
Received December 13, 2018, accepted January 8, 2019, date of publication January 18, 2019, date of current version February 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2893333

Performance of OnPrem Versus Azure
SQL Server: A Case Study
ROBERT GYŐRÖDi 1, MARIUS IULIAN PAVEL2, CORNELIA GYŐRÖDi1,
AND DOINA ZMARANDA1
1Department of Computer Science and Information Technology, University of Oradea, 410087 Oradea, Romania
2Department of Computer Science and Information Technology, Faculty of Electrical Engineering and Information Technology,
University of Oradea, 410087 Oradea, Romania

Corresponding author: Robert Győrödi (rgyorodi@uoradea.ro)

ABSTRACT This paper presents a comparative study between on-premises databases and cloud databases
regarding the response time of the database. It focuses on presenting the advantages of storing data and
applications in the cloud and, of course, on managing it in comparison with managing the same data and
applications locally on one or more physical machines. A Microsoft Azure account was created to manage
the database that is stored in the cloud. To achieve comparative results, a specific testing architecture that
uses a Universal Windows Platform app was created and used. The application is running locally on multiple
physical machines and works with that database to extract data, operate, and upload new data. For local tests,
the database was stored locally on a server, with and without replication, and for cloud tests, it was stored
into a server in Central US. This paper provides a practical approach that could be used for examining the
performance of basic database operations when dealing with a different number of user situations. As a result
of tests carried out, we will highlight the many advantages of cloud data storage, such as data accessibility,
speed, security, automation, and disaster recovery, andwewill also try to offer an answer to themost common
and important question: ‘‘Why cloud?’’

INDEX TERMS Cloud, database, data storage, Microsoft Azure, Microsoft SQL Server, on-premises.

I. INTRODUCTION
Developing technologies and the growth of the amount of
information people want to have access quickly from any-
where at any time has led to the creation of cloud technology.
Whether we are talking about pictures from the smartphone,
a collection of .pdf, .doc files, software or maybe favorite
movies, the data requirements keep increasing day by day.
According to International Data Corporation, it is predicted
that big data is growing at an annual rate of 60% for both
structured and unstructured data [1].

In this context of increasing the complexity of user require-
ments, cloud represents an alternative for storing, enabling
access to files from everywhere and from any device that
is connected to the internet and capable to process or dis-
play those files. Consequently, the cloud is a good solu-
tion that can assure safety of data, being almost always at
hand [7].

Cloud computing is an Internet-based computing model
which has gained significant popularity in the past sev-
eral years as it provides on demand network access to

a shared pool of configurable and often virtualized computing
resources typically billed on a pay-as-you-use basis [6].

The term cloud computing is somewhat difficult to define
precisely. A traditional definition is that it provides, at an
actual monetary cost to the end-user, computation, software,
data access and storage that requires no end-user knowledge
about physical location and system configuration [5].

Currently, there are several used and well-known cloud
providers available on the market, such as Amazon Web
Services, Microsoft Azure, EnterpriseDB, Google Cloud
Platform, MongoLab, RackSpace [1].

Amazon Web Services [9] has a variety of cloud-based
database services, including MySQL, Oracle or SQL Server
as relational database, and Amazon DynamoDB, the Amazon
solid-state drive, on the NoSQL side [8]. The direct competi-
tor of Amazon is Microsoft with its Microsoft Azure [10] that
uses SQL Server technology to provide a relational database,
allowing customers to either access an SQL database on its
cloud, or hosted SQL server instances on virtual machines.
Microsoft also emphasizes on hybrid databases that combine

15894
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-7027-5750


R. Győrödi et al.: Performance of OnPrem Versus Azure SQL Server: Case Study

data both on a customer’s premise and with the Azure
cloud through SQL Data Sync. Microsoft has a cloud-hosted
NoSQL database service named Tables as well, while Blobs
(binary large object storage), are optimized for media files
such as audio and video.

Another cloud database is EnterpriseDB which is focused
on the open source PostgreSQL database and provides the
ability to work with Oracle database application. Garantia
Data offers a gateway service for users to run open source
Redis and Memcached in-memory NoSQL databases ser-
vices in Amazon Web Services public cloud. Also, Google
offers Google Cloud SQL that is centered on two major
products: Google Cloud SQL, which Google describes as
a MySQL-like fully relational database infrastructure, and
Google BigQuery, an analysis tool for running queries on
large data sets stored in its cloud [1]. MongoLab is another
cloud provider in the NoSQL world where there are a variety
of database platforms to choose from, including MongoDB;
also, Rackspace represents an interesting alternative, with its
virtualization of Cloud Databases that allows higher perfor-
mance of the database service compared to the case it was run
entirely on virtualized infrastructure [1].

Regardless of the chosen option, the alternative of cloud
storage presents significant advantages in terms of availabil-
ity and safety of data, but in terms of performance related to
data access several issues have to be considered.

When comparing traditional database management sys-
tems with cloud databases, existing studies were merely
focused on comparative analysis from the architectural point
of view, starting from the basis that cloud technology implies
virtualization and emphasizing differences in the internal
model of the two approaches [13]. For example, the overhead
induced by running a database over a virtualized environ-
ment was approached in [15] where possible solutions were
presented. Scalability issues in cloud computing database
architecture are analyzed in [17]. Also, challenges regarding
the use of databases as a service in cloud computing were
investigated in [11], [12], and [16]. Other studies investigate
how relational databases are performing in the cloud environ-
ment, focusing on the existing challenges when making the
system highly available and scalable and questioning whether
running databases in the cloud really provide operational
advantages [14].

In this idea, the present study aims to conduct an exper-
imental investigation based on a quantitative approach for
comparing the performance of a cloud database to a tra-
ditional database. Response time is considered the metric
to realize the comparison. A consistent methodology is fol-
lowed during the study: the relational database is designed,
normalized, optimized and deployed both into a cloud and
to a traditional environment; furthermore, a specific testing
architecture was developed for running the tests and compar-
ing database performance results depending on different load
contexts both when it is used locally and in the cloud.

The paper is organized as follows: chapter II describes
the architecture developed for testing: the UWP application,

the specific API and database structure. In chapter III several
performance tests were run, on-premises and on different
cloud pricing tiers, and the obtained results were analyzed.
Furthermore, chapter IV makes a price comparison between
on-prem and cloud approaches. Finally, chapter V resumes
the conclusions of the study.

II. TESTING ARCHITECTURE
The testing architecture used in the present study is presented
in Fig. 1. For the cloud approach, the selection process con-
siders several options from existing alternatives, but finally
Microsoft Azure technology was chosen because it allows
using the online portal for the management of all the services
that we want to use [18].

FIGURE 1. Testing architecture.

The proposed testing architecture implies also the devel-
opment of a Universal Windows Platform (UWP) testing
application capable toworkwith the database through anAPI,
both in the cloud and on-premises. This application represents
the main component of the testing architecture; a specific
module of the application is used to evaluate the response
time of each basic database operation.

For local approach, the specification for the physical
machine for running the local database on is presented
in Table 1.

TABLE 1. Configuration of physical machine.

A physical server is used for storing the on-premises
database and two other physical servers for hosting the web
API. To obtain a consistent comparison, the on-premises
architecture uses identical configuration as the cloud archi-
tecture, except that, in that case the entire equipment is run-
ning on-premises. Also, to locally obtain full SQL Server
fault tolerance, the on-premises database is replicated to

VOLUME 7, 2019 15895



R. Győrödi et al.: Performance of OnPrem Versus Azure SQL Server: Case Study

another server, with same configuration. Thus, we covered
the disaster recovery problem (fault tolerance) that the cloud
architecture already did [21].

Microsoft standard replication mechanism was used for
configuring replication between the two fully connected
servers [20].

A. UWP APPLICATION DEVELOPMENT
UWP came with Windows 10 as part of the core, and it pro-
vides a common app platform available on every device that
runs this version of Windows [2]. When creating a Universal
Windows Platform application, a single app package that it
is capable to be installed onto many devices will be cre-
ated (mobile phones, computers, Xboxes, HoloLens or other
devices with IoT such as physical devices that are embed-
ded with electronics, sensors, software and network con-
nectivity that permits these devices to collect data from the
environment).

To obtain the fairest comparison, the UWP app was created
to be capable to work with data both locally and inside cloud,
using an Azure account. The app name is Restaurant and
as the name suggests it allows running an actual restaurant,
allowing the placement of new orders by the users, man-
aging products or categories of products, managing tables
of the venue, orders and even users. All this information is
recorded in the database. By using large quantities of data,
the app could be more or less responsive; therefore, database
access performance represents an issue.

The entire application is written in C# using Visual Studio
and is functioning on any kind of device that is running a
Windows 10 operating system. It consists of three modules,
two of them being separate projects and the third being the
database, each of these with special capabilities. The first
module, called Restaurant, is designed for viewing the tables
of the venue, managing them, placing new orders and editing
them.

The second module is called Orders, and it is used by users
from the kitchen or the bar. It allows users to view the placed
orders or edit an order’s status. Also, here users can search
for orders by order number, table number or the name of the
one who placed the order.

The third main module of the application is called Settings,
and it is designed to be used by the administrator of the
application to add new products, associate a product to a
product group, delete a product or a product group or modify
any of these. Also, there is the possibility to add a new user
and delete or even edit an existing one.

The Restaurant app is capable to work with the database
through an API, both in the cloud and on-premises, thus
allowingmaking several tests to view the differences between
these two approaches. In the Settings module of the app,
a page that allows us tomeasure the database procedure’s exe-
cution time was created. This module allows also changing
the number of users that are using the database at the same
time, for analysis purposes. All the results were saved locally

in a .txt file named Times.txt and could be used for further
performance evaluation assessment.

B. API DEVELOPMENT
The second part of the architecture is composed of an API
that exposes a set of functions and methods. API [3] is a web
application that is called by the Restaurant application using
HTTP calls; furthermore, API will call the database using
stored procedure calls.

The API project is structured in controllers and every
controller has an associated data context within which is all
the logic to work with the database, receive the answer from
it, and convert the data in objects and sending them back to
the Restaurant application to use them.

To observe the differences between cloud and local storage,
the API is published both locally and in Azure Cloud. Since
the API project is just a simple web project, publishing it
locally means that the Restaurant UWP app will call the
methods inside it using localhost. Therefore, the Restaurant
app will need a connection string, named ApiURL, which is
composed from the API public address and the port that the
application is listening for HTTP calls. It is initialized before
the app start and in case that API is published locally it will
have the following structure:

Here the http://pcname means that the API is published
locally, on a server inside an intranet network, where the
API is hosted by Internet Information Services. The number
4962 is the port number that the API is listening for HTTP
calls from Restaurant application that is set inside Internet
Information Services when the API is published. The default
port for HTTP calls is 80 and it is required because of TCP
protocol.

When publishingAPI locally a newweb site is required and
therefore IIS Manager from Windows was used for creating
this.

Publishing API inside an Azure account is different from
the local one because no port is needed, there is only the site
address. Consequently, the corresponding connection string
is like the following:

Login into an Azure account could be done by using an e-mail
address and a password. Afterwards, a simpleweb application
that will be the basis for the Restaurant API project should be
created. After web app creation in Azure, the publish profile
which is created from a file that contains all the credentials to
be used when publishing the Restaurant API in cloud should
be downloaded. Once the web app in cloud was created, then
the Restaurant API could be published using Visual Studio.
Publishing in the cloud is like publishing application locally.

After publishing the app this one is stored in the cloud
and it can be used in the same way as the one that is pub-
lished locally. It is very important that the connection to the
database in the API app that is now in cloud to be set for
the database from cloud; this, in our case, it was very simple

15896 VOLUME 7, 2019



R. Győrödi et al.: Performance of OnPrem Versus Azure SQL Server: Case Study

because before publishing the app in cloud we just changed
the connection string with the necessary connection to the
cloud database.

C. DATABASE DEVELOPMENT
The third part of the architecture is represented by the
database which is composed of tables, functions and stored
procedures. All data bits inside it are connected using primary
keys and there are tables for every object type from the
app (e.g. tables, orders, products, extra-options and more).

The database project was created using Microsoft
SQL Server Management Studio 2017, where from the
Databasessection, we created a blank database. As the
Restaurantapp functionalities increased, the database was
populated with new tables for storing data and new stored
procedures that were called from the API to answer the
requests from the Restaurant app.

As it was done with API publication, storing the database
locally and then in the cloud was needed to be done. For local
storage, a static server that physically is situated at a small
distance from our app was used. The connection to it was
assured over internet inside a local network. The server is
runningWindows server 2012 R2 on 64-bit and inside it there
is an instance of Microsoft SQL Server 2017 that is capable
to accept connections over the internet.

From the beginning of this project the database was devel-
oped on this server by adding tables and stored procedures
as needed. After the creation of database was finished, using
the Management Studio tool, the schema of the database was
extracted in order to further upload it to the Azure account.

Two identical servers with identic specifications (as pre-
sented in Table 1) were used to ensure replication on the local
architecture. Transactional replication mechanism between
servers was implemented, as described in [20]. Consequently,
a publisher server was used; the server is called by our API
in order to execute the target operations. At every transaction,
before closing it, a message to a subscriber server will be sent
in order to sync data between those two servers. We decided
to replicate everything on our database, tables and stored
procedures, similar to the mechanism used in the cloud archi-
tecture.

For storing into the cloud, a new server where the database
will be stored was also created together with a username and
a password to serve for login. Afterwards, the schema of the
locally database with the same name Restaurant was added
in Azure account to be accessed by the app. Using the Azure
portal, a new SQL Database was created and added into the
Azure Server by using the prior loaded database schema.

After creating the database in the cloud, the credentials that
were just set could be used to login into database and use this
to login on the Azure server from local Microsoft SQL Server
Management Studio just like it could be done locally.

D. SCRIPTS AND CONFIGURATIONS
For comparing cloud storage with local storage per-
formance, the following basic database operations were

implemented into the Restaurant app: SELECT data from
database; INSERT new data inside database; UPDATE data
inside database; DELETE data from database.

All these operations weremonitored to obtain real numbers
and to observe the advantages and disadvantages between
these two approaches.

For example, for adding products inside database
(INSERT), a functionality that it is capable to send to the API
HTTP requests that will result in adding data inside database,
was added to the app.

To simulate multiple user’s parallel calls to database, a list
of tasks was created and run concurrently, asynchronous in
the for loop. At every for loop iteration, the specific called
method AsyncOperationLocally() or AsyncOperationCloud()
creates a thread that will call the API and it will be used to
call a stored procedure inside database in order to get the
execution time of the operation. Inside database we already
have a table named Result, where after each operation inside
database, the time we get will be saved in that table. By mak-
ing an average between all results stored here, we obtain the
average execution time.

Stored procedures were implemented inside the database
for every call from application. For measuring the execu-
tion time, sys.dm_exec_procedure_stats system view was
used to provide information for the last operation made on
database or for a specific stored procedure.

Moreover, this system view provides aggregate perfor-
mance statistics for cached stored procedure. Consequently,
to obtain accurate results, the implemented stored proce-
dures were run multiple times. From this system view mul-
tiple columns were used, but the most important column is
d.last_execution_time, which represents the elapsed time, in
microseconds, for the most recently completed execution of
the named stored procedure. The implemented query looks
like bellow:

To assure, as much as possible, a consistent comparison, it
is important to mention that the same database, with same

VOLUME 7, 2019 15897



R. Győrödi et al.: Performance of OnPrem Versus Azure SQL Server: Case Study

FIGURE 2. INSERT statement experimental results.

tables, same stored procedures and no data inside the Product
table were used both locally and inside Azure.

The API is the same for both cases, the only difference
is that one is published locally inside Internet Information
Service, and the other one is published in cloud, inside the
Azure subscription.

For the cloud part, multiple pricing tiers were used, because
we want to highlight the time responses for each operation in
comparison with on-premises architecture. On this side we
will talk about DTUs. The amount of resources is calculated
as a number of Database Transaction Units (DTUs) that it is
a bundled measure of compute, storage, and IO resources for
databases from cloud.

At the beginning we started with the Free Pricing tier, were
we had an SQL server with 5DTUs (Database Transaction
Units [19]) and one single database and up to 32Mb. Because
of the small capacity of database, we had to backup, delete
and recreate the database frequently. After this, we used
Standard 4 (S4) pricing tier with 200 DTUs, and afterwards
Standard 9 (S9) pricing tier with 1600DTUs, and in the
end we used Premium tier (P1) with 125 DTUs. Certainly,
by increasing database pricing tier, the costs were increasing
because there are many resources that were used [4].

III. PERFORMANCE TESTS
Queries that include basic SQL operations were used to
compare local and cloud approaches during the performance
tests: INSERT, SELECT, UPDATE and DELETE. For each
operation a specific query for each stored procedure was
run and execution time was calculated for each operation
type accordingly. The approach implies callingmultiple times
each query with a different number of users; consequently,
a huge number of calls were made for each query and at the
end an average to be as accurate as possible within the study
was calculated.

The script for INSERT statement used to observe the exe-
cution times inside database is the following:

The execution time was obtained by running the following
query:

where usp_∗Products represent the name of the stored proce-
dure that we want to observe, and it will be replaced by the
following data, based on the operation that we will execute:

• usp_InsertProducts, for INSERT statement
• usp_SelectProducts, for SELECT statement
• usp_UpdateProducts, for UPDATE statement
• usp_DeleteProducts, for DELETE statement

During each query, the number of database users was modi-
fied, starting with ten users, then to one hundred, one thou-
sand, and finally ten thousand users, for analyzing the perfor-
mance for different load situation.

The results obtained with INSERT statement for all six
testing environments that we used are presented in Figure 2.

As it is shown in Figure 2, there are few significant
differences between Azure pricing tiers and on-premises
architecture.

15898 VOLUME 7, 2019



R. Győrödi et al.: Performance of OnPrem Versus Azure SQL Server: Case Study

FIGURE 3. Select statement experimental results.

The smallest value is the best response time average, and
in our case, we can easily observe that the Azure Free pricing
tier is the slowest one, in all cases, with all number of users.
Next one is Azure P1 with fair results, somewhere around
28,000 microseconds. Azure S4 obtained the best results
when we are looking to overall cloud architectures, with
an average time of 7,549 microseconds and close to it was
Azure S9 with an average time of 8,288 microseconds. The
fastest options here, seems to be the on-premises architecture,
with a continuing proportional increase to the number of
users. Using local replication results in slightly increased
times when comparing to the non-replicated architecture, i.e.
6,977 versus 5,309 microseconds.

We can easily see that the Azure architecture is following
the same proportional growth as the on-premises architec-
ture, but the only difference here is that the Cloud archi-
tecture is slower than local one, but local architecture is
getting closer to cloud one, as we increase the number of
users.

Consequently, we can say the on premises architecture is
faster than someAzure pricing tiers with only a fewmicrosec-
onds. Even with that we can say that cloud architecture is a
little bit more constant than the local one.

The procedure used for SELECT statement implies selec-
tion of the first 1000 active products, by making an INNER
JOIN with ProductGroup table and a LEFT JOIN with VAT
table:

The results obtained with SELECT statement are presented
in Figure 3. It can be easily observed that the results are a
little bit different than for the INSERT statement.

The Azure Free pricing tier is again the slowest option of
all others, but it is followed by on-premises architecture with
an almost constant result, somewhere around 1,508microsec-
onds as an average for all scenarios (replicated and not
replicated).

The other three Azure pricing tiers seems to have almost
similar results except Azure S4 for 10 and 100 users scenario,
where it seems to be better than on-premises architecture
with around 0.4 microseconds. We can easily see that the
results for SELECT statement are pretty constant, the local
environment being only a little faster
(around 0.4 microseconds) than cloud, when we refer to a
bigger number of users, like 1000 or 10000.

The procedure code used for UPDATE operation is based
on a simple update statement where the product’s details are
updated with new data:

For the UPDATE statement, we have to mention that this
operation is a heavy CPU operation. Therefore, as it is shown
in Figure 4, the best results for cloud architecture were
obtained by using the Azure S9.

Also, in this case Azure Free pricing tier is again the
slowest one, with an average of 1.5 seconds. Because of the
small number of DTUs, Azure Premium 1 tier is placed on
the fifth place, but at a big distance of Free pricing tier, and
closer to other tiers.

Because of the biggest number of DTUs, Azure
S9 obtained an average of 31,782 microseconds comparing
to S4 tier which obtained an average of 38,964 microsec-
onds. The simple local architecture, not replicated, seems
to be the fastest option in all cases, with an average
of 15,957 microseconds.

VOLUME 7, 2019 15899



R. Győrödi et al.: Performance of OnPrem Versus Azure SQL Server: Case Study

FIGURE 4. Update statement experimental results.

FIGURE 5. Delete statement experimental results.

The DELETE statement is also a CPU intensive opera-
tion that requires a lot of processing units. As it is shown
in Figure 5, Azure S9 is the best approach for DELETE

statement. In this case, for all number of users that we
used, the S9 is the fastest approach with an average
of 118,483 microseconds. Next to it is on-premises archi-
tecture with an average of 330,018 microseconds and Azure
S4 with an average of 345,416 microseconds. On-premises
architecture seems to be a little bit faster for a big number
of users, and Azure S4 seems to be the most appropriate to
on-premises. On the fourth place we can place the Azure
Premium 1, with an average of 900000 microseconds. The
last place is Azure Free pricing tier, and this is because of the
small number of DTUs. It obtained an average of 2.3 seconds.

15900 VOLUME 7, 2019



R. Győrödi et al.: Performance of OnPrem Versus Azure SQL Server: Case Study

IV. PRICE COMPARISON
To make this comparison as accurate as possible we decided
to include a small list of prices for both on-premises equip-
ment and software and for Azure pricing tiers that we used.

TABLE 2. On-premises hardware and software costs.

Table 2 presents the equipment needed for on-premises
architecture (hardware and software) that are close to our test-
ing environment together with approximate prices attached.
For local architecture, the one with replication server in
considered. In the end, after we covered the entire costs
with equipment, we will pay an amount of 909.00 AC/month
together with Sys Admin salary (one hour per day), and
internet (bare necessities).

TABLE 3. Azure tiers monthly costs.

For Azure approach, Table 3 presents the prices per month
for each pricing tier that we used in our tests. For Azure prices
we must specify that we also need to use an internet provider,
so we will keep the same cost as the on-premises scenario,
that is 215.00 AC/month.

Based on estimations form Table 2 and Table 3, the most
expensive option when using cloud platform, is Azure S9,
where the average cost per month would be: Internet provider
(215.00 AC) + Azure S9 (1,012.00 AC) = 1,227.00 AC/month.
According to the obtained results, a possible replacement

for Azure Standard 9 could be Azure Standard S4. This
pricing tier obtained a good time in our tests and we can say
it is a good option for us if we want to decrease the costs.
Here the entire costs per month would be: Internet provider
(215.00 AC) + Azure S4 (126.00 AC) = 341.00 AC/month.

Based on our comparison, we can observe that cloud
architecture is generally more expensive than on-premises
architecture, when we refer to high performance and speed,
for example, when considering Standard S9 pricing tier with
a total cost of 1,227.00 AC/month. But, if a balance between
costs and performance is needed, standard S4 pricing tier
could represent a very good option, with lower total cost

than of on-premises architecture (341.00AC/month, instead of
909.00 AC/month) but with much better performance, in some
cases comparable with upper pricing tiers.

Consequently, in terms of costs, we can easily see that
instead of using on-premises architecture at a higher price,
we can use the cloud architecture, where we will have smaller
costs and, when properly chosen, better performance.

V. CONCLUSION
The purpose of making this study was to answer the
question that was placed at the beginning of this paper,
namely: Why cloud? By developing the Restaurant app,
we intended to see the differences between on-premises
storage and cloud storage. Consequently, we developed this
app to be capable to work with data that are coming from
a local server and data from cloud. Based on this app,
several tests were carried out for each basic SQL opera-
tion, using some real-application queries, and the obtained
results were further analyzed. During this study we reviewed
the existing cloud platform alternatives. We discovered that
on the market there are many companies that allow users
to access their space and applications from cloud and
develop their own network of virtual servers or custom
applications.

We can conclude that not in all circumstances the cloud
approach brings better performance. In some cases, response
time results show that the cloud database performance is poor
by comparing to the traditional one, especially when the free
cloud tier is implied. As it was shown in the presented results,
moving into the cloud represents better choice in terms of per-
formance than on-premises architecture when large number
of users are implied and when appropriate (means, higher)
price tiers are chosen.

However, we can see that, in some cases, the differ-
ence between the two approaches is measuring milliseconds;
consequently, cloud computing with flexible pricing mod-
els could present generally the best solutions to be able to
benefit for the whole power and convenience of the cloud:
usability, scalability, reliability, security and, not in the last,
price.

There is another way to store data, using Private hosting
where you can buy space and servers to run the apps, but in
this way, you will not get the same stability as cloud, because
also there will be someone who will take care about servers,
infrastructure and other stuffs which involves more money
and more time spent.

However, each approach of storing data has advantages
and disadvantages, but as we can see the whole world is
dependent on internet. All modern apps and all big companies
like Microsoft, Google, Facebook, Amazon or others are
using cloud to store data because it is comfortable to access
it any time and from anywhere, and most importantly, they
are always safe. This is the future of storing data, no more
hardware to buy and no more systems to administer because
all of these are just a mouse click away.

VOLUME 7, 2019 15901



R. Győrödi et al.: Performance of OnPrem Versus Azure SQL Server: Case Study

REFERENCES
[1] B. Butler. 10 of the Most Useful Cloud Databases. Network World.

Jun. 2014. [Online]. Available: http://www.networkworld.com/article/
2162274/cloud-storage/cloud-computing-10-of-the-most-useful-cloud-
databases.html.

[2] T. Whitney. Guide to Universal Windows Platform (UWP) Apps.
May 2016. [Online]. Available: https://msdn.microsoft.com/en-us/
windows/uwp/get-started/universal-application-platform-guide

[3] M. Patterson. What is an API, and Why Does it Matter?. Apr. 2015.
[Online]. Available:http://sproutsocial.com/insights/what-is-an-api/

[4] C. Rabeler. SQL Database Options and Performance: Understand
What’s Available in Each Service Tier. May 2016. [Online]. Available:
https://azure.microsoft.com/en-us/documentation/articles/sql-database-
service-tiers/rnd=1

[5] A. Marathe et al., ‘‘A comparative study of high-performance computing
on the cloud,’’ Presented at the HPDC, New York, NY, USA, Jun. 2013,
pp. 239–250. [Online]. Available: http://www.cs.arizona.edu/dkl/
Publications/Papers/hpdc13.pdf

[6] R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo,
‘‘Performance analysis of HPC applications in the cloud,’’ Future Gener.
Comput. Syst., vol. 29, no. 1, pp. 218–229, Jan. 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X12001458

[7] C. Gyorödi, R. Gyorödi, and R. Sotoc, ‘‘A comparative study of relational
and non-relational database models in a Web-based application,’’ Int.
J. Adv. Comput. Sci. Appl., vol. 6, no. 11, pp. 78–83, 2015, doi: 10.14569/
IJACSA.2015.061111.

[8] D. Ghoshal, R. S. Canon, and L. Ramakrishnan, ‘‘I/O performance of
virtualized cloud environments,’’ presented at the 2nd Int. Workshop
Data Intensive Comput. Clouds (DataCloud-SC), Seattle, WA, USA,
2011, pp. 71–80. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.232.4019&rep=rep1&type=pdf

[9] S. Narula, A. Jain, and M. Prachi, ‘‘Cloud computing security: Amazon
Web service,’’ presented at the IEEE 5th Int. Conf. Adv. Comput. Commun.
Technol., Feb. 2015, pp. 501–505, doi: 10.1109/ACCT.2015.20.

[10] G. Carutasu, M. A. Botezatu, C. Botezatu, and M. Pirnau, ‘‘Cloud com-
puting and windows azure,’’ presented at the ECAI-Electron., Comput.
Artif. Intell. Int. Conf., Ploieşti, Romania, Jun./Jul. 2016, pp. 1–6, doi:
10.1109/ECAI.2016.7861168.

[11] M. Abourezq and A. Idrissi, ‘‘Database-as-a-service for big data:
An overview,’’ Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 1, pp. 157–177,
2016, doi: 10.14569/IJACSA.2016.070124.

[12] W. Al Shehri, ‘‘Cloud database database as a service,’’ Int.
J. Database Manage. Syst., vol. 5, no. 2, p. 1, 2013. [Online].
Available: http://airccse.org/journal/ijdms/papers/5213ijdms01.pdf,
doi: 10.5121/ijdms.2013.5201.

[13] S. Jain, ‘‘Comparative study of traditional database and cloud comput-
ing database,’’ Int. J. Adv. Res. Comput. Sci., vol. 8, no. 2, pp. 80–87,
2017. [Online]. Available: http://www.ijarcs.info/index.php/Ijarcs/article/
viewFile/2935/2918

[14] A. Litchfield, A. Althwab, and C. Sharma, ‘‘Distributed relational
database performance in cloud computing: An investigative study,’’ J. Inf.
Technol. Manage., vol. 29, no. 1, pp. 16–46, 2018. [Online]. Available:
https://www.researchgate.net/publication/324068566_Distributed_
Relational_Database_Performance_in_Cloud_Computing_An_
Investigative_Study

[15] A. Thakar, A. Szalay, K. Church, and A. Terzis, ‘‘Large science databases–
are cloud services ready for them?’’ Sci. Program., vol. 19, nos. 2–3,
pp. 147–159, 2011, doi: 10.3233/SPR-2011-0325.

[16] S. D. Bijwe and P. L. Ramteke, ‘‘Database in cloud computing-database-
as-a service (DBaas) with its challenges,’’ Int. J. Comput. Sci. Mobile
Comput., vol. 4, no. 2, pp. 73–79, 2015.

[17] K. Chitra and B. J. Rani, ‘‘DES: Dynamic and elastic scalability in cloud
computing database architecture,’’ Int. J. Adv. Comput. Sci. Appl., vol. 5,
no. 1, pp. 173–175, 2014, doi: 10.14569/IJACSA.2014.050124.

[18] A. Sleit, N. Misk, F. Badwan, and T. Khalil, ‘‘Cloud computing chal-
lenges with emphasis on Amazon EC2 and windows azure,’’ Int. J. Com-
put. Netw. Commun., vol. 5, no. 5, pp. 35–44, Sep. 2013, doi: 10.5121/
ijcnc.2013.5503.

[19] Jan. 2018. Database Transaction Units (DTUs) and Elastic Database
Transaction Units (eDTUs). [Online]. Available:https://docs.microsoft.
com/en-us/azure/sql-database/sql-database-what-is-a-dtu

[20] (Mar. 2017). Tutorial: Configure Replication Between Two Fully
Connected Servers (Transactional). [Online]. Available: https://docs.
microsoft.com/en-us/sql/relational-databases/replication/tutorial-
replicating-data-between-continuously-connected-servers?view=sql-
server-2017

[21] (Nov. 2018). Set UpDisaster Recovery for Azure VMs to a Secondary Azure
Region. [Online]. Available: https://docs.microsoft.com/en-us/azure/site-
recovery/azure-to-azure-tutorial-enable-replication

ROBERT GYŐRÖDI received theM.Sc. and Ph.D.
degrees in computer science from the Politehnica
University of Timisoara, Romania, in 1995 and
2001, respectively. Since 2009, he has been a Full
Professor of computer science with the Depart-
ment of Computer Science and Information Tech-
nology, University of Oradea, Romania. He has
over 15 years of IT consulting experience. He has
authored/co-authored ten books, and over 80 pub-
lished papers, many of them in journals and inter-

national conferences. His current research interests include a combination of
image processing, artificial intelligence, data mining, and database manage-
ment systems subjects. He is an IEEE Member and the Acting Chair of the
Microsoft Dynamics Academic Alliance EMEA Council.

MARIUS IULIAN PAVEL is currently pursuing
the M.Sc. degree with the Department of Com-
puter Science and Information Technology, Uni-
versity of Oradea, Romania, with a focus on
cloud computing and database management sys-
tems subjects.

CORNELIA GYŐRÖDI received the B.Eng.
degree in automation and computers and the Ph.D.
degree in computer science, in the area of datamin-
ing, from the Politehnica University of Timisoara,
in 1994 and 2003, respectively. She has been a Pro-
fessor with the Department of Computer Science
and Information Technology, Faculty of Electrical
Engineering and Information Technology, Univer-
sity of Oradea, Romania, since 2009. She is cur-
rently a local Coordinator of the Oracle Academic

Initiative, and participated at different specializations in this area, orga-
nized by Oracle Romania. Her current research interests include database
management systems, knowledge discovery in databases, and data mining
techniques. She has authored/co-authored 11 books and over 85 publications
in the aforementioned fields.

DOINA ZMARANDA received the B.S. degree in
automation and computers and the Ph.D. degree
in computer science, with a focus on real-time
control systems, from the PolitehnicaUniversity of
Timisoara, in 1990 and 2001, respectively. Since
2009, she has been a Professor with the Depart-
ment of Computer Science and Information Tech-
nology, University of Oradea, Romania. She has
authored/co-authored over 60 publications in the
field of computer science. Her research interests

include real-time application development,Web and cloud application devel-
opment, concurrent programming, and system’s modeling and simulation.

15902 VOLUME 7, 2019

http://dx.doi.org/10.14569/IJACSA.2015.061111
http://dx.doi.org/10.14569/IJACSA.2015.061111
http://dx.doi.org/10.1109/ACCT.2015.20
http://dx.doi.org/10.1109/ECAI.2016.7861168
http://dx.doi.org/10.14569/IJACSA.2016.070124
http://dx.doi.org/10.5121/ijdms.2013.5201
http://dx.doi.org/10.3233/SPR-2011-0325
http://dx.doi.org/10.14569/IJACSA.2014.050124
http://dx.doi.org/10.5121/ijcnc.2013.5503
http://dx.doi.org/10.5121/ijcnc.2013.5503

	INTRODUCTION
	TESTING ARCHITECTURE
	UWP APPLICATION DEVELOPMENT
	API DEVELOPMENT
	DATABASE DEVELOPMENT
	SCRIPTS AND CONFIGURATIONS

	PERFORMANCE TESTS
	PRICE COMPARISON
	CONCLUSION
	REFERENCES
	Biographies
	ROBERT GYORÖDI
	MARIUS IULIAN PAVEL
	CORNELIA GYORÖDI
	DOINA ZMARANDA


