance degradation assessment, the divided
sub-dictionaries will generate different assessment results
since the testing sample has different sparse representations
using the sub-dictionaries. Thus, more selections can be pro-
vided for the best performance assessment result using this
diversity expression of signal.

D. ADAPTIVE THRESHOLD
The bearing performance degradation assessment index is a
continuously variable parameter. It indicates the degree of
bearing performance deviating from the normal condition.
Setting the alarm threshold of the index is beneficial for
monitoring operation state of the bearing. According to the
3σ rule in probability and statistics, the probability of a Gauss
random variable with a mean value of x and a variance of
σ 2 falling in the interval (x −3σ , x + 3σ ) is 99.73%. Once
a value exceeds this range, it is reasonable to consider that
the value does not belong to the original scope. It is assumes
that the degradation indexes with the similar degradation
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degree conform to a normal distribution. When the indexes
exceed the interval constructed by the previous data, it can
be confirmed that the degradation degree of the bearing has
been changed greatly. Since the degradation index is mono-
tonically increasing, the upper limiter of the threshold is set
to be x + 3σ and the adaptive segmental threshold is shown
in Eq. 4.

Th(t) =



t = 1, . . . , tts :
mean(T (1 : tts)+ 3std(T (1 : tts)),
t = tts + 1, . . . , te :
mean(T (1 : t − 1)+ 3std(T (1 : t − 1))
t = te + 1, . . . end :
mean(T (1 : te − 1)+ 3std(T (1 : te − 1))

(4)

where T (t) is the degradation index of t th sample, and tts is
the training sample of initial threshold. The solution of Th is
divided into three segments. The Th in the first segment is a
fixed value, which comes from the normal condition. In the
second segment, the T (t) is comparedwith the Th(t−1). If the
T (t) still remains in the normal stage, then it will be added
into the normal data. However, if Nu consecutive T (t)s after
t = te exceed the upper limiter, then te is considered to be the
time of initial fault.

III. BEARING PERFORMANCE DEGRADATION
ASSESSMENT BASED ON CSCL
The bearing performance degradation assessment method
based on CSCL is presented as follows and it includes learn-
ing part and testing part. In the learning part, the healthy
bearing samples are used as the input of CSCL to generate
several kernel sub-dictionaries which contain the detail infor-
mation of the operation condition and healthy condition. In
the testing part, the later bearing samples of the whole life
are sparse decoded using the kernels of each sub-dictionary.
The sparse representations and the errors of reconstructed
signal are used to construct the assessment index of bearing
degradation.

A. LEARNING PART
The goal of convolution sparse combinatorial learning is to
generate a dictionary set S, where S ={s1, . . . , sm, . . . sM},
sm is the sub-dictionary, M is the iterative times and the
number of sub-dictionary. The sub-dictionary sm is generated
to cover as many as possible training samples in the mth

iteration, and then it is used for updating the kernel and sparse
representation.

Assuming that the current state is the mth iteration, the
following three parts are the processing of generating sub-
dictionary: (1) the solution of sparse representation, (2) kernel
learning, (3) updating of training set and dictionary set S.

1) THE SOLUTION OF SPARSE REPRESENTATION
The dictionary of the equation (1) is replaced by a sub-
dictionary sm

min
xn

1
2

N∑
n=1

‖yn − Smxn‖22 + β
N∑
n=1

‖xn‖p (5)

where Sm is the combination of sub-dictionary sm and convo-
lution operator ⊗, xn = [x1,n, . . . , xl,n, . . . xL,n] is the sparse
representation of sample yn, L is the kernel number in sub-
dictionary sm, and N̄ is the sample number of themth iteration.
The Eq. (5) can be split by using ADMM into:

N∑
n=1

f (xn) =
1
2

N∑
n=1

‖yn − Smxn‖22

N∑
n=1

g(zn) = β
N∑
n=1

‖zn‖p

s.t.xn − zn = E0, n ∈ [1,N ] (6)

Then Eq. (6) will be added into Eq. (3)

xk+1n = argmin
N∑
n=1

(
1
2
‖yn − smxn‖22 +

ρ

2

∥∥∥xn − zkn + ukn∥∥∥22)
(7)

zk+1n = argmin
N∑
n=1

(β ‖zn‖p +
ρ

2

∥∥∥xk+1n − zn + ukn
∥∥∥2
2
) (8)

uk+1n = ukn + x
k+1
n − zk+1n (9)

where Eq. (7) is a quadratic form problem and the derivative
of optimal solution is zero.

xk+1n = (I/ρ − (1/ρ)2STm
· (SmSTm/ρ + I )

−1Sm)(STmyn + ρa) (10)

where a = zkn − u
k
n, I is the identity matrix, ρ is the penalty

factor.
Eq. (8) is the lp-norm minimization problem of non-

convex [41], which can be solved by using generalization of
soft-threshold

zk+1n =

{
0, |a| ≤ τ (ϕ)
sgn(a) · T (|a| ;ϕ), |a| > τ (ϕ)

(11)

τ (ϕ) = (2ϕ(1− p))1/(2−p)

+ϕp(2ϕ(1− p))(p−1)/(2−p)) (12)

T (|a| ;ϕ)− |a| + ϕp(T (|a| ;ϕ))p−1 = 0 (13)

where a = xk+1n + ukn, ψ = β/ρ, sgn(·) is the symbolic
function.

The ADMM iterations of Eq. (7), Eq. (8) and Eq. (9) are
the same as the process of Eq. (3) in part 2.2. The algo-
rithm for optimization over sparse representation, which also
serves as the feature extraction algorithm is summarized in
Algorithm 1.

2) KERNEL LEARNING
The xn will be fixed in this part

min
sm

N∑
n=1

1
2
‖yn − Xn · sm‖

2

2

s.t. sm = [s1,m, . . . , sL,m]T , ‖sl,m‖22 ≤ 1 (14)
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Algorithm 1 Sparse Representations Solving

1:Initialize: k = 0, z0n = 0, u0n = 0;
2:Pre-compute Fourier transforms

∣∣ŝl,m∣∣;
3:while
4:Update xk+1n : using formula (10);
5: Update zk+1n : using formula (11);
6:Update uk+1n : using formula (9);
7: until convergence
8:Output: Sparse
representation{xn}, n ∈ [1, N̄ ].

Then the Eq. (14) can be split using ADMM

N∑
n=1

f (sm) =
N∑
n=1

1
2
‖yn − Xn · sm‖

2

2

g(vl,m) =
{
0, vl,m ∈ C
+∞, otherwise

s.t. sm − vm = E0 (15)

where sm and vm are sub-dictionary, vl,m is the kernel of vm,
vm = [v1,m, . . . , vL,m]T, C is the convex set, S is the support
set of vl,m. Then Eq. (15) is added into Eq. (3).

sk+1m = argmin
sm

N∑
n=1

(
1
2
‖yn − Xnsm‖22+

ρ

2

∥∥∥sm−vkm+ukm∥∥∥22)
(16)

vk+1l,m = argmin
vl,m

(g(vl,m)+
ρ

2

N∑
n=1

∥∥∥sk+1l,m − vl,m + u
k
l,m

∥∥∥2
2
)

(17)

uk+1m = ukm + s
k+1
m − vk+1m (18)

where sm = [s1,m, . . . , sL,m]T, vm = [v1,m, . . . vL,m]T, and
um = [u1,m, . . . , uL,m]T.

The solution of Eq. (16) is the same with Eq. (7):

sk+1m = (I/ρ − (1/ρ)2XTn
· (XnXTn /ρ + I )

−1Xn)(XTn yn + ρa) (19)

The Eq. (17) can be solved by using approximate operator

vk+1l,m =
∏
C

(b) =
{
b/ ‖b‖ if ‖b · T‖ > 1
b · T otherwise

(20)

b =
1

N

N∑
n=1

sk+1l,m + v
k
l,m (21)

T =
{
1, if supp(b) ∈ s
0, otherwise

(22)

where the
∏

c (b) represents the mapping of b to the convex
set C .
The algorithm for optimization over kernels is summarized

in Algorithm 2.

Algorithm 2 Kernel Learning

1:Initialize: k = 0, u0m = 0, v0m = s0m, s
0
m is randomly;

2:while
3:Update {xn}: using Algorithm 1;
4:while
5:Update xk+1n,m : using formula (18);
6: Update vk+1m : using formula (19);
7:Update uk+1: using formula (17);
8: until convergence
9:until convergence
10:Output: Sparse representation {xn} and dictionary sm.

3) UPDATING OF TRAINING SET AND DICTIONARY SET
The sparse representation {xn} and sub-dictionary sm in the
mth iteration can be obtained after part (A) and part (B),
and then the convolution sparse reconstructed signal can be
calculated using xn and sm. Since the kernels are learned from
the training sets of healthy bearing signals in the whole life of
bearing, the degradation assessment index is closely related
to convolution sparse reconstruction cost C . Suppose that the
kernel number of sub-dictionary sm is L, the cost C of the
training sample yn based on sub-dictionary sm can be defined
as:

Cn,m =
1
2

∥∥∥∥∥yn −
L∑
l=1

sl,m ⊗ xl,n

∥∥∥∥∥
2

2

+β

L∑
l=1

1
L
wl,m

∥∥xl,n∥∥p (23)

wk = 1−
tk
R∑
k=1

tk

tk =
N∑
n=1

∥∥xk,n∥∥22 (24)

where wl,m is the weight of each kernel. The main basis of
the weight design is that the kernel of lower activation energy
is more related to the degradation in the healthy training
samples. Thus the bigger the tk is, the smaller the wk is.
The updating of training set and dictionary S can be sum-

marized in Algorithm 3, where

λm = 1.05m · λ0 (25)

λ0 = R(cn,m=1, γ )

s.t. γ ∈ [10%, 50%] (26)

R is the ascending symbol, and λ0 is equal to the
γ th element in the ascending order of cn,m−1.

B. TESTING PART
The dictionary set S and the weight set W are obtained in
the learning part. Then, they will be used to construct a
performance degradation assessment index in the testing part.

The solution of sparse representation in testing part is
similar to part (A) in the learning part. The sparse represen-
tation xt of testing sample yt based on the sub-dictionary sm
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Algorithm 3 The Update of Training Set and Dictionary Set
1:Initialize:m = 1, Ym=1 is the training set of initial iteration,
dictionary assemble S = ϕ, weight assemble W = ϕ, λm is
the threshold;
2:while
3:Obtain {xn}, sm: using Algorithm 2;
4: update S: adding sm into S;
5:Caculate cn,m, wm: using formula (23),(24);
6: Update W : adding wm into W ;
7:Update dictionary: m++;
8: Update training

set:: Ym =

{
add yn into Ym, if Cn,m > λm
No operation, otherwise

9:untilYm decrease to ϕ
10:Output: Dictionary assemble S, weight assemble W .

can be stated as

min
xt

1
2
‖yt − Smxt‖22 + β ‖xt‖p (27)

xk+1t =

(
I/ρ − (1/ρ)2sTm(sms

T
m/ρ + I )

−1sm
)
(sTmyt + ρax)

(28)

zk+1t =

{
0, if |az| ≤ τ (ϕ)
sgn(az) · T (|az| ;ϕ), otherwise

(29)

where ax = zkt − ukt , az = xk+1t + ukt and I is the identity
matrix.

With the fault degree increasing, the activation
energy ||xt ||p of kernels related to fault degree must be rising.
However, the activation energy of the kernels unrelated to
fault may decrease or keep stable. On the other hand, with
the periodic enhancement of the signal caused by the fault,
the description effect of the CSC is strengthened and the
reconstructed signal must be more similar to the original
signal. To verify the correctness of the above views, a sim-
ulation experiment of the bearing with different fault degree
will be presented. The simulation signal of bearing outer race
fault s(t) is simply designed as Eq. (30) [42], [43], where y0
is the displacement constant, ξ is the damping coefficient,
fn is the nature frequency, fr is the rotation frequency, fd is
the bearing fault frequency, α is the coefficient between fr
and fd since there is a linear relationship between the bearing
fault frequency and rotation frequency, fs is the sampling fre-
quency, N is the number of sampling points, n(t) is Gaussian
white noise signal obeying standard uniform distribution on
the open interval (0, m2), and λ is the amplitude coefficient
of the noise amplitude.

y(t) =
K∑
m=1

y0 · e
−2πξ fn(t− m

fd
) sin[2πξ fn(t− m

fd
)] (30)

K = ceil(
N · fd
fs

) (31)

fd = α · fr (32)

n(t) ∼ N (0,m2) (33)

s(t) = y(t)+ λ · n(t) (34)

Set ξ = 0.1, fn = 1e3, fs = 10e3, fr = 30, α = 2, λ = 0.5,
N = 2000, the simulation signal of bearing with different
fault degree can be obtained by changing y0. In this section,
bearing signals of four fault degree (y0 = 0.4; y0 = 0.8;
y0 = 1.2; y0 = 1.6) are simulated and shown in Fig. 1. There
are 50 sets of signal samples in each fault degree.

FIGURE 1. Simulation signal of different fault degree. (a) y0 = 0.4;
(b) y0 = 0.8; (c) y0 = 1.2; (d) y0 = 1.6).

The signal samples shown in Fig. 1 (a) with y0 = 0.4
are used for kernel learning using the Algorithm 1∼3. The
scales of the each kernel are: four kernels of 80 length, four
kernels of 120 length, and four kernels of 160 lengths. In order
to verify that the kernels learned from the bearing signals
of early stage can be used for feature extraction and signal
reconstruction when the fault degree goes deeper. The active
energy and reconstructed errors of the bearing signal with the
other three fault degree (b), (c), (d) are calculated based on
the learned kernels. The average active energies of the twelve
kernels are shown in Fig. 2 and the reconstructed signals are
shown in Fig. 3. The specific values of the active energy and
the reconstructed errors (REs) are shown in Table 1.

FIGURE 2. Kernel active energy of the three fault degree.

It can be inferred from the Fig. 2 that the active energies of
the 6th, 7th and 8th kernel keep increasing with the deepening
of fault degree. However, the active energies of the third
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TABLE 1. Active energy and the reconstructed errors.

FIGURE 3. Normalized signals and reconstructed signals of different fault
degree. (b) y0 = 0.8; (c) y0 = 1.2; (d) y0 = 1.6.

and fourth kernel basically remain the same. Thus, the 6th,
7th, 8th kernel can be considered to be related to the fault
degree. On the other hand, it can be seen from the Fig. 2 that
the reconstructed signals with deeper fault degree are more
similar to the original signals and the REs keep decreasing
with the increasing of fault degree in the Table 1.

Based on the analyses of CSC to the bearing signal of dif-
ferent fault degrees above, the cost Ct,m of testing sample yt
based on sub-dictionary can be defined as

Ct,m = −N (
1
2

∥∥∥∥∥yt −
L∑
l=1

sl,m ⊗ xl,t

∥∥∥∥∥)
+β · N (

L∑
l=1

wl,m,t · wl,m ·
∥∥xl,t∥∥p) (35)

where N is the normalized operator, w̄l,m,t is the degradation
tendency weight, which can be defined as in Eq. (36).

wl,m,t =


1/L, if t ≤ L_train
CF(N (Tl,m,t ), 2) · entropy(N (Tl,m,t ))
L∑
l=1

CF(N (Tl,m,t ), 2) · entropy(N (Tl,m,t ))

,

otherwise

Tl,m,t =
[∥∥xl,m,1∥∥p , ∥∥xl,m,2∥∥p , · · · , ∥∥xl,m,t∥∥p] (36)

where entropy(·) is the Shannon entropy which is used to
control the stability of the cost, CF(·, 2) is the quadratic

term coefficient of quadratic function fitting. Since the
norm tendency of different kernels is unpredictable, w̄l,m,t is
designed to make the changing tendency of each kernel norm
consistent.

For the same sample, the sub-dictionary of higher cost is
considered to be more sensitive to the fault degree than other
sub-dictionaries because the fault degree is monotonically
increasing over the time in theory. Choosing the higher cost
as the assessment index can improve the incrementing of the
index and detect the early failure earlier. Thus, the perfor-
mance degradation assessment index ϕ of testing sample yt
can be defined as

φ = max{Ct,1, . . . ,Ct,m, . . .Ct,M } (37)

The whole performance degradation assessment process of
rolling bearing can be summarized in Algorithm 4 and the
specific process is shown in Fig. 4.

Algorithm 4 Bearing Performance Degradation Assessment
1:Input: Dictionary assemble S, Weight assembleW , testing
set yT ;
2:for t = 1 . . . T
3:for m = 1 . . .M
4: while
5: Update xk+1t : using formula (25);;
6: Update zk+1t : using formula (26);
7: Update uk+1t : uk+1t = ukt + x

k+1
t -zk+1t ;

8:Update w̄l,m,t : using formula (29);
9:Obtain the cost Ct,m : using formula (27);
10:until end
11:Obtain the performance degradation assessment index ϕ
of yt : using formula (30);
12:until end

IV. EXPERIMENTAL STUDY
To verify the effectiveness of the proposed performance
degradation assessment method based on CSCL, a bearing
run-to-fail experiment is analyzed [44]. The experiment
performed bearing run-to failure tests under constant load
conditions on a specially designed test rig as shown in Fig. 5.
The bearing test rig hosts four test Rexnord ZA-2115 dou-
ble row bearing on one shaft. The shaft was driven by an
AC motor and coupled by rub belts. The rotation speed was
kept constant at 2000 rpm. A radial load of 6000 lbs was
added to the shaft and the bearing by a spring mechanism.
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FIGURE 4. Algorithm flow of bearing performance degradation
assessment based on CSCL.

FIGURE 5. Schematic and photo of test rig.

Data collection started form the 2004.2.12 10:32:39 to
2004.2.19 06:22:39 with no interruption in the acquisition
process. Collecting the vibration signals every 10 minutes
during acquisition time, 984 data files were altogether col-
lected during the experimental process. The sampling fre-
quency is 20 KHz and each sensor collects 20480 sampling
points each time. This paper analysis the first 8192 sampling
points of the second file (Bearing 2) and only one vibration
sensor was applied for signal collection.

FIGURE 6. Time-plot of the 100th training sample.

A. ESTABLISHMENT AND VERIFICATION OF
TRAINING MODEL
Before evaluating the degradation degree of bearing, the
training model is established based on the healthy bear-
ing samples. In this experiment, the training set is the first
200 samples. The dictionary set can be obtained after the
training set is learned using CSCL. To verify the validity of
the model, the sparsity of the sparse representations and the
time-frequency comparisons of the original normalized signal
and reconstructed signal are analyzed, respectively.

1) SPARSITY OF THE SPARSE REPRESENTATION
Two dictionaries are generated in the training set, the ker-
nels of three scales in the first dictionary s1 are shown
in Fig. 7 (a), (c) and (e) (The second dictionary is not shown
for the reason of space).The scales of the kernels are the
same as the testing part. The 80, 120 and 160 sampling
points are corresponding to the bearing rotation of 0.133,
0.167 and 0.267 times which means that the kernels are
transient. The original bearing signal of the 100th sample is
shown in Fig. 6 and it must be normalized using zero-mean
normalization before training. The sparse representations of
signal based on the kernels are shown in Fig. 7 (b), (d) and (f).
It can be seen from the Fig. 7 that the some ‘‘thorns’’ occurred
in the sparse representation and the activation times of dif-
ferent kernels are variable, which can be concluded that the
activation of the kernels is sparse and the sub-dictionary is
valid.

2) TIME-FREQUENCY COMPARISONS
The normalized original signal and reconstructed signal
based on the learned kernels are shown in Fig. 8 (a).
The rotation frequency (2000rpm/min) can be found from
the reconstructed signal since the adjacent pulse is 0.03s.
On the other hand, the time-frequency magnitude scalograms
of the original and reconstructed signal are shown in Fig.8 (b).
The time-frequency analysis method is wavelet transform.
The type of the wavelet is Morlet, whose bandwidth param-
eter and center frequency are both 3. It can be seen from
the Fig. 8 (b) that the color distributions of the two magni-
tude scalograms are almost the same, which means that the
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FIGURE 7. Kernels of s1 and the corresponding sparse representations of the100th sample. (a) Kernels of scale I.
(b) Sparse representations of kernels of scale I. (c) Kernels of scale II. (d) Sparse representations of kernels of scale II.
(e) Kernels of scale III. (f) Sparse representations of kernels of scale III.

normalized original signal and the reconstructed signal have
a high similarity in the time- frequency domain. It is also
verified that the sub-dictionary used for reconfiguration is
effective.

B. PERFORMANCE DEGRADATION ASSESSMENT OF
ROLLING BEARING
After trainging the assessment model, the testing samples
of the whole bearing life are used to evaluate the bearing

degradation degree by using Algorithm 4. The sparse norms
of the twelve kernels are shown in Fig. 9(a). It can be seen
from the figure that the variation trends of the sparse norms
are different with the increasing of bearing fault in the sub-
dictionary. Some of the trends keep stable, some increase
and the others decrease. It can be concluded that the kernels
have different sensitive to the fault degree. Thus, the trend
weight of each kernel must be time-varying to make all the
kernel norms have a unified trend. The weights of the kernels
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FIGURE 8. Comparisons of original signal and reconstructed signal. (a) Time domain.
(b) Time-frequency domain.

FIGURE 9. Sparse norm tendencies and the corresponding time-varying weights of the
kernels in s1. (a) Norm trends of kernels of scales I. (b) Time-varying weights of kernels
of scales I. (c) Norm trends of kernels of scales II. (d) Time-varying weights of kernels of
scales II. (e) Norm trends of kernels of scales III. (f) Time-varying weights of kernels of
scales III.

in each scale are shown in Fig. 9(b). The weights are time-
varing with the change of the sparse norm. The fusion sparse
index and error index of s1 are shown in Fig. 10. The two

indicators are smoothly and have clear trends in the whole
bearing life. Finally, the performance degradation assessment
index is fused by the two indicators of the two sub-dictionary
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FIGURE 10. Two normalized performance degradation indicators of s1 in
the whole life of bearing.

FIGURE 11. The fusion performance degradation index ϕ of dictionary
set S.

and it is shown in Fig.11. The paremeter of the threshold is set
to be: tts = 200,Nu = 10. It can be seen from the Fig. 11 that:
(1) The assessment index c increases with the time goes
on in general, which is consistent with the trend of bearing
degradation; (2) The initial degradation can be detected when
t = 728; (3) The degradation is deepening with the ϕ rising
continuously and failure of the bearing occurrs when theϕ has
a sharp fluctuation. The results above prove that the proposed
index is effective and the training model is reasonable, which
can provide a feasible assessment programme for the bearing
fault degree detection in practice.

C. COMPARISON
To verify the advantages of the self-adaptive features
extracted by the proposed method, two performance
degradation assessment methods based on traditional fea-
ture extraction and clustering model are presented. Twenty-
three traditional features used for bearing fault diagnosis are
extracted from the first 200 samples of the bearing signal
to construct the healthy clustering model. These features
contain time-domain features, frequency-domain features
and time-frequency domain features [21], [22]. In this paper,
the Gaussian Mixed Model (GMM) [45] and the Support

vector data description (SVDD) [46] are used as clustering
models. The Euclidean distance between the sphere centre of
SVDDmodel and the features of the testing sample is consid-
ered as the distance degradation index. Also, the normalized
negative log likelihood probability of the testing sample
features subordinated to the GMM model is considered as
the probability degradation index. The bearing performance
degradation assessment indexes based on the two meth-
ods above are respectively shown in Fig. 12 and Fig. 13.
Compared with the proposed method, the performance
indexes based on traditional feature process methods are not
smooth enough and hard to detect the initial fault because
the features based on the priori knowledge are easily affected
by the working conditions or environment noise. However,
the proposed method based on CSCL can adaptively extract
the information related to the fault, which makes the degrada-
tion index more stable and more sensitive to the fault degree.

FIGURE 12. Degradation assessment index based on traditional features
and SVDD.

FIGURE 13. Degradation assessment index based on traditional features
and GMM.

D. TIME-CONSUMING COMPARISONS OF SINGLE
DICTIONARY AND COMBINATION LEARNING
DICTIONARY
Two sub-dictionaries with 2 × 12 kernels have been learned
in the training part using combination learning and they are
used for decomposing the test samples into sparse representa-
tion. In order to verify the high-efficency of the combination
learning, time-comsuming and assessment results of a single
dictionary with 1 × 24 kernels and the two sub-dictionaries
will be compared. The initial single dictionary is designed to
contain eight kernels in the three scales before learning and
the learned single dictionary will be used for constructing
the assessment index in the testing part, which can be seen
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FIGURE 14. The fusion performance degradation index ϕ of single
dictionary.

in Fig. 14. Compared with the assessment index based on
combination learning dictionary and single dictionary, both
of them have an increasing trend in the whole life. However,
the index based on combination learning is more sensitive
to fault degree because the description ability of different
sub-dictionaries to the signal is different. The combination
learning can select the best sub-dictionary for the new sam-
ple by comparing the assessment cost. On the other hand,
the time consumptions of the two sub-dictionaries and the
single dictionary are shown in Table 2. Obviously, the time-
consuming of combination learning is about the half of single
dictionary becauce the more initial kernels in the testing part
will make the kernel seaching process more complex and the
combination learning can compress the complexity exponen-
tially. Thus, the learning learning can greatly improve the
effectiveness of the proposed method.

TABLE 2. Time-consuming comparisons.

V. CONCLUSIONS
Anovel bearing performance degradation assessment method
based on convolutional sparse combination learning is pro-
posed in this paper. The convolutional sparse coding and
ADMM are combined to extract the bearing vibration sig-
nal features without prior knowledge. The learned features
have the ability to adapt to the complex operation condi-
tions because the dictionaries are learned from the training
samples. Moreover, the combination learning is integrated
into the learning model to make the complexity of the model
reduce greatly. A performance degradation assessment index
is generated combining the error of the original and recon-
structed signal with the kernel sparse norm, which can clearly
describe the degradation tendency of the bearing in the whole

life test. Compared with the traditional performance degrada-
tion assessment indexes, the indexes obtained by the proposed
method is more sensitive to fault degree and more adaptive.
Because of the excellent adaptive ability of the CSCL to
the feature extraction of rotation machinery vibration signal,
it can be used for remaining useful life prediction combined
with time-series model and fault pattern recognition com-
bined with classification model, which will be presented in
the future.
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