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ABSTRACT A multi-scale quantum harmonic oscillator algorithm (MQHOA) is a quantum population-
based algorithm proposed recently. It utilizes the quantum wave function to locate the global optimum of a
global numerical optimization problem. As the MQHOA employs the elitism to replace the worst particle
in each iteration cycle, it reduces one of the particles in each run, which will cripple the diversity of the
population and slow down the convergence speed. Therefore, the particles will be easily trapped into local
optima. In this paper, we suggest a new MQHOA with truncated mean stabilization (TS-MQHOA) policy
to alleviate the above-mentioned problems. The theoretical and experimental analyses indicate that the trun-
cated mean stabilization strategy helps to diversify the populations and improve the convergence efficiency.
The proposed TS-MQHOA is evaluated on a number of dimensionwise unimodal and multimodal CEC
benchmark functions, and the computational results are compared with several popular population-based
algorithms. The experimental results on complex test problems demonstrate that the proposed TS-MQHOA,
in most function evaluations, is able to obtain better convergence toward the global optimum compared
with several renowned heuristic algorithms based on swarm intelligence. Meanwhile, the comparative
results reveal the competitiveness and superiority of the proposed algorithm, especially on high-dimensional
function evaluations.

INDEX TERMS Multi-scale quantum harmonic oscillator algorithm, swarm intelligence, population-based
algorithm, stochastic algorithm, truncated mean stabilization strategy.

I. INTRODUCTION
Swarm intelligence has attracted extensive attentions for
many decades. Although the intelligence is either from a
living population or from an inanimate group, the swarm
intelligence often generates stunning effects on tackling
global optimization problems. Typically, since Eberhart and
Kennedy proposed the particle swarm optimization (PSO)
in 1995 [1], tens of thousand of researchers have followed
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them to inherit and develop the PSO technique. In recent
years, thousands of algorithms have been proposed, either
proposing improvements of PSO, or developing new tech-
niques inspired by PSO. Some of these algorithms have
been proved to be superior to the original PSO and become
branches of swarm intelligence theory.

Typically, the algorithms based on swarm intelligence
are including standard particle swarm optimization (SPSO)
[2], [3], particle swarm optimization with Levy flight
(LPSO) [4], comprehensive learning PSO (CLPSO) [5],
quantum-behaved particles swarm optimization (QPSO)
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[6], [7], artificial bee colony algorithm (ABC) [8], [9], ant
colony optimization (ACO) [10], bat algorithm (BA) [11],
fireworks algorithm (FWA) [12], [13], multi-scale quantum
harmonic oscillator algorithm (MQHOA) [14], [15] and etc.
Most of these algorithms consist of a decentralized popu-
lation of simple agents interacting with one another locally
within a given search space. The agents follow very simple
rules to interact with each other without anyone dictating how
to behave. The interaction between the agents leads to the
emergence of swarm intelligence and global behavior.

MQHOA is a recent proposed quantum-behaved and
population-based metaheuristic algorithm. The algorithm uti-
lizes a population of particles (quantum swarm) to search
for the ground energy in quantum system. The convergence
process of MQHOA in function evaluation is analogized to
the transformation process of particles from a high energy
level to the ground energy level. Although the structure of
MQHOA is concise, it is found effective and efficient to solve
unimodal and multimodal problems [15], [16]. Meanwhile,
it has been proved to be more effective and efficient when
an individual stabilization strategy is introduced to the orig-
inal MQHOA (IS-MQHOA) in the course of the function
evaluation [17]. However, sometimes the arithmetic mean
position applied to IS-MQHOA is too closed to the local
optimum that the algorithm still can not avoid premature
stagnation and time consuming. This paper proposes a new
MQHOA based on truncated mean stabilization policy and
some mechanisms. Theoretical and experimental analyses of
the proposed TS-MQHOA are conducted in this paper. The
comparative results between the TS-MQHOAand some state-
of-the-art population-based algorithms reveal the competi-
tiveness and superiority of the proposed algorithm.

The remainder of this paper is organized as follows.
Section II briefly introduces the related works about the
research work with the truncated mean rule. Followed by the
introduction of the original MQHOA in brief in Section III.
The multi-scale quantum harmonic oscillator algorithm
with truncated mean stabilization strategy (TS-MQHOA) is
demonstrated in Section IV. Section V elaborates the exper-
iments and compares the computational results with several
popular population-based algorithms. Finally, the conclusion
and our future work are outlined in Section VI.

II. RELATED WORKS
The truncated mean rule is not only widely used to deal with
statistical problems [18]–[20], but also universally applied
to engineering problems, such as filter design [21], [22],
hotel reservation forecasting [23], intrusion detection system
development [24] and etc.

In [24], the truncated mean is suggested and applied to
estimate the class mean vector in the Linear Discriminant
Analysis modeling. The author designed a density estimator
based on truncated mean and found to obtain smaller mean
squared errors compared with the classical estimator when
estimating the tails of gamma and normal distributions. The
empirical results indicate the superiority of the proposed

technique based on truncated mean rule to effectively develop
an intrusion detection system based on truncated mean rule.
In [25], a newmethod based on the truncated mean of specific
energy loss is developed to apply to Cherenkov detector.
The new method was found a 26% improvement in measur-
ing muon energy. In their experiments, the author divided
the muon track into several segments with separate values.
It found that to eliminate the highest results in an overall
energy data was more closely correlated to the real muon
energy. The truncatedmeanmechanism employed in [26] was
to develop a new filter, and it was found effectively helpful to
suppress the additive and exclusive noise. The authors also
found that by trimming and truncating the samples, the new
filters were more efficient to attenuate the mixed additive and
exclusive noise. Meanwhile, they experimentally found that
the new method based on the truncated mean rule effectively
saved the computational time and theoretically lowered the
computational complexity.

In this paper, the truncated mean stabilization strategy is
utilized in the proposed TS-MQHOA to eliminate the extreme
particles which are located in local optima. Truncating the
particles with the highest and the lowest fitness can theo-
retically reduce the probability of falling into local optima,
and hence improve the search performance of the population.
Meanwhile, the expansion of the search space when the algo-
rithm stagnates for a long period is helpful to escape from
local optima, to some extent. The main contribution of this
paper can be summarized as follows.

Firstly, a new multi-scale quantum harmonic oscillator
algorithm based on truncated mean stabilization policy is
proposed for global optimization problems.

Secondly, a search space expansion mechanism is pro-
posed, and the expansion coefficient is determined according
to a large number of several empirical trials.

Thirdly, the performance of the proposed TS-MQHOA is
validated to be mostly better than the IS-MQHOA in the CEC
benchmark function evaluations.

Fourthly, the performance of the proposed TS-MQHOA
is compared to several popular population-based algo-
rithms, the comparative results demonstrate the superiority of
TS-MQHOA in most high-dimensional function evaluations.

Fifthly, the empirical results indicate the effective-
ness of truncated mean strategy on the improvement of
convergence performance in TS-MQHOA, which implies
a promising method to improve other population-based
techniques.

III. MULTI-SCALE QUANTUM HARMONIC OSCILLATOR
ALGORITHM
An optimization problem f (x) in this paper is designated as
follows.

Minimize f (x) subject to xi ∈ [xl, xu]D (1)

where f (x) is the objective function, xi is the D-dimensional
decision variable, xl and xu are the lower and upper bounds
respectively.
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In quantum space, every non-relativistic particle moves
randomly in the electric field where there are different energy
levels between high potential energy statesEi, i = 1, 2, . . . , n
and the ground state (the Zero State) E0. The higher of the
energy level, the more active and unstable of the particles.
The course of transition for particles from Ei to E0 is a con-
vergence process, which is similar to the converging process
of an algorithm in a function evaluation. The probability of
particles appears in the quantum space can be demonstrated
by the time-independent Schrödinger equation as follows
[27], [28].

Eψ(x) =

(
−
h̄2

2m
∂2

∂x2
+ V (x)

)
ψ(x) (2)

(2) is an eigenvalue equation, where E is the system energy
of stationary state ψ(x) (ψ(x) is probability amplitude) and
|ψ |2 designates the probability distribution of the particles
in the quantum space. h̄ = h/2π (h is the Planck constant),
V (x) is the potential energy and a bound in the quantum space.

Inspired by the quantum theory [29] and quantum anneal-
ing method [30], an optimization problem can be in anal-
ogy with particles from high energy states searching for the
ground state under a potential well V (x). Accordingly, (2) can
be rewritten as the following form:

Eψ(x) =

(
−
h̄2

2m
∂2

∂x2
+ f (x)

)
ψ(x) (3)

where the V (x) in (2) is replaced by f (x) in (3). As |ψn(x)|2

implies particle distribution probability in the nth energy
level in the quantum space [27], we employ it in the global
numerical optimization, where the objective is transformed
into searching for the minimum of an objective function f (x).

According to the Taylor’s expansion, an objective func-
tion f (x) and the potential well V (x) can be written in the
following way.

f (x) = f (x0)+ f ′(x0)(x − x0)+
1
2
f ′′(x0)(x − x0)2 + . . .

(4)

where f (x0) is a constant.
We substitute (4) into (3) and obtain the wavefunctionψ(x)

as the form [28]:

ψn(x) =

√
1

2nn!
(
mω
π h̄

)
1
4 · exp(−

mωx2

2h̄
) · Hn(

√
mω
h̄
x) (5)

where n represents the nth energy level, other parameters
have the same meanings as described in above-mentioned
equations. Accordingly, the distributional probability density
of wavefunction can be rewritten as:

|ψn(x)|2 =
1

2nn!
(
mω
π h̄

)
1
2 · exp(−

mωx2

h̄
) · |Hn(

√
mω
h̄
x)|2 (6)

when n→ 0, (6) is equal to :

|ψ0|
2
= (

mω
π h̄

)
1
2 · exp(−

mωx2

h̄
) (7)

where (7) is a form of Gaussian equation:

ψ(x) =
1

√
2πσ

exp(−
(x − µ)2

2σ 2 ) (8)

Accordingly, (5) can be rewritten as follow:

ψn(x) =
n∑
i=1

ψ(i) =
n∑
i=1

1
√
2πσ

exp(−
(x − µi)2

2σ 2 ) (9)

where µ is the average of the optimal solutions, σ is the stan-
dard deviation of the current optimal solutions. The smaller
of the σ , the narrower of the search space.
It can be seen in (6) and (7), from high energy levels

to the ground state, the wavefunction of quantum harmonic
oscillator changes from an intertwined n Gaussian functions
in (6) to an overlapped Gaussian function in (7).

The structure of MQHOA is concise, including quantum
harmonic oscillator process (QHO process) and multi-scale
process (M process). In QHO process, particles explore new
neighbor fields to exploit better optimal solutions. While
in M process, the search domain is narrowed by half. The
framework of MQHOA is depicted in Fig. 1 [15].

FIGURE 1. The framework of MQHOA.

Wavefunction plays an important role in quantum-behaved
algorithms. In QPSO, the ground state wavefunction δ poten-
tial well works as a sampling probability density function
[6], [31].While inMQHOA,wavefunction of harmonic oscil-
lator potential is employed as a sampling probability density
function. Wavefunction reflects the convergence process of
the proposed algorithm. For simple object functions, few
iterations are needed for particles to escape from high energy
levels to the ground state. While for sophisticated functions,
a large number of running cycles will be required.
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IV. MQHOA WITH TRUNCATED MEAN STABILIZATION
STRATEGY
In this section, an improved MQHOA with truncated mean
stabilization strategy (TS-MQHOA) is proposed.

A. TRUNCATED MEAN STABILIZATION STRATEGY
Truncated mean or trimmed mean is a statistical measure of
central tendency. It calculates the average after discarding the
given parts at the high and low ends, typically removing an
equal amount of both. The number of points to be removed
is usually a percentage or a fixed number of points. It is
proved that the median is mostly robust, and high efficiency
for mixed distributions [24], [26]. For most statistical applica-
tions, 5 to 25 percent of the ends are discarded. In this paper,
we discard the highest and the lowest points from the parti-
cles, that is 10% of the total number (20) of the population.
The truncated stabilization strategy in TS-MQHOA can be
depicted as in Fig. 2.

FIGURE 2. The truncated mean stabilization strategy to generate a new
population.

In Fig .2, the truncated mean is generated by eliminating
the particles whose fitness values are sorted in ascending
order, from the lowest to the highest. The average of the
remaining position is applied to replace the particle who
obtains the largest fitness value (the worst particle).

B. SEARCH SPACE EXPANSION MECHANISM
If there aremany local optima in the search space, it is easy for
the particles to stagnate and fall in local optima. To overcome
this problem, we introduce a search space expansion mech-
anism. When the algorithm stagnates for a large number of
iteration cycles, it implies the particles are falling into local
optima. In this case, the search space expansionmechanism is
activated, the current search space is enlarged to help the par-
ticles to escape from local optima. The expansion coefficient
is defined by evaluating a number of benchmark functions.
The definition of expansion coefficient is demonstrated in
Section V-B2.

C. PSEUDO CODE OF TS-MQHOA
The pseudo code of the proposed TS-MQHOA can be demon-
strated as follows.

In Algorithm 1, the parameters k , X ∈ [dmin, dmax]D, ε,
λ and c denote the particle number, the location of particles
within the search space [dmin, dmax], the computational accu-
racy, the scale contraction coefficient and the scale expansion

Algorithm 1 TS-MQHOA Pseudocode

Input: k , X ∈ [dmin, dmax]D, ε, λ, c
Output: the global optimum fbest , the optimal position

Xbest
initialization;
evaluate test function and obtain fitness value fi = f (Xi)
and the current minimum fbest = min(F)
while ( σs > ε) do

while (σk > σs) do
∀Xi ∈ X , generate X ′i ∼ N (Xi, σ 2

s )
∀Xi and X ′i , if f (X

′
i ) < f (Xi) then Xi = X ′i

update X by Xw = Xtm
update σk ;
if σk < σs then

finish the iteration cycle
else

σk = cσk
end

end
σs = σs/λ

end

factor, respectively. σs and σk are the current search scale
and the standard deviation independently. σs is obtained by
|du − dl |/λ (du and dl are the current upper bound and lower
bound). Xw and Xtm represent the worst particle (particle
obtains the largest fitness value) and the new position gen-
erated by truncated mean stabilization strategy, respectively.

V. EMPIRICAL RESULTS AND DISCUSSION
In this section, the effectiveness and efficiency of the
proposed algorithm are fully researched by evaluating
well-defined multi-dimensional CEC benchmark func-
tions. Meanwhile, the proposed TS-MQHOA is compared
with several state-of-the-art algorithms inspired by swarm
intelligence.

A. BENCHMARK FUNCTIONS
To reveal the performance of the proposed algorithm, sev-
eral multi-dimensional benchmark functions are employed
for evaluations from different aspects. In Table 1, f1 − f7
are unimodal functions and f8 − f12 are multimodal
functions [32], [33].

B. PARAMETER SETTING
1) COMMON PARAMETER
The parameters of the comparative algorithms applied in
this paper are from the specialized literatures. For all of the
population-based algorithms, the group number or the popu-
lation size is defined k = 20. The maximum iteration cycle is
set according to the rule used in CEC2017 [34], the maximal
iteration generation is definedmaxFE = 10000∗Dimension,
e.g., if the function dimension is 10, the maximal iteration is
100000. The search space [dmin, dmax]D for each benchmark
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TABLE 1. Benchmark functions.

function is set according to Table 1. For SPSO [35], [36],
the learning factor c1 and c2 are both 1.4962, the inertia
weight declines linearly from 0.9 to 0.4. For SPSO2011 [3]
the inertia weight ω = 1/2log(2), learning factor c1 = c2 =
0.5 + log(2). The parameters used in CLPSO [5] are inertia
weight linearly declines from 0.9 to 0.2, accelerate constant
c1 = c2 = 1.49445. For QPSO [6], [7], the contraction-
expansion coefficient α increases linearly from 0 to 0.5. For
DE [37], [38], the crossover probability pc = 0.2, the lower
and upper bound scaling factors are 0.2 and 0.8 respectively.
For ABC [8], [9], the size of the food sources is set half of
the colony. The limit trial number is 100, The probability to
choose a food source is defined as:

Prob = 0.9 ∗ Fitness./max(Fitness)+ 0.1 (10)

where Fitness is a vector holding fitness (quality) values asso-
ciated with food sources. For IS-MQHOA and TS-MQHOA,
the contraction coefficient λ = 2.0.
Meanwhile, the stopping criteria for all of the algorithms

are uniformly defined as: the computational accuracy is less
than 1e-6 or the maximal running generation is larger than
10000*D. All of the comparative methods are coded in
Matlab R2016a and executed on the same personal com-
puter with an Intel core(TM) i5-4200U 64 bit, 2.3 GHz and
windows 7 operation system.

2) EXPANSION COEFFICIENT
As TS-MQHOA stagnates sometimes when there are several
local optima, it takes a long period for particles to jump
out or even get stuck in local optima. To solve this problem,
we introduce an expansion coefficient to change the current
search space and help the population to jump out the local
optima. To maintain the current search region within the
defined domain, the coefficient can be considered within the
range 0.8-2.0. The experiments are carried out by evaluating
functions with different coefficients to reveal which coeffi-
cient is preferred.

As demonstrated in Fig. 3, the different expansion coef-
ficients affect the performances of the algorithm. For
f1, f2, f3, f5, f8, f9, f11 and f12 the algorithm with the coeffi-
cient c = 1.2 performs better than others. While for function
f4 and f10, the performance of the algorithm is improved
as the decreasing of the coefficient, but the improvement
is not significant. Without loss of generality, we define the
coefficient c as the Expansion Coefficient and c = 1.2.

C. EFFECTIVENESS EVALUATION
In this section, the effectiveness of the proposed algo-
rithm is evaluated by applying it to deal with several well-
defined and multi-dimensional benchmark functions. Then,
the performances of the proposed method is compared
with several population-based algorithm inspired by swarm
intelligence.

1) SUCCESS PROPORTION
In order to reveal the effectiveness of the proposed algorithm,
we carried out a large number of function evaluations from
4 to 100 dimensions. We counted the successful number if
any algorithm found the global optimum (the fitness value
satisfied the computational accuracy). To reduce the measure
error, each benchmark function was evaluated for 50 indepen-
dent trials. The computational results are recorded in Table 2.

Table 2 demonstrates the successful proportion every algo-
rithm obtains in 4, 10, 30, 50 and 100 dimensional function
evaluations, each function was run 50 times independently.
The statistic results show that within the 60 function eval-
uations (12 functions × 5 dimensions), the ABC algorithm
obtains 52, the largest number of 100% (finding the global
optimal every time in the 50 independent trials for each
function.). TS-MQHOA obtains 49 times of 100%, just
ranks behind the best performer ABC, and DE algorithm
gains 46 times of 100% followed by TS-MQHOA. While
SPSO2011, IS-MQHOA, QPSO, CLPSO and SPSO find 36,
34, 31, 13 and 5 times of 100%, respectively.
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FIGURE 3. Function evaluation with different coefficients. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f) f6. (g) f7. (h) f8. (i) f9. (j) f10. (k) f11. (l) f12.

For unimodal functions (f1 − f7), most algorithms per-
form excellent when the function dimension is not more
than 30. However, when the dimension increases to 50 and
above, most of the algorithms cannot find the global optima
with 100% successful proportion in the 50 individual trials.

For instance, in the evaluation of 100-dimensional func-
tion f5 and f6, only ABC algorithm and TS-MQHOA are
able to find the global optima every time, while the other
algorithms are not able to find one global minimal in the
50 independent experiments. Meanwhile, in the evaluation
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TABLE 2. The success proportion of finding the global optima in 50 independent trials.
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of 100-dimensional function f6, only TS-MQHOA is able
to obtain the global minimal with 100% successful pro-
portion. Statistically, in the unimodal function evaluations,
TS-MQHOA performs the best, finding every global optimal
solution with 100% success proportion in the 50 independent
trials. The performance of ABC is closed to TS-MQHOA,
obtaining 31 times of 100%, following by DE, obtaining 28.
SPSO2011 and IS-MQHOA perform similarly in the evalu-
ations of function (f1 − f7), both gaining 26 times of 100%.
QPSO, CLPSO and SPSO find 22, 11 and 4 global optima,
individually.

In the evaluation of multimodal functions f8-f12, the ABC
algorithm performs the best, obtaining 21 times of 100% in
the 25 function evaluations (5 functions× 5 dimensions), fol-
lowing by DE and TS-MQHOA, which gain 18 and 14 times
of 100% respectively. The rest of the algorithms are able to
find 10, 9, 8, 2 and 1 times of 100% for SPSO2011, QPSO,
IS-MQHOA, CLPSO and SPSO separately.

Similar to the performances of function evaluation in the
function f1 − f7, most algorithms perform well in the evalu-
ation of 4-dimensional, 10-dimensional and 30-dimensional
function f8, f10 and f11. While in the comparison of 30 and
50 dimensional function f8 evaluations, the successful pro-
portion obtained by QPSO, SPSO2011 and IS-MQHOA drop
from 100% to 0, 96% to 38% and 92% to 30% respectively.
While in the 100-dimensional function evaluations, only
TS-MQHOA, ABC and DE are able to find the global opti-
mal with 100% successful proportion in the 50 independent
trials. Interestingly, in the evaluation of multi-dimensional
function f9 and f12, most algorithms perform weaker in the
4-dimensional function evaluations, comparing with higher
dimensional function evaluations. For example, in the eval-
uation of function f9, only ABC, DE and TS-MQHOA are
able to find the global minimal in the 4-dimensional function
evaluations with 100%, 84% and 16% successful proportion,
respectively. While in the evaluation of 100-dimensional
function f9, more algorithms are able to find the global
optimal solutions, e.g., the successful proportion increase
from 0 to 82% for both of SPSO2011 and IS-MQHOA. DE
and TS-MQHOA find the global minimal with higher suc-
cessful rate, increasing from 84% and 16% to 100% and 88%,
respectively. In the evaluation of 4-dimensional function f12,
all of the algorithms are not able to find the global minimum
with 100% successful proportion, except for TS-MQHOA.
While in the 30-dimensional function evaluations, all of the
algorithms find the global optimal solution with full success.
It should be noticed that, in the evaluation of 4-dimensional
function f12, only TS-MQHOA is able to find the global
optimal with 100% successful proportion.

2) DISTRIBUTION OF GLOBAL OPTIMA
In Table 2, though the algorithms find the global optima with
the same success proportion, the distribution of the global
optima may differ from each other. In fact, the distribution
of the global optima found by an algorithm in 50 indepen-
dent trials reflects the robustness of the algorithm. The less

vibration of the results, the more robust of the algorithm.
To reveal the distribution of the optimal solutions, we put
the data into boxplot, which are exhibited in Fig. 4. As the
algorithms obtain the most times of finding the global optima
with 100% proportion, we carried out the experiments on the
10-dimensional function evaluations.

As demonstrated in Fig. 4, for most of the algorithms,
their global optima vibrate mildly at the center of the boxes,
such as the boxes in Fig. 4(a), (b), (c), (d), (h), (j) and (k),
for these functions, the algorithms perform excellently with
slight vibrations except for SPSO. It has sharp vibrations in all
of the functions, which is in accord with its disability to find
the global optimum with 100% proportion in any function
evaluation in Table 2. Meanwhile, for algorithms which are
not able to find the global optima, their performances may
vary a lot. As demonstrated in Fig.4(i), although none of
the algorithms (except for DE) find the global optimum in
the 10-dimensional function f9 evaluation, their boxes of
best fitness values are different from each other. The vibra-
tion of TS-MQHOA in Fig.4(i) is milder than SPSO2011,
CLPSO, QPSO, ABC and IS-MQHOA, which is in line with
the second best algorithm in Table 2, obtaining 94% success-
ful proportion.

D. EFFICIENCY EVALUATION
Although the referred algorithms may obtain the same suc-
cess proportion in Section V-C, they may differ from the
computational precision, the iteration cycle and the total
run time during the convergence process. In this section,
evaluations among the referred techniques are conducted
on the computational accuracy of fitness values, the total
iteration cycles, the run time in the course of convergence and
the fitness-iteration relations during the convergence process.

1) COMPUTATIONAL PRECISION
Although the results obtained in Section V-C reflect the per-
formances of an algorithm by the success proportions they
obtain, we cannot distinguish their performance if they get
the same proportion. In order to further reveal the search
ability of the referred algorithms, we list and make compar-
isons of the computational results by the best fitness, mean
fitness, averaged standard deviation of the fitness values,
the iteration cycles and total run time they obtain in 100-
dimensional function evaluations. The results are the average
from the 50 independent experiments which are demonstrated
in Table 3.

Table 3 illustrates the detailed performances of the
algorithms on the best fitness value, the average value,
the standard deviation of the fitness values obtained by the
population, the total iteration cycle and the CPU run time in
function evaluations. The best fitness value is obtained by
the smallest fitness value when the program finish its run,
the mean value and the standard deviation are denoted as the
average values and the standard deviation of the fitness values
obtained by the population when the program ends running.
The iterNum and time are defined by the iteration cycles and
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FIGURE 4. Box plot of the best fitness value from 50 independent trials. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f) f6. (g) f7. (h) f8. (i) f9. (j) f10. (k) f11. (l) f12.

CPU run time from starts to finish running of the program
(satisfying the stopping criteria, that is when the iteration
cycle reaches to maxFE or the computational precision meets
the given error).

As the bold data shown, TS-MQHOA finds all of the
global optima within the given computational precision,

except for f11. Meanwhile, in most cases, TS-MQHOA
obtains the smallest value in the comparisons of the mean
value (average fitness), requiring the least iteration cycles and
CPU run time. Moreover, in evaluation of function f2, f6, f7
and f8, TS-MQHOA is several order of magnitude better than
IS-MQHOA and some algorithms on the best fitness value,
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TABLE 3. Detailed computational results obtained by SPSO, SPSO2011, CLPSO, QPSO, ABC, DE, IS-MQHOA and TS-MQHOA. The records are the average
from 50 independent trials.
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iteration cycle and CPU run time. It should be noticed that
in the evaluation of function f6, TS-MQHOA is the only one
which is able to obtain the global optimum satisfying the
computational accuracy.

2) FITNESS-ITERATION
The success proportion in Table 2, the distribution of the
global optima in Fig. 4, the best fitness value, the mean best
fitness, the standard deviation, the iteration cycle and the run
time in Table 3 reflect specific convergence properties of the
referred algorithms to some extent. The smaller of the values
in Table 3, the more superior of the algorithm. However,
these values are not convincing enough to fully reflect the
performance of an algorithm. There is a possibility that an
algorithm may require a large number of iteration cycles to
converge but cost less CPU run time. Another case is that it is
impossible to know how do the algorithms perform in detail
in the course of function evaluations. The fitness-iteration
chart overcomes these disadvantages and helps to objectively
demonstrate the whole process when fitness values obtained
by an algorithm in every iteration cycle. The fitness-iteration
relation also reflects the convergent efficiency of an algo-
rithm as it dynamically records the trend of convergence in
the course of function evaluation. Without loss of general-
ity, the fitness-iteration experiments were carried out on the
100-dimensional benchmark functions. The maximal itera-
tion cycle is defined by the least iteration cycles in a function
evaluation in Table 3. The fitness-iteration results of the
referred algorithms are exhibited in Fig. 5.

From an overall perspective of the subfigures in Fig. 5,
the fitness-iteration curves of TS-MQHOA are universally
bottomed much lower than other algorithms, which indicates
its more efficient convergence performance. As demonstrated
in Fig. 5(a), the curves of TS-MQHOA and IS-MQHOA
are much lower than that of other algorithms. Although
SPSO2011 does not perform better than SPSO in the first
1000 iteration cycles (the curve of SPSO is lower than
SPSO2011), it outperforms SPSO after that (SPSO converges
very slowly after 1000 iteration cycles). DE andABCperform
similarly, though converge slower than the TS-MQHOA,
IS-MQHOA and SPSO2011, their curves are much lower
than that of QPSO and CLPSO. Similar situation happens to
function f2 and f3, except that DE and ABC converge to the
global optimumwithin 12000 iteration cycles in Fig. 5(b) and
they converge closely to the global optima within 14000 iter-
ations in Fig. 5(c).

In Fig. 5(d), DE and ABC perform much better than
the other methodologies, they find the global optima within
about 20000 iteration cycles. Following by TS-MQHOA,
IS-MQHOA and SPSO2011, their fitness-iteration curves lay
lower than that of SPSO,QPSO andCLPSO. In the evaluation
of function f5 (Fig. 5(e)), the superiority of TS-MQHOA is
obvious, it converges to the global optimum within 100 iter-
ations, while the other methods do not find the global best
solutions within 500 iteration cycles. The chart of SPSO
is much lower than that of CLPSO, ABC, QPSO and DE

in Fig. 5(e). The partially enlarged figure in Fig. 5(f) demon-
strates that TS-MQHOA is much more efficient to converge
to the global optimum within 5000 iteration cycles, while
the other algorithms are not able to find the global optimum
within 30000 iterations.

Although the curves in Fig. 5(g) are decreasing quickly in
the 30000 iterations, they perform differently. As shown in
the enlarged part, the chart of TS-MQHOA lays the lowest,
which indicates much more efficient than the other algo-
rithms referred. The fitness-iteration chart of TS-MQHOA
in Fig. 5(h) indicates the significant performance of the
algorithm to find the global optimal solution within 6000 iter-
ations, while the other methods cannot find the best solu-
tion within 15000 iteration cycles. Similar to Fig. 5(a)-(c),
in Fig. 5(i), the curve of TS-MQHOA keeps excellent from
beginning until meet the stopping criteria, converging to the
global minimum within 6000 iteration cycles. In Fig. 5(j),
TS-MQHOA, IS-MQHOA, SPSO2011, ABC andDE quickly
converge to the global optimum at around 15000 iterations,
while SPSO, CLPSO and QPSO converge much slower.

Similar to Fig. 5(j), in Fig. 5(k), TS-MQHOA and ABC
perform significantly better than other algorithms. Especially
for TS-MQHOA, the fitness value declines from 1800 to 20
within 20000 iteration cycles, while most of the algorithms
are unable to find the global optimum before satisfying
the stopping criteria. ABC converges quickly to the global
minimum within around 40000 iterations. The performances
on the evaluation of function f12 is similar to Fig. 5(a)-(c),
the chart of TS-MQHOA lays the lowest which indicates the
superiority of it. SPSO converges faster than SPSO2011 at the
first 1500 iterations, it stops to convergence after that. Though
the fitness-iteration of DE and ABC converge slowly, they
find the global optimum within 9000 iterations, but QPSO
and CLPSO are not able to find the global optimal solutions.

E. BRIEF DISCUSSION
Theoretically, the truncated mean strategy removes the
extreme particles, which helps to prevent trapping into local
optima and improve the diversity of the particles [39]. Exper-
imentally, from an overall perspective of the experimental
results in SectionV, TS-MQHOAoutperforms the techniques
referred from several aspects as follows: 1) it gains the high-
frequency of finding the global optima in Table 2 and; 2) it
has the least vibration of fitness value for 50 independent
trials (Fig. 4) and; 3) it achieves high computational accuracy
with less iteration cycles and CPU run time in Table 3 and;
4) it obtains the lowest fitness-iteration curves in Fig. 5. The
superiority of TS-MQHOA is significant in high-dimensional
function evaluations. The good performance of TS-MQHOA
can be due to the reasons as follows.

Firstly, the mechanism multi-scale variation of search
space (multi-scale quantum harmonic oscillator process in
MQHOA) ensures the computational precision of the fitness
value when the stopping criterion is satisfied. While the
techniques based on particle swarm optimization are stopped
by the maximum generation, which may lead to premature
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FIGURE 5. The fitness-iteration comparison for 100-dimensional function evaluations. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f) f6. (g) f7. (h) f8. (i) f9.
(j) f10. (k) f11. (l) f12.

convergence, and hence the computational accuracy of SPSO,
SPSO2011, CLPSO, QPSO and DE is frequently not as good
as the proposed algorithm.

Secondly, to some extent, the truncated mean stabilization
policy helps to keep away from some local optima. As local

optima are frequently at the two ends of a sorted population,
the truncated mean stabilization mechanism in TS-MQHOA
generates a new particle without considering information
from some local optima. The worst particles are continuously
replaced by the truncated mean position (a new position
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without containing information from some local optima) and
hence the diversification of particles is reinforced. Mean-
while, the differential evolution mechanism which helps to
share information of the leader particle is beneficial to fast
iteration and convergence.

For DE algorithm, it generates new candidate solutions by
utilizing a differential mechanism: Y = Xa + F(Xb − Xc),
where Y = y1, y2, . . . , yn is the new candidate solutions, n
is the dimension size, Xa,Xb and Xc are three candidate solu-
tions randomly selected from the population. As the crossover
and mutation mechanisms diversifying the population in DE,
it converges more efficiently than SPSO, SPSO2011, CLPSO
and QPSO in Fig. 5. Similarly, in artificial bee colony algo-
rithm, the algorithm generates a new onlooker bee Vik by the
mechanism as follows.

Vik = Xik + φik (Xik − Xjk ) ∗ (rand − 0.5) ∗ 2 (11)

where Xik = xi,1, xi,2, . . . , xi,n is the old onlooker bee, n is
the dimension size, φik is a random number from (0, 1), Xj is
a candidate solution randomly selected from a neighbor of
the onlooker bee. As both of the φ and the Xj are randomly
generated or selected, the diversification of the population is
reinforced.Meanwhile, themessage come from the neighbors
help to fast converge in function evaluations.

And thirdly, the mechanism of expanding the current
search space when the algorithm stagnates for a long period
helps the proposed algorithm to jump out from local optima.
For different nature of optimization problems, the expansion
coefficient should be decided by experimental trials.

VI. CONCLUSION
This paper proposes a new multi-scale quantum harmonic
oscillator algorithm with truncated mean stabilization strat-
egy (TS-MQHOA) to improve the convergence performance
and diversify the population. The proposed approach is the-
oretically and experimentally analyzed to be more efficient
to search for the global optima in function evaluations com-
pared with the IS-MQHOA. Simulations on difficult multi-
dimensional problems reveal the superiority of the proposed
algorithm. The computational results are compared with
several well-known heuristic algorithms such as the standard
PSO, SPSO2011, CLPSO, QPSO, ABC and DE. The experi-
mental results reveal the competitiveness or superiority of the
proposed algorithm. Meanwhile, the performances improved
by the truncated mean stabilization strategy indicate the
positive impacts of it on improving the convergence perfor-
mance of the proposed algorithm. Moreover, the universal
improvements of the performance in TS-MQHOA imply a
promising mechanism which can be easily implemented in
other heuristic techniques based on swarm intelligence.

In the near future, the truncated mean mechanism applying
to other population-based algorithms and the application of
TS-MQHOA to real-world optimization problems deserve
our researching.
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