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ABSTRACT With the increasing demand for indoor location-based services, the received signal strength
fingerprinting-based localization algorithm has become a research focus due to its accuracy and low hardware
requirements. However, how to achieve the accurate location discovery relies solely on the received signal
strength under the sparse reference points condition, which is the main contribution of this paper. First,
the Voronoi diagram is adopted to regionalize the positioning area and form a distributed signal propagation
description, which can reduce the influence of environment interference. Second, aiming at the local
motion tracking problem, a region-based location search model is constructed to achieve the initial position
estimation and provide the motion model for the following optimization of location estimation. Third,
in order to reduce the cumulative error caused by the environmental noise and the local optimum problem,
the regularized particle filtering algorithm with map-correction is employed to implement the dynamic
calibration of the particle updating equation. To verify the proposed algorithm, an indoor wireless experiment
system is finally designed in this paper. The experiment results indicate that the proposed algorithm can
increase the positioning accuracy by 28.2% compared with the fingerprinting-based localization algorithm
when the RPs density is reduced to 0.2/ (0.5m*0.5m).

INDEX TERMS Batch gradient descent, indoor positioning, regularized particle filtering, sparse reference
points condition, Voronoi diagram.

I. INTRODUCTION
With the rapid development of internet of things (IoT) in
recent years, the location-based services (LBSs) has attracted
much attention due to its wide applications in daily lives.
Indoor environments such as underground shopping centers
which contain the complex multi-path, the non-line-of-sight
propagation and so on. So the global positioning system
can hardly meet the indoor positioning requirements. Thus,
the indoor localization system has become a hot research
point [1]–[4]. The received signal strength (RSS), the ultra
wideband, the radio frequency identification and the visible
light based indoor positioning strategy are differentiated by
the inference techniques such as the time of arrival, the time
difference of arrival and the angle of arrival [5]–[7]. Among
several branches of positioning technologies, RSSs can pro-
vide position information without additional hardware sup-
ports. However, the RSS is vulnerable to the environmental
noise, the antenna orientation, and the multi-path reflection,

these interference will result in the poor positioning accuracy.
Since existing positioning technologies have deficiencies
respectively, the accurate positioning can hardly be achieved
by an individual method. The fingerprinting-based localiza-
tion algorithm has drawn widespread attention for its high
positioning accuracy [8].

The fingerprinting-based localization algorithm mainly
includes two phases: 1) the establishment of offline reference
point fingerprint (RPF) database; 2) the online fingerprint
matching phase. In the offline phase, the RSS obtained from
various beacon points (BPs) at each reference point (RP)
can be described as RPF. The coordinate of RP and the
received RPF can form a location-relevant database called
RPF database. The location estimation can be obtained by
matching the online RSS observation with the offline RPF
database, this location discovery method is called as the
fingerprinting-based localization algorithm. The accuracy of
the fingerprinting-based indoor location tracking system is
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mainly influenced by three aspects including the establish-
ment/maintenance of RPF database, the fingerprint matching
method and the cumulative positioning error.

A. THE ESTABLISHMENT/MAINTENANCE OF
RPF DATABASE
In recent years, the channel state information (CSI) is used
as the fingerprint in some study which is proved to be more
stable and have more features to choose from [9]. In order to
achieve the accurate positioning, the features of CSI would be
extracted [10] and delivered to the processing unit to train the
classifiers [11]. However, CSI fingerprints are also sensitive
to the positioning environment [12]. When the positioning
environment changes, the parameter of model and classifier
need to be re-trained [13] to maintain the accuracy. Thus,
the RSS based fingerprinting which is visualized and easy to
be compensated, is remaining to be an important method in
the indoor positioning system. To reduce the quantity of the
RPs, a new PF scheme [14] is proposed, which contains the
single-hidden layer feed-forward network for distinguishing
similar fingerprints. Reference [15] proposed a calibration
zero-effort system based on the crowdsourcing of the train-
ing data and achieved the target tracking using the inertial
sensors contained in the mobile devices. The Gradlent Fin-
gerprinTing [16] which leverages a more stable RSS gradient
is proposed to avoid the laborious of fingerprint map cali-
bration. Reference [17] proposed a WiFi-based non-intrusive
online radio map construction method, the proposed WinIPS
can capture data packets and extract the RSS and MAC
addresses from bothWiFi access points andmobile devices in
a non-intrusive manner. So, the WiFi access points can serve
as online reference points and achieve the calibration-free
indoor localization. A kernel-based learning technique [18] is
proposed to increase the classification ability of fingerprint.
In order to obtain appropriate fingerprint databases at differ-
ent time phases, a mobile data-collection cart and a method
to construct the time-relevant fingerprint database [19] are
proposed. In [20], aWi-Fi based indoor localizationmethod is
proposed to adopt assistant nodes with similar RSS sequences
as auxiliary nodes to implement the accurate positioning in
the complex indoor environment. In [21]–[23], fingerprints
can be constructed based on the Voronoi diagram according
to the signal propagation model [24], [25] and the signal
attenuation parameter [26]–[28]. In a word, these methods
could be used to decrease the reliance on the accuracy of
the established RPF database. However, the study on the RPF
database under the condition of sparse RPs are relatively rare.

B. FINGERPRINT MATCHING ALGORITHM
A novel likelihood estimation and a stochastic gradient
descent location discovery algorithm [29] are proposed to
deal with the inadequate received fingerprints. Reference [30]
proposed a robust, cost-effective and scalable localization
system to achieve the automatical search of model parameters
through the training phase and improve the online match-
ing accuracy. In [31], an improved image-based pedestrian

trajectory estimation method is proposed to use detected
images as assistants. In [32] and [33], the indoor location
tracking system equipped with measurement units such as
the gyroscope, the step frequency and step length detection
is proposed. Auxiliary measurement units are adopted to cal-
ibrate positioning-related parameters and improve the posi-
tioning and location tracking accuracy. However, these would
increase the system construction complexity. Moreover,
the positioning performance have not been verified under
insufficient RP conditions.

C. DYNAMIC CUMULATIVE POSITIONING ERROR
The RPF database construction method is proposed in [34]
and [35], which adopts the filtering algorithm to construct
the real-time RPF database and compensate the cumulative
positioning error. In [36], a location tracking algorithm is
presented by using CAD floor plan as the constraint map.
A virtual track (VT) location tracking method [37] is put
forward when the map is hard to obtain, and the link trigger
sequence is adopted to achieve the location discovery. The
pedestrian dead reckoning (PDR) incorporated with the mag-
netometer technology is employed in [6] to reduce the cumu-
lative positioning error through the azimuth map-correction
mechanism. These studies indicate that the cumulative error
can be weakened by the calibration maps, and the key bot-
tleneck is the acquisition of accurate calibration map. To get
the calibration map, every RP in the positioning area should
be arranged to collect corresponding RPF samples constantly,
which is a laborious and unpractical work. On the other hand,
if the number of the deployed RP is decreased, the positioning
accuracy can not be guaranteed by the above mentioned
methods.

Under the same indoor positioning circumstance, the accu-
racy of the fingerprinting-based localization algorithm is
related to on the RPF database, the more preset RPs, the more
accurate positioning results. However, this is a labor-intensive
and time-consuming process. The RP reduction incurs the
degradation of the support information for establishing the
RPF database, and it further results in the deterioration of the
positioning performance. Therefore, it is an essential problem
to achieve the accurate localization under the sparse RPs
condition. Aiming at this problem, there are three aspects to
be studied respectively: 1) how to truly reflect the propagation
environment of local signals; 2) how to transform the indoor
localization problem into the local optimization problem;
3) how to reduce the positioning accumulation error which is
generated by environmental disturbances and local optimum
problems.

The main contributions of this paper are summarized
below.

1) A regionalization method for indoor environment is
proposed based on preset RPs.

TheVoronoi diagram is adopted to regionalize the position-
ing area into several Voronoi units based on preset RPs, and
the signal attenuation parameter of each RP can represent the
signal propagation characteristic of the entire Voronoi unit.
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Thus, these environment-relevant Voronoi units can achieve
a true reflection of the local signal propagation.

2) A location search model is constructed based on the
proposed batch gradient descent (BGD) method with region-
adaptive parameters.

The local searching algorithm integrated with the propaga-
tion parameter of Voronoi unit would achieve the adaptive
construction of location search model. According to this
model, the BGD algorithm can be applied to obtain an initial
estimation of the mobile terminal (MT).

3) A regularized particle filtering algorithm with map-
correction (MAPF) is proposed.

The movement model of the MT would be used as the
particle updating equation in the regularized particle filter-
ing algorithm. In order to reduce the cumulative positioning
error timely, this paper proposes a map-correction mecha-
nism for the displacement and azimuth estimation to mod-
ify the movement model. The movement of state particles
can be corrected through the model modification, so the
cumulative positioning error generated in the iteration can be
prevented.

In order to verify the effectiveness of the proposed algo-
rithm, some experimental configurations with different num-
ber of RPs are established respectively. Contrast experi-
ments are conducted under different configurations and all
experimental results in this paper were obtained in a chosen
laboratory.

The rest of this paper is organized as follows. Section II
proposes three solutions corresponding to three proposed
key problems. The RPs based regionalization method for
indoor environment, the location search model based on the
proposed region-adaptive BGDmethod, and the MAPF algo-
rithm are constructed and depicted in detail. In Section III,
an indoor localization system is established and several
experimental results are presented to verify the proposed
algorithm.

II. APPROACH
The proposed indoor positioning algorithm is designed
based on the fingerprinting-based localization algorithm and
includes three aspects: the offline RPF database establish-
ment, the online region-adaptive BGD location search, and
the regularized particle filtering with map-correction.

As shown in Fig. 1, the only input of the proposed algo-
rithm is the RSS fingerprint received from BPs. In the online
matching phase, the received RSS fingerprint is compared
with the regionalized RPF database to obtain the first match-
ing RP and the corresponding Voronoi unit. Then, a location
search algorithm based on the proposed region-adaptive BGD
method is adopted to obtain the initial location estimation.
Finally, the MAPF algorithm employ the proposed map-
correction mechanism to calibrate the movement of state
particles. In which, the movement model and Voronoi units
are adopted as the map to correct the state particle updating
equation and optimize the location estimation.

FIGURE 1. Indoor localization algorithm under sparse RPs condition.

A. PRE-SET RP BASED REGIONALIZATION METHOD
FOR INDOOR ENVIRONMENT
The complex indoor positioning environment, including the
furniture, the wall, the widely used electronic equipment etc.,
can cause the non-line-of-sight and the multi-path propaga-
tion interference on the signal propagation path. These will
break the relationship between the propagation distance and
the received RSS, and affect the positioning accuracy of the
range-based method. Thus, the fingerprinting-based localiza-
tion algorithm has attracted a lot of attentions since it can
guarantee the high positioning accuracy without additional
hardware support. This non-range-based algorithm mainly
includes the offline RPF database acquisition phase and the
online matching phase. Fig. 2 shows the algorithm structure.

FIGURE 2. The structure of fingerprinting-based localization algorithm.

In Fig. 2, assuming that there are Q BPs, M RPs and
one MT in the positioning area. In the offline RPF database
establishment phase, BPs are fixed in the positioning area,
and broadcast beacons according to a certain period. The MT
carried by tester is located at the coordinate of the preset RP
and receives beacons from all the BPs. The RSS extracted
from received beacons are recorded as the fingerprint of the
RP, and stored with RP coordinates to form the RPF database,
which is given in (1),

( Xm,Ym︸ ︷︷ ︸
coordinate

;Cm,1, · · · ,Cm,q, · · · ,Cm,Q︸ ︷︷ ︸
RSS

)

m ∈ [1,M ], q ∈ [1,Q] (1)

Cm,q denotes the RSS received from the qth BP at (Xm,Ym),
where (Xm,Ym) denotes the coordinate of the mth RP. In the
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online matching phase, the MT receives the real-time RSS
from BPs, which is given in (2),

R′ = (R′1,R
′

2, · · · ,R
′
q, · · · ,R

′
Q), q ∈ [1,Q] (2)

where,R′q denotes the real-time RSS received from the qth BP.
So R′ denotes the integrated RSS fingerprint received from all
BPs. The fingerprinting-based algorithm can obtain the most
matching RPF by comparing R′ with the RPF database. Then,
the coordinate of the matched RPF is considered as the loca-
tion estimation of the MT. The more RPs, the more accurate
estimation. In order to acquire adequate RPs and complete
the RPF database, assuming that the fingerprint should be
collected for L times to guarantee the accuracy at one RP,
so the establishment of the RPF database requires M*Q*L
times fingerprint collection. This is a time-consuming work
and would hinder the practical application of the indoor
localization. Moreover, the signal propagation environment
changes along with the movement of included objects, which
results in the additional fingerprint calibration work. There-
fore, the establishment and maintenance of the RPF database
is a labor-intensive and time-consuming process.

The main problem of insufficient RPs is that the density
of RPs can no longer match the positioning request. Several
positioning results would occur at the same RP and decrease
the localization accuracy. In order to achieve the accurate
positioning under the insufficient RPs condition. The signal
attenuation parameter is introduced into the fingerprinting
localization algorithm to represent the local signal propa-
gation condition, and find a more precise location than the
matching reference point through the optimization algorithm.
The signal attenuation parameter n, which denotes the indoor
signal propagation environment, is not equal in different
places. Thus, assuming a uniform attenuation parameter in
the whole positioning area is not an effective method. In order
to achieve the accurate positioning, the precise reflection of
the signal propagation environment in the positioning area
is an important task. Aiming at this problem, a preset RPs
based regionalization method for the indoor environment is
proposed in this paper. The positioning area can be region-
alized into several Voronoi units based on RPs through the
Voronoi diagram, then the signal propagation parameter n of
the RP would be adopted to represent the signal propagation
environment of the whole Voronoi unit.

In Fig.3, a plane is divided into several convex polygons
by the Delaunay triangulation algorithm based on RPs (which
are recognized as Voronoi cores). The dotted lines denote the

FIGURE 3. The construction method of Voronoi unit.

connection lines of RPs. The solid lines denote the vertical
bisector of connection lines. The irregular convex polygons
composed by solid lines are Voronoi units. According to the
characteristic of Voronoi diagram, the Euclidean distance of
the point inside Vornoi units to the inside RPs, are smaller
than the distance to any other RPs, as shown in Fig.4.

FIGURE 4. The diagram of Voronoi unit.

A case in point, {m,m_1,m_2, · · · ,m_5} denote a set of
RPs labels. F is one location of the MT which is inside the
mth Voronoi unit. The variable d(F,m) denotes the distance
between the mth BP and F, which is smaller than the distance
between other RPs and F , the equation can be expressed
by d(F,m) < min{d(F,m_1), d(F,m_2), · · · , d(F,m_5)}.
Moreover, reference [20] proves that the geographically adja-
cent nodes have similar signal propagation conditions, that is,
m and F have similar signal propagation conditions. Thus, m
and F would receive similar fingerprints from BPs.
Inference 1: If the RSS received by the MT is similar with

the recorded fingerprint of the mth RP, the signal propaga-
tion condition of the MT is similar to the mth RP. Thus,
the coordinate of theMT is closest to the coordinate of themth

RP. (Assuming that the RPF database establishment and the
online RSS reception of MT are under the same environment)

Similarly, F1 inside the mth Voronoi unit would also sat-
isfy d(F1,m) < min{d(F1,m_1), · · · , d(F1,m_5)}. That is,
the signal propagation environment at point F and F1 can be
represented by parameter n of the mth RP.
Inference 2: The signal propagation environment at any

position inside the Voronoi unit can be represented by the
parameter n of the inside RP.
Thus, in order to achieve the precise reflection of the signal

propagation environment, the parameter n of the Voronoi unit
would be added to the RPF database and form the regional-
ized RPF database, which is given in (3),

( Xm,Ym︸ ︷︷ ︸
coordinate

;Cm,1, · · · ,Cm,Q︸ ︷︷ ︸
RSS

| nm,1, · · · , nm,q, · · · , nm,Q︸ ︷︷ ︸
propagation−index

),

m ∈ [1,M ], q ∈ [1,Q] (3)

where nm,q denotes the propagation parameter of signal prop-
agation path, which can represent the strength attenuation
degree from the qth BP to the mth RP. A RP has Q number
of signal propagation parameters because there are Q number
of BPs serving as signal emitters. Thereby, the regionalized
RPF database that can implement the accurate reflection of
the signal propagation environment is established.
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Remark 1: The preset RPs based regionalization method
for indoor environment mainly rely on RPs and the Voronoi
diagram, the indoor positioning environment can be divided
into several environment-related Voronoi units reasonably.
Therefore, when the RPs are insufficient, an accurate region-
alized RPF database can also be obtained through this
method.

B. LOCATION SEARCH MODEL BASED ON THE
PROPOSED REGION-ADAPTIVE BGD METHOD
After the reception of the real-time RSS fingerprint in the
online phase, the location estimation of the MT can be
obtained through the fingerprinting-based localization algo-
rithm. However, when the preset RP is insufficient, there are
not enough RPF for the fingerprint matching process. It is
necessary to search a more accurate location around the first
matched mth RP. Therefore, the indoor positioning problem
should be transformed into a local location search problem.

Shadowing model is a kind of signal attenuation model
which is widely used in the RSS range-based algorithm. The
RSS received at d meters away from the signal transmitter
follows (4),

R = R0 − 10nm,qlg(
d
d0

)+ xσ (4)

where, R0 denotes the RSS received at the reference
distance d0 away from the signal transmitter. Generally,
the reference distance d0 is set to 1m. R denotes the RSS
received at d meters away from the signal transmitter. Assum-
ing that the process interference xσ follows a normal distribu-
tionN (0, σ 2) . After the jth positioning request is sent, theMT
receives beacons from all BPs. The RSS frame segment can
be extracted from the received beacons and form a real-time
fingerprint Rj , as given in (5),

Rj = (Rj,1,Rj,2, · · · ,Rj,q, · · · ,Rj,Q), q ∈ [1,Q] (5)

where, Rj,q is the real-time RSS received from the qth BP dur-
ing the jth positioning. Firstly, the most matched RP would be
selected through the fingerprinting-based localization algo-
rithm. The matching equation can be expressed as (6),

min(
1
Q

∑
q∈Q

|Rj,q − Cm,q|) (6)

In the sparse RP condition, the coordinate of the matchedmth

can not be adopted as the location estimation because of the
biases. The local location search problem is mainly to find
a position surrounded the matched mth voronoi core, where
it can receive the most similar fingerprint compared with the
real-time RSS. Assuming that R̃j,q is the RSS received from
the qth BP at the location Sj, and the location Sj is inside the
mth voronoi unite. According to (6), the objective function
H can be defined as the average difference between Rj,q and
R̃j,q, expressed by (7),

H =
1
Q

∑
q∈Q

|Rj,q − R̃j,q| (7)

According to the Inference 2, the signal propagation condi-
tion of Sj can be represented by the nm,q of the mth Voronoi
core. So, based on (4), R̃j,q can be expressed by (8),

R̃j,q = R0 − 10nm,qlg(d(Sj,Bq)) (8)

where Bq denotes the coordinate of the qth BP, assuming that
Sj = (xj, yj), Bq = (Xq,Yq). So the distance between Sj and

Bq can be described as d(Sj,Bq) =
√
(xj − Xq)2 + (yj − Yq)2,

Thus, the objective function H can be expressed as (9),

H =
1
Q

∑
q∈Q

|Rj,q − R0 + 10nm,qlg(d(Sj,Bq))| (9)

According to (7), the objective is to search for a Sj which can
minimize the objective function H , as given in the (10),

min(H ) = min(
1
Q

∑
q∈Q

|Rj,q − R0 + 10nm,qlg(d(Sj,Bq))|)

(10)

To minimize the objective function H , there exists some
intelligent optimizationmethods including the particle swarm
optimization (PSO), the simulated annealing (SA) and the
genetic algorithm (GA) etc. The gradient descent algorithm
possess the lower algorithm complexity than the intelligent
optimization method and can be designed to various trans-
formations for different application fields [38]. In this paper,
after the segmentation of the positioning area based on the
proposed regionalization method, each regionalized unit has
an exclusive signal attenuation characteristic. So the region-
alized unit can be incorporated with the gradient descent
algorithm to find Sj efficiently. Moreover, there are some
fixed BPs deployed in the established indoor positioning sys-
tem, the direction towards each BP represents one orientation
of the signal attenuation. According the mechanism of BGD,
the BGD method can search for one synthesized direction
based on these directions in time.

Based on the BGD algorithm, the opposite direction of the
gradient is the fastest direction to decline for the objective
function. Since the target is to minimize the objective func-
tionH , the search direction can be set to the opposite direction
of the gradient.

1) If R0 − 10nm,q lg(
√
(xj − Xq)2 + (yj − Yq)2) < Rj,q,

the objective function H can be expressed as (11),

H =
1
Q

∑
q∈Q

(Rj,q−R0+10nm,qlg(
√
(xj − Xq)2 + (yj −Yq)2)

(11)

The gradient of H can be expressed by (12),

grad(H ) = (
∂H
∂xj

,
∂H
∂yj

)

= (
10

Q ln 10

∑
q∈Q

nm,q(xj − Xq)

(xj − Xq)2 + (yj − Yq)2
,

10
Q ln 10

∑
q∈Q

nm,q(yj − Yq)

(xj − Xq)2 + (yj − Yq)2
) (12)

VOLUME 7, 2019 13949



A. Li et al.: New RSS Fingerprinting-Based Location Discovery Method Under Sparse Reference Point Conditions

Assuming that the step size is set to α, and the current position
ofMT Sj can be calculated through (13) according to the BGD
algorithm,

Sj = Sj−1 − α · grad(H )

= (xj−1 − α
∂H
∂xj

, yj−1 − α
∂H
∂yj

)

= (xj−1 −
10α
Q ln 10

∑
q∈Q

nm,q(xj − Xq)

(xj − Xq)2 + (yj − Yq)2
,

yj−1 −
10α
Q ln 10

∑
q∈Q

nm,q(yj − Yq)

(xj − Xq)2 + (yj − Yq)2
) (13)

2) If R0 − 10nm,q lg(
√
(xj − Xq)2 + (yj − Yq)2) > Rj,q ,

the objective function H can be expressed as (14),

H=−
1
Q

∑
q∈Q

(Rj,q−R0+10nm,qlg(
√
(xj − Xq)2+(yj − Yq)2)

(14)

The gradient of H can be expressed by (15),

grad(H ) = (
∂H
∂xj

,
∂H
∂yj

)

= (−
10

Q ln 10

∑
q∈Q

nm,q(xj − Xq)

(xj − Xq)2 + (yj − Yq)2
,

−
10

Q ln 10

∑
q∈Q

nm,q(yj − Yq)

(xj − Xq)2 + (yj − Yq)2
) (15)

Assuming that the step size is set to α, and the current position
ofMT Sj can be calculated through (16) according to the BGD
algorithm,

Sj = Sj−1 − α · grad(H )

= (xj−1 − α
∂H
∂xj

, yj−1 − α
∂H
∂yj

)

= (xj−1 +
10α
Q ln 10

∑
q∈Q

nm,q(xj − Xq)

(xj − Xq)2 + (yj − Yq)2
,

yj−1 +
10α
Q ln 10

∑
q∈Q

nm,q(yj − Yq)

(xj − Xq)2 + (yj − Yq)2
) (16)

In the (13) (16), nm,q is the region-adaptive parameter which
is recorded in the proposed regionalized RPF database at
the offline phase. The region-adaptive BGD location search
model (13)(16) is proposed based on the environment param-
eter nm,q.
According to the change of the signal propagation environ-

ment, the location search model would change automatically
to improve the search accuracy. Therefore, the local location
search algorithm can be expressed by the pseudocode, shown
as Algorithm 1.
Remark 2: The proposed algorithm can be used to estab-

lish the region-adaptive location search model through the
variable parameter nm,q and improve the search accuracy.
Thereby, the accurate and fast location search based on insuf-
ficient RPs has been achieved.

Algorithm 1 Regional Batch Gradient Descent
Input: α,Sj−1,Rj,q
Output: Sj

1 for j = 1, · · · do
2 -Build the optimization function
3 min(H ) = min( 1Q

∑
q∈Q
|Rj,q − R̃j,q|)

4 -Find the gradient direction
5 grad(H ) = ( ∂H

∂xj
, ∂H
∂yj

)
6 -Estimation of current location

7 if R0 − 10nm,q lg(
√
(xj − Xq)2 + (yj − Yq)2) < Rj,q

then
8 Sj = Sj−1 − α · grad(H )

= (xj−1 − 10α
Q ln 10

∑
q∈Q

nm,q(xj−Xq)
(xj−Xq)2+(yj−Yq)2

, yj−1 −

10α
Q ln 10

∑
q∈Q

nm,q(yj−Yq)
(xj−Xq)2+(yj−Yq)2

)

9 if R0 − 10nm,q lg(
√
(xj − Xq)2 + (yj − Yq)2) > Rj,q

then
10 Sj = Sj−1 − α · grad(H )

= (xj−1 + 10α
Q ln 10

∑
q∈Q

nm,q(xj−Xq)
(xj−Xq)2+(yj−Yq)2

, yj−1 +

10α
Q ln 10

∑
q∈Q

nm,q(yj−Yq)
(xj−Xq)2+(yj−Yq)2

)

C. REGULARIZED PARTICLE FILTERING WITH
MAP-CORRECTION(MAPF)
In the process of the offline RPF database establishment and
the online fingerprint matching, the signal interference would
be inevitably involved. If the error caused by the interference
cannot be corrected in time, the generated cumulative posi-
tioning error would affect the location estimation accuracy
in the iteration. The particle filtering (PF) [39] algorithm
is a state-equation-based method which has been proved
to be suitable for solving the nonlinear filtering problem.
The filtered result of the PF algorithm can be expressed
by (17),

E[f (xj)] ≈
I∑
i=1

W̃i(x
(i)
j )f (x(i)j ) (17)

where I denotes the number of state particles participated
in the iteration, W̃i(x

(i)
j ) denotes the weight of the ith state

particle, and E[f (xj)] denotes the filtered result of the PF
algorithm. However, the PF algorithm could not solve the par-
ticle starvation problem generated in the particle resampling
phase, which will incur biased estimations. The regularized
particle filtering could be used to obtain state particles from
the continuous approximation distribution, thus the diversity
of state particles can be guaranteed. The optimal bandwidth
of the Gaussian kernel in the regularized particle filtering can
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be expressed by (18),

hopt = [4/(λ+ 2)]
1
λ+4 I−

1
λ+4 (18)

where λ denotes the dimension of the state vector.
Moreover, for the problem of the local optimum caused

by the region-adaptive BGD location search, the estimation
error caused by the local optimum problem would accumu-
late in the iteration process and cannot be corrected by the
regularized particle filtering. In response to this problem,
a MAPF algorithm is proposed in this paper. The proposed
regionalized RPF database is adopted as the calibration map
to modify the positioning biases caused by the local optimum
problem, and achieve the accurate and consecutive location
tracking.

Assuming that the current position estimation is Sj, the his-
torical position estimation is Sj−1, and the iteration equa-
tion of the displacement and azimuth can be expressed
by (19),

azimuth : 1Ej = 6 (Sj − Sj−1)

displacement : 1d = ||Sj − Sj−1||2 (19)

where, 1Ej denotes the change of azimuth and 1d denotes
the change of displacement during two positioning requests.
When the MT moves along arbitrary direction in the 2D
plane, according to the dead-reckoning, the location estima-
tion can be derived in (20),

Sj = Sj−1 +
[
cos1Ej
sin1Ej

]
1d + wj (20)

where wj denotes the system noise.
Based on the PF algorithm, equation (20) can be adopted

as the updating model in the updating phase of state particles,
as shown in Fig. 5.

FIGURE 5. The schematic of map-correction mechanism.

The small circles refer to the state particles, and assuming
these particles have been updated in the latest iteration. a
denotes the number of particles in the historicalmthj−1 Voronoi
unit. b denotes the number of particles in the current mthj
Voronoi unit. If the real-time RSS contains too much ambient
noise or the location search falls into a local optimum prob-
lem, the location estimation may appear at S ′j . It is necessary

to modify the updating equation and make the movement of
particles to be closer to the real motion of the MT. Therefore,
a weighted displacement and azimuth map-correction mech-
anism is proposed. Through the proposed map-correction
mechanism, the location estimation can be optimized
to Sj.

1) WEIGHTED AZIMUTH MAP-CORRECTION MECHANISM
a. If the chosen Voronoi unit of the current positioning gait Sj
and the historical positioning gait Sj−1 are the same, it indi-
cates that the motion mainly occurs inside the chosen Voronoi
unit. So, the azimuth deduced by (19) can be adopted without
correction in (21),

1ψ = 1Ej (21)

b. If the chosen Voronoi unit of the current positioning gait Sj
and the historical positioning gait Sj−1 are different, it indi-
cates that the signal propagation environment of these two
estimation are different, so the deduced azimuth1Ej needs to
be corrected. Assuming the reference azimuth among cores of
the two chosen Voronoi unit is 1Vj. The difference between
1Ej and 1Vjcan be expressed by 1δ = | 6 (1Ej,1Vj)|.
If 1δ is large, it means the deduced azimuth of the particle
movement deviates from the actual movement of the MT.
So the weight of the reference azimuth1Vj needs to increase.
Assuming aj = a/(a+b) denotes the number of state particles
in the mthj−1 Voronoi unit accounts for the proportion of all
state particles, and bj = b/(a+b) denotes the number of state
particles in the mthj Voronoi unit accounts for the proportion
of all state particles. The azimuth map-correction mechanism
can be expressed by (22),

1ψ =
aj
2
1Ej(1−

1δ

180◦
)+

bj
2
1Vj(1+

1δ

180◦
)

1δ =
∣∣ 6 (1Ej,1Vj)∣∣ ,1δ ∈ [0, 180◦] (22)

The updated particles distribution is adopted to implement
the adaptive weight decision of reference azimuth 1Vj and
achieved the azimuth map-correction. If 1Ej and 1Vj are
in the same quadrant, that means 1δ ∈ [0◦, 90◦), the cor-
responding weight of 1Ej is [0.5aj, 0.25aj), and 1Vj is
[0.5bj, 0.75bj). If 1Ej and 1Vj are in different quadrants,
the weight of 1Ej is [0.25aj, 0], and the weight of 1Vj
is expressed as [0.75bj, bj]. As the difference 1δ between
the deduced azimuth and the reference azimuth increases
gradually, the weight of 1Ej decreases from 0.5aj to 0, and
the weight of 1Vj increases from 0.5bj to bj. This change
indicates that if the azimuth estimation 1Ej is close to the
reference azimuth 1Vj , the azimuth estimation will have
more credibility.

Meanwhile, in order to integrate the azimuth map-
correction mechanism, the symbol function F = sgn(−|mj−
mj−1|) can be constructed according to the relationship
among the chosen Voronoi unit of adjacent position-
ing requests. Thus, the integrated azimuth map-correction

VOLUME 7, 2019 13951



A. Li et al.: New RSS Fingerprinting-Based Location Discovery Method Under Sparse Reference Point Conditions

mechanism can be expressed by (23),

1ψ = (1+ F)1Ej + (
aj
2
1Ej(1+

∣∣1Ej −1Vj∣∣
180◦

F))

+
bj
2
1Vj(1−

∣∣1Ej −1Vj∣∣
180◦

F)× (−F) (23)

where, 1ψ denotes the corrected azimuth estimation.

2) WEIGHTED DISPLACEMENT MAP-CORRECTION
MECHANISM
Similarly, the weighted displacement map-correction mecha-
nism is given in (24). The reference distance between the two
chosen Voronoi unit cores Distance(mj,mj−1) is adopted to
modify the displacement estimation.

1D=
{
1dj, mj = mj−1
aj1dj+bjDis tan ce(mj,mj−1), mj 6= mj−1

(24)

where, 1D is the corrected motion displacement.
When the two positioning are in the same Voronoi unit,

the displacement estimation can be directly represented by
1dj. If not the same, the displacement estimation is weighted
corrected by the reference distance Distance(mj,mj−1).
Through these map-correction mechanism designed for

state particle updating, the movement of state particles would
be more similar to the actual motion of the MT. Thereby,
the influence caused by the local optimum problem would
be reduced in the iteration. The weighted displacement and
azimuth map-correction mechanism can be expressed by the
pseudocode, as shown in Algorithm 2.

Algorithm 2 Map-Correction Mechanism

1 for i = 1 : I do

2 x ij = x ij−1 +
[
cos1Ej
sin1Ej

]
1dj

3 -Calculate the number of particles inside voronoi
unit (mj−1)th a and inside voronoi unit (mj)th b.

4 -Particle distribution weight:aj = a
a+b , bj =

b
a+b

5 if mj = mj−1 then
6 -amendment function:

x ij = x ij−1 +
[
cos1Ej
sin1Ej

]
1dj

7 if mj 6= mj−1 then
8 1ψ = 1( aj21Ej(1−

1δ
180◦ )+

bj
21Vj(1+

1δ
180◦ ))

1D = aj1dj + bjDistance(mj,mj−1)
-amendment function:

x ij = x ij−1 +
[
cos1ψ
sin1ψ

]
1D

9 †Distance(mj,mj−1) represents the Euclidean distance
between mj and mj−1

Remark 3: The information of Voronoi unit and the region-
alized RPF are integrated to design the map-correction mech-
anism and achieve the adaptivelymodification of the updating
equation. Thus, the cumulative positioning error caused by

the environment interference and the local optimum problem
can be prevented in the consecutive location tracking. In the
case of insufficient RPs, the local and global movement esti-
mation problem can be solved uniformly.

TheMAPF algorithm can be expressed by the pseudocode,
as shown in Algorithm 3.

III. EXPERIMENT RESULT
A. SYSTEM CONSTRUCTION
In order to verify the indoor positioning algorithm pro-
posed in this paper, an indoor wireless localization system
is constructed. The system mainly includes the gateway (G),
the mobile measurement terminal (MT), beacon points
(BP: B1, B2, B3, andB4), the PC and the processing software.
The gateway is mainly responsible for receiving and storing
the data received from each BP. The MT is carried by tester
and provides RSS information to the gateway in time. The BP
can provide its own physical coordinate, physical coordinates
of the adjacent beacon point, and the RSS contained beacons.
All of these information are packaged and transmitted to
the PC through the gateway for the further processing. The
main function of the PC and the processing software is to
receive and store the measurement data from the gateway,
and implement the indoor positioning algorithm proposed
in this paper. Finally, the location estimation of the MT
can be displayed on the user interface. The chips adopted
as the gateway, the mobile measurement terminal and the
beacon node are the CC2530 radio frequency chip based
on the IEEE802.15.4 communication protocol produced by
the TI Company. It works at the 2.4GHz frequency band
and the transmission power is configured to +1dBm. The
verification indoor positioning area is a floor containing a
5m*6m laboratory and a 6m*6m laboratory. The layout of
the laboratory is shown in Fig. 6 (scene 1: one laboratory) and
Fig. 12 (scene 2: two laboratory with a corridor). These are
typical complex indoor environment which contains various
staffs and devices.

In the 5m*6m laboratory (scene 1) shown in Fig. 6, four
BPs (B1, B2, B3, and B4) are installed on the walls of the
experiment laboratory respectively.

It can be deduced from the second section that the position-
ing accuracy is not only related to the number of RP, but also
closely related to the node partitioning, the positioning envi-
ronment, the positioning algorithm, etc. Therefore, it is diffi-
cult to find a critical condition about whether the environment
is sparse. The method to decide the threshold of sparseness
can refer to [23]. Under the same positioning environment,
the RPs density, which is required by the fingerprint-based
localization algorithm to achieve a certain accuracy, can be
recorded as the threshold. If the density of RPs is less than
the threshold density, the environment would be considered as
sparse. According to this method, the sparse threshold in this
paper is set to be 1.2/ (0.5m*0.5m), which is required by the
fingerprinting-based localization to achieve the positioning
error less than 0.5m. Five sparse conditions are configured
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Algorithm 3 MAPF Algorithm
Input: Rj,q
Output: Xj

1 -Generate initial state particles: {x i1}
I
i=1

2 for j = 1 do
3 -Find the most matching fingerprint m1
4 -Using region-adaptive BGD location search model

to get location estimation Sj
5 for j = 2, · · · do
6 -find most matching fingerprint mj
7 -Using R-EABGD method to get location

estimation Sj = Sj−1 − α · grad(H )
8 -State particle updating and evaluation phase
9 for i = 1 : I do

10 x ij = x ij−1 +
[
cos1Ej
sin1Ej

]
1dj

11 -Map amendment mechanism:
12 if mj = mj−1 then
13 -amendment function:

x ij = x ij−1 +
[
cos1Ej
sin1Ej

]
1dj

14 if mj 6= mj−1 then
15 1ψ =

1( aj21Ej(1−
1δ
180◦ )+

bj
21Vj(1+

1δ
180◦ ))

1D = aj1dj + bjDistance(mj,mj−1)
-amendment function:

x ij = x ij−1 +
[
cos1ψ
sin1ψ

]
1D

16 ω̃ij =
1√

(2π )4 det(R)
exp{− 1

2 (Sj −

hj(x ij ))
TR−1(Sj − hj(x ij ))}

17 -Calculate the sum of weights: wsum =
∑I

i=1 ω̃
i
j

for i = 1 : I do
18 Normalization: ωij = wsum−1ω̃ij
19 -State particle resampling phase
20 Calculate the empirical covariance matrix varxy of

the sample set {̂x ij }
I
i=1.

21 Compute standard deviation staxy.
22 Initialize the cumulative sum of weights

(CSW):c1 = ω1
j .

23 for i = 2 : I do
24 ci = ci−1 + ωij
25 u1 ∼ u[0, I−1]
26 for s = 1 : I do
27 us = u1 + I−1(s− 1)
28 while us > ci do
29 i = i+ 1

30 xs∗j = x ij
31 for i = 1 : I do
32 Drawεi ∼ K
33 x i∗∗j = x i∗j + hoptstaxyε

i

34 Xj = I−1
∑I

i=1 x
i∗∗
j

35 †R represents the covariance of measurement noise
vector

FIGURE 6. The schematic of positioning area.

FIGURE 7. Location estimation based on different database.

in scene 1 respectively, the RP densities are: 1 / (0.5m *
0.5m), 0.4 / (0.5m * 0.5m), 0.3 / (0.5m * 0.5m), 0.2 / (0.5m
* 0.5m), 0.1 / (0.5m * 0.5m), the corresponding number of
RPs are: 37, 15, 10, 7, and 5. Therefore, the proposed indoor
localization algorithm can be verified under these configured
sparse conditions.

B. EXPERIMENT RESULTS AND ANALYSIS
1) EXPERIMENT RESULTS AND ANALYSIS OF
REGIONALIZED RPF DATABASE
When the number of RPs is 37, the location discovery algo-
rithm is performed at four test points, based on the regular
RPF database and the proposed regionalized RPF (R-RPF)
database respectively. Fig. 7 shows the positioning results,
and Table 1 shows the positioning error. In Fig.7, the star
represents the true coordinates of the four test positions,
the diamond represents location estimations using the RPF
database with a uniform parameter n, and the circle represents
location estimations using the R-RPF database.

In Fig. 7, the circle (estimations based on the R-RPF
database) is closer to the star (position indications of the test
position) than the diamond (estimations based on the RPF
database). Table 1 shows the positioning error of the test point
respectively, which indicates that the proposed regionalized
RPF database can reflect the signal propagation environment
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TABLE 1. Positioning error based on different database.

more accurately, thereby the better location estimation can be
obtained.

2) LOCATION ESTIMATION AND ANALYSIS OF
REGION-ADAPTIVE BGD LOCATION SEARCH MODEL
On the basis of the R-RPF database, in order to verify
the location estimation performance of the region-adaptive
BGD location search method proposed in this paper. 10 test
points are selected in the positioning area, the MT is car-
ried by the tester and passes the test points clockwise from
the upper right point S, as shown in Fig. 6. When the
number of RPs is 37, the location estimation performance
of the proposed positioning algorithm is compared with
the fingerprinting-based localization algorithm, as shown
in Fig. 8.

FIGURE 8. Comparison between PF algorithm and region-adaptive BGD
algorithm.

As shown in Fig. 8, the circle denotes the true coordi-
nates of test points, the solid line with stars denotes loca-
tion tracking performance obtained by the region-adaptive
BGD location search method proposed in this paper, and
the dotted line denotes the location tracking results of the
fingerprinting-based localization algorithm. The positioning
results of the fingerprinting-based localization algorithm fre-
quently located on the same RP under the insufficient RPs
condition. However, the region-adaptive BGD location search
method can still have good positioning performance.

3) EXPERIMENT RESULTS AND ANALYSIS OF MAPF
Since the environmental noise contained in the received RSS,
and the local optimum problem caused by the BGD search
method may influence the accuracy of the location estima-
tion. These biases would be incorporated into the iteration

and cause a large cumulative positioning error if cannot be
corrected in time. When the number of RPs is 37, aiming to
the same 10 test point in Fig. 8, a group of location estima-
tions which may suffer from the local optimum problem is
shown in Fig. 9.

FIGURE 9. Positioning performance without map-correction.

In Fig. 9, the circle labeled 1-10 represent the real location
of MT, and the star labeled 1’-10’ denote the corresponding
location estimation. In Fig. 9, the location estimations of the
first five test points are close to the real location of them.
In the sixth positioning, the location estimation contains a lot
of bias compared with the real location due to the influence
of the environmental noise or the local optimum problem.
Then, this positioning error results in amore worse estimation
at the following seventh test point and iteratively causes an
increasing accumulated error. In order to intuitively describe
the performance of the proposed MAPF algorithm, the posi-
tioning error comparison between the MAPF algorithm and
the PF algorithm under the existence of the biased positioning
is shown in Fig. 10.

FIGURE 10. Comparison between MAPF algorithm and PF algorithm.

In Fig. 10, the dotted line denotes the positioning error of
the PF algorithm. The error curve gradually expands after
the appearance of the biased positioning at the sixth test
point, which indicates that the accumulated errors cannot be
corrected by the PF algorithm. The solid line represents the
positioning error of the MAPF algorithm. It can be deduced
from the curve, the positioning error can be restricted in
a reasonable range through the map-correction mechanism
performed in the seventh positioning. Thus, the robustness of
the consecutive location tracking can be guaranteed.
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4) EXPERIMENTAL RESULTS COMPARISON UNDER
DIFFERENT RP SPARSENESS
In order to verify the performance of the proposed indoor
localization algorithm under different degrees of insufficient
RPs conditions, the MT is carried by the tester and moves
clockwise along the trajectory from the point S, as shown
in Fig. 6. Fig. 11 shows the recorded positioning results of the
proposed indoor localization algorithm when the number of
RPs is 15. The solid line with the star is the tracking results
of the first cycle, the solid line with the triangle represents
the second cycle, and the solid line with the four-pointed star
represents the last half-cycle. It can be seen from Fig. 11 that
the positioning results are basically consistent with the actual
motion trajectory.

FIGURE 11. Location tracking results of proposed MAPF algorithm.

The Fig. 11 shows the location tracking performance of the
proposed MAPF algorithm inside one laboratory. It is nec-
essary to conduct the experiment in more expansive indoor
environment. Thus, two adjacent laboratories in one floor
(scene 2) are chosen as positioning area and the layout of the
floor is depicted in Fig. 12.

There are nine BPs deployed in the positioning area.
According to the chosen method of the reference points den-
sity, one RP sufficient condition and fiveRP sparse conditions
are configured respectively, the corresponding number of RPs
are: 87, 72, 28, 20, 14, 8.

The MT is carried by the tester and moves along the
trajectory from the point S_f in Fig 12. There are 40 preset
test points and 14 RPs deployed in the positioning area. The
RP density is set to be 0.2 / (0.5m * 0.5m) which is the
sparsest density that can maintain the positioning function in
the experiments of room 305. Thus, the performance of the
proposed algorithm would be verified in the new scene under
the sparsest RP density firstly.

Fig. 13 shows the location tracking results of the proposed
MAPF algorithm, the mean and min/max positioning error
are presented in Table 2. According to the tracking trajec-
tory, the proposed MAPF can achieve a good localization

FIGURE 12. Floor layout of the positioning area.

FIGURE 13. Localization results of the floor with multiple rooms.

TABLE 2. Localization results of one floor with multiple rooms.

performance and improve the average positioning accuracy
by 28.2% compared to the FL algorithm. The main problem
of positioning under the insufficient RPs environment is that
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FIGURE 14. Comparison of positioning error under different RPs sparseness conditions. (a) 72 fingerprints. (b) 28 fingerprints. (c) 20 fingerprints. (d)
14 fingerprints. (e) 8 fingerprints. (f) 87 fingerprints.

the density of RPs is too low to supply enough location
information for each step of the tester. However, the proposed
MAPF algorithm can search for the more accurate location
surround the sparse RPs, and decrease the max error from
2.3769m to 1.7847 m. These results proved that the proposed
MAPF is suitable to positioning under insufficient RPs.

This experiment cost about 140 seconds with 40 test points
under 14 RPs, which run on a computer with 3.2GHz AMD
Ryzen 5 1600 CPU and 8 GB memory. The process time is
relevant to the property of the processing unit, the RP density,
the signal propagation condition and the termination of the
location search algorithm.

In order to obtain the detailed positioning results of the
MAPF algorithm under different RP densities, the experiment
is conducted under six RP sparseness conditions respectively.
The average, variance, and maximum of the positioning error
are shown in Table 3 and Fig. 14.

Fig. 14 and Table 3 show that, under the sufficient RPs
condition (with 87 RPs), the FL algorithm and the proposed
algorithm can both achieve the good positioning perfor-
mance.With the decrease of the RPs number, the performance
of FL algorithm will deteriorate rapidly while the proposed
MAPF algorithm canmaintain the robust and accurate perfor-
mance. When the number of RPs is reduced to 14, the aver-
age positioning error of the FL algorithm and the proposed

TABLE 3. Average positioning error under different RP sparseness
conditions.

algorithm is 0.92m and 0.66m respectively. It can be deduced
that, with the decrease of the RPs number, the proposed algo-
rithm can increase the average positioning accuracy by 28.2%
compared to the FL algorithm. When the number of RPs
cannot support the positioning requests, the proposed MAPF
algorithm would compensate and maintain the positioning
accuracy.

As shown in Fig. 14(e), when the number of RPs drops
to 8, the variance and the positioning error of the proposed
MAPF drops to 0.41 and 0.98. It means that the position-
ing performance of the fingerprinting-based localization and
the MAPF algorithm are both seriously deteriorated. This
result indicates that the number of preset RPs cannot be
less than 8 in the described indoor positioning environment,
because the supplied information is too less to implement the
positioning.
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FIGURE 15. The CDF of consecutive positioning under different RPs sparseness conditions. (a) 72 fingerprints. (b) 28 fingerprints. (c) 20 fingerprints.
(d) 14 fingerprints. (e) 8 fingerprints. (f) 87 fingerprints.

In order to verify the proposed indoor localization algo-
rithm in the consecutive location tracking, the positioning
experiments are carried out for 30 times under the six RP
configurations. The cumulative distribution function (CDF)
can be obtained as shown in Fig. 15.

In Fig. 15, the line with circle represents the CDF of the
proposed algorithm and the line with star represents the CDF
of the FL algorithm. As shown in Fig.15 (f), the probability of
the positioning error within 1meter are both above 95%based
on these algorithms. The similar lines denote that both of the
algorithm can achieve good performance when the number of
RPs is sufficient. As shown in Fig. 15 (a)(b)(c)(d), the number
of the preset RPs are set to be 72, 28, 20, 14 and form four
RPs sparse conditions. The line with star is much lower than
the line with circle, which denotes that the probability of the
accurate positioning of the proposed algorithm is higher than
the contrastive FL algorithm. Therefore, the proposed MAPF
algorithm can achieve a good performance in the consecutive
location tracking under RPs sparse condition.

TABLE 4. Probability of positioning error within 1 meter.

Moreover, as shown in Table 4, the Table 4 denotes the
probability of the positioning error within 1 meter. When
the number of RPs is reduced from 87 to 14, the probability
of FL algorithm decreases from 99.6% to 60.0%. While,
the proposed indoor localization algorithm can still remain
above 95%. It indicates that, when the RPs density is reduced
to 0.2/ (0.5m*0.5m), the probability of the proposed MAPF
algorithm can be increased by 37.9% compared with the FL
algorithm.

In summary, the proposed indoor localization algorithm
can achieve the good positioning performance under the
sparse RPs condition in the indoor scenes.
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IV. CONCLUSION
This paper have proposed an optimization methods fused
indoor positioning algorithm for the sparse RPs environment.
There are three contributions have been made, including the
establishment of the regionalized RPF database, the design
of the region-adaptive location search model and the opti-
mization method for the location estimation. The constructed
verification system provides the convinced results under six
configured conditions. For the proposed indoor localization
algorithm, the localization accuracy can be increased by
28.2% under 0.2/ (0.5m*0.5m) RP density. The probability of
the positioning error within 1 m can maintain 95% under the
RPs density of 1.2-0.2/ (0.5m*0.5m), whereas the probability
of the compared fingerprinting-based localization algorithm
decrease rapidly to 60.0%with the decreasing density of RPs.
In the indoor location based service, it is desirable to min-
imize the number of RPs while maintaining the positioning
accuracy, which has been achieved by the proposed algorithm
in this paper.
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