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ABSTRACT Network function virtualization (NFV) is a promising network paradigm that enables the design
and implementation of novel network services with lower cost, increased agility, and faster time-to-value.
However, network anomalies caused by software malfunction, hardware failure, mis-configuration, or cyber
attacks can greatly degrade the performance of NFV networks. A few matrix decomposition-based methods
have shown their effectiveness in finding the existence of network-wide anomalies. However, a little attention
has been paid to multiple anomalies detection and anomaly devices localization. To bridge this gap, in this
paper, we propose a matrix differential decomposition (MDD)-based anomaly detection and localization
algorithm for NFV networks. First, an NFV network prototype is built to investigate the property of NFV
networks, and the effectiveness of traditional anomaly detection methods is evaluated. Second, we detail
the MDD-based Anomaly DEtection and Localization (MADEL) algorithm. Finally, a series of experiments
are conducted on three different NFV networks to evaluate the performance of the proposed algorithm.
Experimental results show that the MADEL algorithm could effectively detect and localize different types
of network anomalies.

INDEX TERMS Network function virtualization, anomaly detection, localization, matrix differential
decomposition.

I. INTRODUCTION
Through decoupling network functions from the physical
devices on which they run, Network Function Virtualization
(NFV) could greatly facilitate agile network design and
deployment with low cost [1]–[4]. However, network anoma-
lies, which are defined as the exceptional patterns in net-
work traffic deviating from the normal profile of the network
dynamics, facing the Internet also pose great challenges to
NFV networks [5]–[9]. Furthermore, softwarization makes
NFV networks vulnerable to various cyber attacks. In the
event of an anomaly, a NFV network may have many adverse
effects, such as the decline in quality of Service (QoS),
the deterioration of user experience, and even communication
disruption, resulting in huge economic losses and adverse
social effects. Most of the network anomalies caused by
software malfunction, hardware failure, mis-configuration,
or cyber-attacks, are accompanied by unusual or significant
growth of the network traffic, which leads to network conges-
tion, increased Round Trip Time (RTT), and enlarged packet

loss rate. Therefore, accurate detection and localization of
network anomalies are critical for ensuring the stable and
efficient operation of NFV networks.

Network anomaly detection (NAD) has been a long-
lasting challenge due to many reasons. First, the intrinsic
dynamic nature of network traffic makes it hard to distinguish
between abnormal and normal behaviors [10], [11]. Second,
observing or measuring the features, such as traffic matrix,
for NAD accurately is a difficult and resource-intensive
task. Third, the normal profile of the network is constantly
changing. In recent years, different NAD schemes have been
put forward for the Internet, such as statistical-based NAD,
classification-based NAD, clustering and outlier-based NAD,
soft computing-based NAD, and knowledge-based NAD etc.
In contrast, in NFV networks, NAD is still in its infancy.
Compared with single device or link monitoring-based
anomaly detection methods, matrix or network area-based
detection algorithms are more favorable to the maintainers
of NFV networks since they can better capture the abnormal

29320
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2672-4587
https://orcid.org/0000-0002-6181-4441


J. Chen et al.: Matrix Differential Decomposition-Based Anomaly Detection and Localization in NFV Networks

behavior of the network as a whole. However, traditional
matrix-based anomaly detection methods, such as Principal
Components Analysis (PCA) [12]–[15] cannot be used to
determine the number of anomalies and localize the anomaly
devices although they are good at finding out single point
anomalies.

To solve these problems, this paper presents a NAD
method, which can simultaneously detecting and locating
multiple anomalies in a NFV network based on the round-trip
delay (RTT) matrix measured between multiple advantage
points in the network. First of all, a NFV network proto-
type is established to present our data collecting process and
the performance of existing PCA-based NAD algorithm is
investigated based on collected data. Secondly, we introduce
a matrix differential decomposition (MDD)-based Anomaly
DEtection and Localization (MADEL) algorithm for NFV
networks. Thirdly, a series of experiments are conducted
on three different types of NFV networks to evaluate the
performance of the proposed algorithm. Experimental results
have shown that MADEL algorithm could effectively detect
and localize different types of network anomalies.

Our contributions in this paper include: first, three differ-
ent types of NFV prototype networks are constructed, and
the low rank property of RTT matrix is validated; second,
a matrix differential decomposition based anomaly detection
and localization algorithm is put forward, which can find out
the existence and locations of multiple network anomalies ;
third, a series of experiments are conducted on three NFV
prototypes with diverse parameter settings to evaluate the
performance of the proposed MADEL algorithm, and exper-
imental results validate its accuracy and efficiency.

The rest of the paper is organized as follows: Section II
summarizes the relevant work; Section III presents the con-
struction of our NFV network prototype, and investigates the
performance of PCA-based NAD algorithm based on col-
lected RTT matrix; Section IV details the design of MADEL
algorithm; SectionV introduces the experimental settings and
results; Section VI gives a brief conclusion.

II. RELATED WORK
In recent years, many new and different trends in networks
have been promoted, among which NFV has attracted signif-
icant attention from both industry and academia [16], [17].
However, NFV is still a developing technology, facing many
challenges and issues in practical applications. Despite a large
amount of researches on anomaly detection in traditional
networks, anomaly detection and localization in NFV envi-
ronment remain a challenge.

In traditional networks, there are many methods on
anomaly detection. Barford et al. have proposed a perfor-
mance anomaly detection and localization algorithm using
active measurement, and sent probes to all links in the net-
work in a certain period of time [12]. Wang et al. [18]
have presented an improved classification detection algo-
rithm based on the active measurement of network perfor-
mance anomalies, which takes into account the number of the

detected links, reducing the network link load and optimizing
the process of link selection strategy to obtain the global opti-
mal. For statistics-based anomaly detection, the most classic
is to use PCA by analyzing traffic matrix. Lakhina et al. [19]
first proposed a PCA-based anomaly detection algorithm,
obtaining link flow data and separating the flow matrix space
into normal and abnormal subspace, using Q statistics to
calculate the threshold to detect network anomalies. In the
field of network-wide anomaly detection, there are also many
researches on machine learning-based detection algorithms.
Ahmed et al. [20] have introduced two machine learning
algorithms for network anomaly detection: One-Class Neigh-
bor Machine (OCNM) and the recursive Kernel-based Online
Anomaly Detection algorithms (KOAD). Liu et al. [21] have
put forward a fuzzy c-means clustering algorithm, which uses
fuzzy clustering to process data naturally, and has a better
result in the network intrusion detection. Xie et al. [22], [23]
have proposed the use of dynamically measured data to
form a conventional tensor, which takes advantage of the
user domain and the time domain factor matrix to form a
three-dimensional tensor to achieve network measurement.
However, the formation and integration of three-dimensional
tensors has high algorithm complexity and is not suitable for
network anomaly detection and localization with high real-
time performance. The round-trip delay method proposed
by Qian et al. [24] can only detect whether an anomaly
exists in the network, but it cannot handle multiple anomalies
situation.

Current anomaly localization methods can be roughly
divided into two categories: localization methods based on
end to end path probe and wavelet transform. A link weight
iterative method is proposed by Barford et al. [12], and a
node marking method is introduced by Xia et al. [25]. On the
other hand, Barford et al. [26] have adopted discrete wavelet
localization, and a diffusion wavelet-based localization is
presented by Tian et al. [27].Most of the localizationmethods
based on end to end path probe are used to localize link
anomalies, are effective for centralized network architecture,
require high real-time performance of the network, have
large detection frequency and large extra link load. However,
the network traffic statistics method based on wavelet trans-
form requires a large amount of traffic data set, which is not
suitable for real-time anomalies detection.

In contrast, anomaly detection in NFV networks has
attracted limited attention so far. Pavlidis et al. [28] have
proposed a management-plane monitoring and anomaly
detection services in a monitoring architecture. These ser-
vices applied within customized analytics module learning
mechanisms based on average entropy values from normal
traces, alerting if entropy values deviate from established
references threshold. Without the need of any metric thresh-
olds, Kourtis et al. [29] has proposed an automatic identi-
fication of an anomaly in an NFV service, as a significant
deviation from its normal operation. Blaise et al. [30] have
introduced a VNF service chain anomalies detection method
based on the Markov chain to identify the correctness of the
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FIGURE 1. The topology of the constructed NFV network prototype (left), and the RTT matrix obtained at the end of the 16th

timeslot (right).

service chaining request by observe whether exists abnormal
behavior. Sampaio et al. [31] have presented reinforcement
learning to promote resilience in SDN and NFV, whose
policies for dealing with anomalies are defined based on
rewards for each action.

Compared with the above research, this paper extends the
network anomaly to include network performance anomalies
based on RTT matrix in the NFV networks. Moreover, our
algorithm can determine the number and location of anoma-
lies and localize the devices that generate anomaly traffic.

III. PROTOTYPE CONSTRUCTION AND PROBLEM
STATEMENT
A. PROTOTYPE CONSTRUCTION AND RTT MATRIX
MEASUREMENT
To investigate the effectiveness of the PCA-based NAD
algorithm and state the problem to be solved in this paper,
we build a NFV network prototype based on Linux Container
(LXC), and its topology is generated using BRITE [32] as
shown in Fig.1. 15 routers following a power law distribu-
tion are included, in which three of them (R1, R2, and R3)
are Autonomous System (AS) border routers and the other
12 nodes (n1-n12) are internal routers. The bandwidth of each
link is set to be 10Mbps, and Open Shortest Path First (OSPF)
is adopted as the routing algorithm. We inject a Poisson
flow into this network every 5 seconds as the background
flow, and each flow is composed of UDP packets with an
intensity of 1 Mbps. To facilitate RTT measurement and
collection, three RTT measurement virtual network function
(VNF) programs AM1, AM2, and AM3 are deployed at R1,
R2, and R3 respectively.
The operating period is divided into separated timeslots.

In each timeslot, each VNF program (i.e.AM1,AM2, orAM3)
measures the RTT values between itself and the other two pro-
grams deployed at other border routers. Generally speaking,
for a NFV network with n border routers ports, the measured

RTT values in each period are arranged into a 1×P vector,
where P = n×(n−1) is the number of RTT values between all
border routers in each timeslot. All the RTT values obtained
in T timeslots constitute a RTT matrix AT×P. The i-th row
represents all RTT values measured in the i-th timeslot, and
the j-th column represents the RTT time series measured
between the j-th border routers pairs. For the constructed
prototype with 3 border routers, 6 RTT values can be obtained
at each timeslot. For instance, a 16×6 RTT matrix A16×6 can
be obtained at the end of the 16th timeslot (as shown in the
right hand of Fig. 1). In A16×6, an element At

ij represents the
RTT from the i-th border router to the j-th border router at
the t-th timeslot.

B. RTT MATRIX ANALYSIS
RTT matrix describes the performance of the NFV network
in both spatial and temporal dimensions, and the method
of measuring the RTT value is easy to deploy. Moreover,
the RTT matrix expresses the performance of the NFV net-
work in a unified way, shielding the topology and technical
complexity of the network. Furthermore, it has been validated
that RTT matrix is sensitive to network performance changes
and is suitable for reflecting the anomalies caused by network
attacks or network congestion. PCA-based NAD algorithm is
one of the typical methods that can detect network anomalies
based on the RTT matrix [19].

The effectiveness of PCA-based NAD algorithm relies on
the fact that the RTT matrix is a low rank matrix, which is
caused by the similarity in the RTT matrix. To be specific,
for a border router, the RTT data measured in adjacent times-
lots has temporal dependence, which leads to the correla-
tion or similarity between the rows in the RTT matrix. On the
other hand, the measurement flows from border routers in
the same timeslots may cross common links or devices in the
NFV network, which leads to spatial correlation or similarity
between columns in the RTT matrix. If there are a large
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number of related vectors in the RTT matrix, it will be a low
rank matrix [33].

Singular value decomposition (SVD) method can be
adopted to verify whether a RTT matrix has the low rank
property. First, AT×P is decomposed as: A=U

∑
VT. Here,

U is a T×T unitarymatrix,
∑

is a semi-definite T×P diagonal
matrix, and the i-th diagonal element λi, 1 ≤ i ≤ T is the
singular value of matrix A. V is a P×P unitary matrix, VT is
an order conjugate transposed matrix of V. Let the rank of A
be rank(A). It can be known that rank (A) = r � min{N ,T }.
If the sum of the variance contributions of the first k (k < r)
singular values is approximately equivalent to the sum of
the variance contribution rates of all singular values, we say
matrix A is a low rank matrix.
To validate the low rank property of the RTT matrix,

we conduct experiments on the constructed NFV network
prototype through injecting two anomalous flows targeted
at R3, whose flow rate is about 50Mbps and is much higher
than background flows, into R1. To be specific, from the first
timeslot to the 30th timeslot, no anomalous flow is injected;
from the 31th timeslot to the 80th timeslot, the first anomalous
flow is continuously injected; from the 61th timeslot to the
80th timeslot, the second anomalous flow is continuously
injected. Based on these settings, three datasets are collected.
Dataset1 is the RTT matrix collected between the first times-
lot and the 20th timeslot, i.e. no anomalous flows exist in
Dataset1. Dataset2 is the RTT matrix collected between the
30th and the 50th timeslot, i.e. one anomaly is in Dataset2.
Dataset3 is the RTT matrix collected between the 60th and
the 80th timeslots, and it contains two anomalies.
Then, we calculate the ratio of the cumulative variance

contribution rate of the first k singular values for the three

Datasets, which is defined as: P (k) =

k∑
i=1
λ2i

r∑
i=1
λ2i

, 0 ≤ rank (A) =

r ≤ P. The results are shown in Fig. 2. We can see that the
cumulative variance contribution rate of first three singular
values in this three datasets all exceed the 95% threshold,
which means its first k = 3 singular values can capture most
characteristics of the network. In other words, the RTTmatrix
has a low rank characteristic regardless of whether there is an
anomaly in the matrix.

FIGURE 2. The cumulative variance contribution rate of the first k
singular values for three collected datasets.

C. PCA-BASED NAD ALGORITHM AND
PROBLEM STATEMENT
To derive the principal component of A, we first calculate
the covariance matrixC=ATA and the eigenvalues as well as
eigenvectors of C. Let the i-th eigenvalue be λi, and its corre-
sponding eigenvector be vi, then ATAvi = λivi, i = 1, · · · , p.
Afterwards, the principal component selection process is to
sequentially select the corresponding orthogonal feature vec-
tors according to the descending order of the feature values,
i.e. λ1 ≥ λ2 ≥ · · · ≥ λp. Then, we can calculate the
cumulative variance contribution rate of the first k principal
component of A. The cumulative contribution rate of the first

r principal elements is denoted by αr =

r∑
i=1
λi

p∑
i=1
λi

, 0 ≤ r ≤ p.

If the cumulative variance contribution rate of the first K
principal elements exceeds a threshold c0, which is usually
set to be c0 = 85%, we can say that the first K principal
components could express themost significant characteristics
of the matrix. Finally, A will be projected to the selected K
principal components to obtain mutually orthogonal vectors
Ui =

Avi√
λi
, i = 1, · · · ,K , and a new matrix Av could be

derived. We know that Ui is the weighted sum of all column
vectors of the RTT matrix A with the weight vi, i.e. the i-
th principal component of the RTT matrix. Using the idea of
the subspace, we can divide the new space into two parts:
one is normal subspace (denoted as S), i.e., the set of the
first r ‘normal’ principal components; the other is ‘anoma-
lous’ subspace, i.e., the set of the remaining K -r abnormal
principal component (denoted as M̃ ). Then, we project the
newly acquired Av to these two subspaces. Let the projection
value of a RTT row vector x in the normal and abnormal
subspaces be x̂ and x̃ respectively, we have x = x̂ + x̃.
Arranging the set {vi}ri according to S into a matrix Pp×r in
order, then x̂ = PPT x and x̃ = (I − PPT )x.
The anomalies are judged based on a metric named Square

Prediction Error (SPE), which is defined as: SPE ≡ ||x̃||2 =
||(I − PPT )x||2 [24]. If SPE ≥ δ2α , an anomaly is raised, and
δ2α is a SPE threshold with confidence 1− α.

PCA-based NAD algorithm can be used to detect network
anomalies in the three datasets collected in Section III-B.
Fig.3 shows the detection results. In Fig. 3(a), (b), and (c),
an anomaly is declared if the SPE statistic value exceeds the
99% confidence (the red dashed line in Fig. 3). It can be seen
that, PCA-based NAD algorithm finds that there are anoma-
lies in Dataset2 and Dataset3, and no anomaly in Dataset1.
However, this method can neither determine the number
of anomalies nor localize the anomalies in Dataset2 and
Dataset 3.

IV. MATRIX DIFFERENTIAL DECOMPOSITION-BASED
ANOMALY DETECTION AND LOCALIZATION
This section firstly analyzes the problem. Then, we detail the
matrix differential decomposition-based anomaly detection
and localization algorithm.
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FIGURE 3. Detection results of PCA-based NAD algorithm on three datasets. (a) Detection results on Dataset 1. (b) Detection results on
Dataset 2. (c) Detection results on Dataset 3.

FIGURE 4. An example of the RTT matrix decomposition.

A. PROBLEM ANALYSIS
Assume that anomalies could occur at one or more locations
in the network, and cause fluctuations in the values of the
corresponding values in the RTT matrix. Moreover, it is
assumed that abnormal values caused by anomalies account
for a small proportion of matrix A. To detect anomalies,
we can decomposematrixA into twomatrices, i.e. a reference
matrix A0 and a differential matrix Ae. The RTT values in
normal condition are anticipated to be included inA0, and the
anomaly values inAe, which is expected to be a sparse matrix
since abnormal values only account for a small proportion.
Take the RTT matrix A obtained in the NFV network proto-
type constructed in Section III as an example, Fig. 4 shows the
decomposition process of matrix A, in which red rectangles
represent the values impacted by anomalies.

This decomposition problem could be formulated as:

min
A0,Ae

‖(A− Ae)− A0‖F

s.t. rank (A0) ≤ k, ‖Ae‖ ≤ E (1)

This is a constrained optimization problem, which aims
at minimize the difference between A − Ae and A0 on the
condition that A0 is a low-rank matrix, and there are at most
E non-zero values in matrix Ae. The Frobenius norm of the
matrix (‖ ‖2F ) is used to minimize the squared error constraint,
it can reduce the error caused by the L2 normal form (‖ ‖2)
when the number of anomalies is small and thus to improve
the accuracy of anomaly detection. Then, we can detect and
localize the anomalies based on matrix Ae.

B. DIFFERENTIAL DECOMPOSITION ALGORITHM
Based on the above analysis, we put forward thematrix differ-
ential decomposition (MDD)-based Anomaly DEtection and
Localization (MADEL) algorithm that contains four steps,
as shown in Algorithm 1:

(1) Differential processing. As shown in lines 1-5 in
Algorithm 1, a differential matrix Ae = A− A0 is obtained,
where A and A0 are the RTT matrix contains anomalous data
and reference RTT matrix whose data collected in a normal
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Algorithm 1 MADEL Algorithm
Input:

measured RTT matrix: A; reference RTT matrix: A0; number of border routers: N ; abnormal frequency threshold: f0
Output:

Detected Anomalies Pairs Set: APS, Localized Anomalies Set: LAS

1: Ae = A−A0 //Differential processing
2: for each Aeij in Ae //Anomalies Detection Phase
3: if (

∣∣Aeij ∣∣ > c0) then Aeij =
∣∣Aeij ∣∣, add j to β

4: else Aeij = −1
5: end
6: Ãe = Ae (α, β) ∈ RT×d //Abnormal data extraction
7: for each βi in β // Determination the number of anomalies
8: do f(Pk1,Pk2) = f(Pk2,Pk1) = f(Pk1,Pk2)+1, where Pk1 and Pk2 are the source and the destination of the βi-th column of matrix
Ãe, add (Pk1,Pk2) to P
9: if (f(Pk1,Pk2)> f 0) then add (Pk1,Pk2) to APS
10: end
11: |APS| is the number of anomalies
12: for each (Pk1,Pk2) inAPS // Anomalies localization Phase
13: IPS← Overlap IPs on the traceroute paths from Pk1 to Pk2 and from Pk2 to Pk1
14: count_times ← Sub-paths contains the source and destination whose response times remarkably exceeds the average
one-hop delay in IPS
15: Sort count_times and localize the first sub-path (x1, x2), add (x1, x2) into LAS
16: end
17: LAS is the localization results of anomalies
18: return APS and LAS

network environment respectively. For each element Aeij in
Ae, if

∣∣Aeij ∣∣ < e0 (e0 is a small constant), we assign a negative
value to it, i.e. Aeij = −1; otherwise, Aeij =

∣∣Aeij ∣∣.
(2) Abnormal data extraction. From line 3 to line 6, accord-

ing to the correlation between RTT matrix rows and the
properties of the non-negative matrix and block matrix [34],
we can know that an anomaly will affect a certain range of
device pairs. So, we can find the non-negative anomaly sub-
matrix from the differential sub-matrix Ãe = Ae (α, β) ∈
RT×d , αi = {1, · · · ,T } , βi ⊆

{
1, · · · , n2

}
, d ≤ n2, where

α is all the row label set of Ae, and β is the column label
set selected by Ae. The selection of β satisfies that at least
one element in each column is non-negative, and β reveals
correlation information for all anomalous device pairs.

(3) Determine the number of anomalies. From line 7 to
line 10, each element βi, 0 ≤ i ≤ |β|, in β contains an anoma-
lous border routers pair information, and the corresponding
device pair is added to the column label set P. The frequency
of each pair (Pk1,Pk2), 0 ≤ k ≤ |P| in the set P is counted,
and (Pk1,Pk2) = (Pk2,Pk1) . If a pair’s frequency exceeds a
predefined threshold f0, it is added to the Anomalies Pairs Set
(APS). Line 11 shows that the size of the APS is the number
of detected anomalies, and the pairs in APS are the potential
anomalous border routers andwill be called suspicious border
routers pairs.

(4) Anomaly localization. As shown in lines 12-18, each
suspicious border routers pair in the APS represents a path
with an anomaly. For each suspicious path, traceroute is

adopted to get the path information by probing back and
forth, and all the IP addresses and hop counts on the two
paths for each pair could be recorded. For instance, for a
pair of routers (Pk1,Pk2), we traceroute the paths both from
Pk1 to Pk2 and from Pk2 to Pk1 respectively. We record each
overlapped IP address (device) of these two paths in a set IPS.
Furthermore, we also record all the devices (by addresses)
whose response times remarkably exceeds the average one-
hop delay in the IPS, count and sort the occurrence times of
each sub-path accordingly (denoted as count_times), where
sub-path is the source and destination of the anomalous hop.
Then the sub-pathwith the highest count_timeswill be treated
as the anomaly localization results. i.e. the anomaly devices.

The time complexity of the MADEL algorithm is decided
by two factors, i.e. MDD decomposition and APS set cal-
culation based on frequency threshold. The complexity of
the RTT non-negative anomaly sub-matrix Ãe decomposition
is O(tn), where t is the number of measurement timeslots
and n is the number of border routers. The time complexity
of the label set based on the frequency threshold is O(n).
Therefore, the time complexity of the MADEL algorithm
is O(tn). In contrast, the complexity of the traditional PCA-
based NAD algorithm is O(tn2) [35], and the tensor-based
three-dimensional data anomaly detection and decomposition
method’s time complexity is approximated as O(kn3) (k is
a parameter) [23]. Moreover, the MADEL algorithm only
uses two-dimensional data to reflect the spatial-temporal
characteristic of the RTT values, which greatly reduces the
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FIGURE 5. An example of MADEL algorithm’s working flow.

space complexity. Furthermore, PCA-based NAD algorithm
can only detect the existence of anomalies but cannot localize
to anomaly devices.

C. AN EXAMPLE
Here, the NFV network prototype is adopted to show the
workflow of MADEL algorithm. The length of each timeslot
is set to be 8 seconds. From the beginning of the 20th timeslot,
we inject abnormal flows into the internal router n9 for one
timeslot. After 16 timeslots, a 16×6 RTTmatrixA is obtained
as shown in Fig. 5. In the step (2) shown in the right middle of
Fig. 5, the abnormal data is isolated by the differential matrix.
Thus, APS = {(R1,R3)}, and there exist |APS| = 1 anomaly
in this network, and the anomalous border routers are R1 and
R3 respectively. The traceroute results of R1 toR3 and R3
to R1 are shown in the tables in Fig. 5. Combining with
network topology and statistical analysis information, the IP
address of anomalous devices can be localized, i.e. LAS =
{(n9, n10)} in Fig. 5. This is comply with the parameter
setting. Therefore, MADEL algorithm can accurately detect
the anomaly in the experimental environment and provide the
localization information of the anomaly.

V. EXPERIMENTS AND RESULTS ANALYSIS
In order to evaluate the performance of MADEL algorithm,
a series of experiments are conducted. This section firstly

introduces the parameter settings, and then analyzes the
experimental results.

A. PERFORMANCE METRICS
To evaluate the performance of the anomaly detection and
localization method, the following metrics are adopted:

True Positive Rate (TPR): the proportion of anomalies that
are correctly diagnosed.

True Negative Rate (TNR): the proportion of non-
anomalies that are correctly diagnosed.

False Negative Rate (FNR): the proportion of anomalies
that are not identified.

False Positive Rate (FPR): the proportion of non-
anomalies that are wrongly identified as anomalies.

Correct Localization Rate (CLR): the proportion of net-
work devices with anomalies that are correctly localized.

Let the anomalies injected into the network be IAS
(Injected Anomalies Set) and the number of injected anoma-
lies is |IAS|, the non-anomalies routers set is recorded as
NAS (Non-Anomalies Set) and |NAS| is the number of non-
anomalies. Assume the detected anomalous border routers
pairs information by the MADEL algorithm is stored in
APS, the localized anomalies set is LAS, and the number
of detected anomalies is |APS|. According to the above
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FIGURE 6. The topology of the NFV network with increased size.

definitions, we know that:

TPR =
|APS ∩ IAS|
|IAS|

, FNR =
|IAS − APS ∩ IAS|

|IAS|

FPR =
|APS ∩ NAS|
|NAS|

, TNR =
|NAS − APS ∩ NAS|

|NAS|

CLR =
|IAS ∩ LAS|
|IAS|

(2)

B. RESULTS AND ANALYSIS
The example in the above section has shown the effectiveness
of the MADEL algorithm on the constructed prototype. Here,
we first increase the size of the NFV network to investigate
the performance of the MADEL algorithm in large-scale
networks. Then, a real-world topology is adopted to further
show its accuracy.

The topology of the network with increased size is shown
in Fig. 6. This NFV network contains 34 routers following a
power law distribution, in which ten of them (R1-R10) are AS
border routers, and the other 24 nodes (n1-n24) are internal
routers. Four different types of anomaly injection methods,
i.e. S1-S4, are adopted here. In scenario S1, two independent
anomalies are injected into two separate internal routers (e.g.
n3 and n14 in Fig. 6); in scenario S2, two anomalies are
injected into two internal routers which are close to each
other (e.g. the two ports adjacent to n17 and n24 in Fig. 6);
in scenario S3, two anomalies are injected into two different
ports of the same router (e.g. the two different ports of n6 in
Fig. 6); in scenario S4, three anomalies are injected into n9,
n13, and n17, respectively.

MADEL algorithm is adopted to detect and localize the
anomalies in these four scenarios. We average all results over
200 experiments. Higher TPR (TNR, CLR) and smaller FPR
(FNR) mean better detection performance. The detection and
localization results are shown in TABLE 1.

TABLE 1. Detection and localization results of the MADEL algorithm in
four different scenarios.

The results in TABLE 1 show that the detection and
localization accuracy of MADEL algorithm is robust to the
injection models. Moreover, if the number of anomalies is
small and the correlation between abnormal positions is low,
MADEL algorithm performs much better.

In order to further evaluate MADEL algorithm in other
anomalous scenarios, we first define a metric named anoma-
lies ratio as: ε = anomalies_num

n , where anomalies_num repre-
sents the number of anomalies and n is the total number of
AS border routers in the NFV network. Here, we assume that
anomalies_num ≤ n to avoid the situation that anomalous
traffic dominates the network. The performance of MADEL
algorithm on the network shown in the Fig. 6 is illustrated
in Fig. 7. With the increase of anomaly ratio, the TPR, TNR,
and CLR of the MADEL algorithm decrease from 1 to 0.82,
0.86, and 0.82 respectively. This is because multiple anoma-
lies cause overlapping of anomalous paths, which reduces the
accuracy of detection and localization. However, MADEL
algorithm’s TPR, TNR, and CLR are still larger than 0.8, indi-
cating that MADEL algorithm has a good effect on multiple
anomaly detection and localization.

We also implement another NFV network based on the
topology of the Corporation for Education Network Initia-
tives in California (CENIC) network [36], whose backbone is
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FIGURE 7. The performance of the MADEL algorithm with different
anomalies ratio. (a) The TPR and TNR of MADEL algorithm. (b) The FNR
and FPR of MADEL algorithm. (c) The CLR of MADEL algorithm.

composed of a sparse mesh routers connected by high-speed
links. With different anomaly injection methods, we have
found that the average values of the MADEL algorithm’s
TPR, TNR and CLR are always no less than 80%. This means
that MADEL algorithm can adapt to different NFV networks.

C. PARAMETER INFLUENCES
1) THE IMPACT OF THE DEGREE OF NETWORK ANOMALIES
We investigate the performance of the MADEL algorithm
with different sizes of the injected anomalies, we build

three types of anomalous flows. In the NFV network shown
in Fig. 6, at the 10th timeslot, we inject one anomalous Pois-
son flowwith the average rate of 5Mbps into the network, and
it lasts for 10 timeslots; at the 30th timeslot, another anoma-
lous Poisson flow lasting for 10 timeslots with the average
rate of 20 Mbps is injected into the same internal routers;
at the 50th timeslot, at the same locations, we inject the last
anomalous Poisson flow with the average rate of 50 Mbps,
which also lasts for 10 timeslots. We carry out the anomaly
injection algorithms in these three anomalous Poisson flows
scenarios over 200 experiments. Experimental results are
shown in Fig. 8. The results in Fig. 8(a) show that with
the increase of the intensity of anomalous flows, the larger
anomalous data values in the differential matrix because
of the sudden increase of the anomalous flow leads to an
increase in network congestion. Fig. 8(b)-(d) also shows that
MADEL algorithm’s TPR, TNR andCLR values increasewith
the increase of the injection rate of the anomalous flows.
In other words, MADEL algorithm performs better when
the volume of the injected anomaly traffic is larger, and the
performance of MADEL algorithm will be roughly the same
when the rate of injected flows exceed 20 Mbps but not
dominate the traffic pattern in the network as assumed in
Section IV.

2) THE IMPACT OF NETWORK STATE CONVERGENCE TIME
To investigate the impact of network state convergence time
on the performance of MADEL algorithm, in the extended
NFV network introduced in in Fig. 6, Anomalies Ratio is
set to be 0.2, i.e. two anomalous Poisson flows with the
average rate of 50 Mbps are injected into internal routers
n3 and n14 respectively at the beginning, and both of them
last for 20 timeslots. In this scenario, we collect data at each
timeslot and use MADEL algorithm to detect and localize
anomalies, and we average all results over 200 experiments.
During the anomalies injection process, we need to avoid
serious anomalous paths overlap with existing anomalies.

Fig. 9 shows MADEL algorithm’s TPR, TNR and CLR val-
ues when different amount of data are collected for detection.
To be specific, each Timeslot’s corresponding TPR, TNR and
CLR values are derived based on the condition that we use
the RTT matrix collected at the first T timeslots for anomaly
detection. We can observe that the TPR, TNR and CLR values
are approximately 0.99 after the 7th timeslot. This is due to the
fact that after the 7th timeslot, the state of the network tends
to be more stable than the burst arrival period. Therefore,
we should collect RTT data no less than timeslot=7 in each
period.

3) THE IMPACT OF NETWORK SIZE
In order to investigate the impact of network size and
structural complexity on the performance of MADEL algo-
rithm, we generate a larger scale network topology using
BRITE with a power law distribution [32], and let other
parameter settings intact. In specific, there are 30 border
routers and 100 internal routers (denoted as Prototype2),
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FIGURE 8. The influence of the degree of anomalous flows on the performance of MADEL algorithm. (a) Average anomalous data.
(b) The TPR of MADEL algorithm. (c) The TNR of MADEL algorithm. (d) The CLR of MADEL algorithm.

FIGURE 9. The influence of the convergence time on MADEL algorithm.

and four anomaly injection scenarios are adopted as intro-
duced in Section V-B. The results are shown in TABLE 2.
Moreover, compared Prototype2 with the network introduced
in Section V-B (denoted as Prototype1), Fig. 10 shows the
experimental results with different number of anomalies and
various network sizes.

As can be seen from Table 2 and Fig. 10, MADEL algo-
rithm’s TPR, TNR, and CLR values on Prototype1 are higher
than those values on Prototype2 when the anomalies ratio is
less than 80%; when the anomalies ratio is larger than 0.8,

TABLE 2. Results of MADEL algorithm on Prototype 2.

the detection and localization accuracy of MADEL algorithm
on Prototype1 significantly decreases. This is because that
Prototype1 has a smaller network size, and when the number
of anomalies is too large, the range of anomalies influences
will overlap, which will affect the accuracy of MADEL
algorithm. Therefore, we can know that MADEL algorithm
performs much better when the number of anomalies is less
than the number of AS border routers and the number of
anomalies only accounts for a small portion of the number
of internal routers. The accuracy of detection and localization
slightly decreases when the number of anomalies increases or
when the correlation between multiple anomalies is strong.
There is no significant difference between the TPR, TNR and
CLR for different network scales and structural complexity.
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FIGURE 10. The performance of the MADEL algorithm with different
number of anomalies and network sizes. (a) The TPR of two prototypes.
(b) The TNR of two prototypes. (c) The CLR of two prototypes.

In summary, in different NFV network settings, MADEL
algorithm can detect and localize multiple anomalies quickly,
efficiently, and accurately.

VI. CONCLUSION
In order to overcome the shortcomings of current matrix-
based network performance anomaly detection and localiza-
tion methods, such as the inability to determine the number
and location of multiple anomalies, this paper first constructs
a Network Function Virtualization (NFV) network prototype,
and evaluates the performance of Principal Components

Analysis (PCA)-based Network anomaly detection (NAD)
algorithm on the measured Round Trip Time (RTT) matrix,
which is validated to be low rank. Secondly, a matrix differ-
ential decomposition (MDD)-based Anomaly DEtection and
Localization (MADEL) algorithm is put forward, which can
not only determine the number of multiple anomalies, but
also localize the network devices that lead to the anomalies.
Finally, a series of experiments are conducted on three typical
NFV networks with diverse parameter settings. Experimental
results show that the MADEL algorithm can accurately and
effectively detect and localize multiple anomalies in the
network, and has a strong adaptability. The work of this
paper greatly reduces the computational overhead of the
existing anomaly detection method, reduces the difficulty
of deployment. In future, we plan to develop an online
detection and localization algorithm, and extend it to the
actual management application of the Internet.

REFERENCES
[1] J. de Jesus Gil Herrera and J. F. B. Vega, ‘‘Network functions virtualization:

A survey,’’ IEEE Latin America Trans., vol. 14, no. 2, pp. 983–997,
Feb. 2016.

[2] O. Krasko, H. Al-Zayadi, V. Pashkevych, H. Kopets, and
B. Humeniuk, ‘‘Network functions virtualization for flexible deployment
of converged optical-wireless access infrastructure,’’ in Proc. 14th Int.
Conf. Adv. Trends Radioelectron., Telecommun. Comput. Eng. (TCSET),
Feb. 2018, pp. 1135–1138.

[3] M. D. Ananth and R. Sharma, ‘‘Cost and performance analysis of network
function virtualization based cloud systems,’’ in Proc. IEEE 7th Int. Adv.
Comput. Conf. (IACC), Jan. 2017, pp. 70–74.

[4] T. Lin and Z. Zhou, ‘‘Robust virtual network function provisioning under
random failures on network function enabled nodes,’’ in Proc. 10th Int.
Workshop Resilient Netw. Design Modeling (RNDM), Aug. 2018, pp. 1–7.

[5] A. J. Gonzalez, G. Nencioni, A. Kamisiński, B. E. Helvik, and
P. E. Heegaard, ‘‘Dependability of the NFV orchestrator: State of the art
and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3307–3329, 4th Quart., 2018.

[6] K. K. Ramakrishnan, ‘‘Software-based networks: Leveraging high-
performance NFV platforms to meet future communication challenges,’’
in Proc. IEEE 36th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2016,
p. 24.

[7] A. Aljuhani and T. Alharbi, ‘‘Virtualized Network Functions security
attacks and vulnerabilities,’’ in Proc. IEEE 7th Annu. Comput. Commun.
Workshop Conf. (CCWC), Jan. 2017, pp. 1–4.

[8] N. Omnes, M. Bouillon, G. Fromentoux, and O. Le Grand, ‘‘A pro-
grammable and virtualized network & IT infrastructure for the Internet of
Things: How can NFV & SDN help for facing the upcoming challenges,’’
in Proc. 18th Int. Conf. Intell. Next Gener. Netw., Feb. 2015, pp. 64–69.

[9] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, ‘‘Network function virtualization: State-of-the-art and
research challenges,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[10] D. Jiang, Z. Xu, P. Zhang, and T. Zhu, ‘‘A transform domain-based anomaly
detection approach to network-wide traffic,’’ J. Netw. Comput. Appl.,
vol. 40, pp. 292–306, Apr. 2014.

[11] J. Liu and H. Tian, ‘‘Study on network anomaly localization techniques,’’
inProc. 17th Int. Conf. Parallel Distrib. Comput., Appl. Technol. (PDCAT),
Guangzhou, China, Dec. 2016, pp. 395–398.

[12] P. Barford, N. Duffield, A. Ron, and J. Sommers, ‘‘Network perfor-
mance anomaly detection and localization,’’ in Proc. IEEE INFOCOM,
Rio de Janeiro, Brazil, Apr. 2009, pp. 1377–1385.

[13] D. H. Hoang and H. D. Nguyen, ‘‘A PCA-based method for IoT network
traffic anomaly detection,’’ in Proc. 20th Int. Conf. Adv. Commun. Technol.
(ICACT), Feb. 2018, pp. 381–386.

[14] Y. Jin, C. Qiu, L. Sun, X. Peng, and J. Zhou, ‘‘Anomaly detection in
time series via robust PCA,’’ in Proc. 2nd IEEE Int. Conf. Intell. Transp.
Eng. (ICITE), Sep. 2017, pp. 352–355.

29330 VOLUME 7, 2019



J. Chen et al.: Matrix Differential Decomposition-Based Anomaly Detection and Localization in NFV Networks

[15] E. Zyad, C. Khalid, and B. Mohammed, ‘‘Combination of R1-PCA and
median LDA for anomaly network detection,’’ in Proc. Intell. Syst. Com-
put. Vis. (ISCV), Apr. 2017, pp. 1–5.

[16] M. Chen et al., ‘‘Design and implementation of network test platform
based on network function virtualization,’’ Chin. J. Comput., vol. 41, no. 9,
pp. 2016–2028, 2018.

[17] M. Michalski, K. Cieslak, and M. Polak, ‘‘The system for large networks
emulation with OSPF/BGP routers based on LXC,’’ in Proc. IEEE 16th
Int. Conf. High Perform. Switching Routing (HPSR), Jul. 2015, pp. 1–4.

[18] G. Wang, Y. Qiao, X. Qiu, and L. Meng, ‘‘An improved network per-
formance anomaly detection and localization algorithm,’’ in Proc. 14th
Asia-Pacific Netw. Oper. Manage. Symp. (APNOMS), Seoul, South Korea,
Sep. 2012, pp. 1–4.

[19] A. Lakhina, M. Crovella, and C. Diot, ‘‘Diagnosing network-wide traffic
anomalies,’’ in Proc. ACM SIGCOMM, 2004, pp. 219–230.

[20] T. Ahmed, B. Oreshkin, and M. Coates, ‘‘Machine learning approaches
to network anomaly detection,’’ in Proc. 2nd Workshop Tackling Comput.
Syst. Problems Mach. Learn., 2007, pp. 1–6.

[21] D. Liu, C.-H. Lung, I. Lambadaris, and N. Seddigh, ‘‘Network traffic
anomaly detection using clustering techniques and performance compar-
ison,’’ in Proc. 26th IEEE Can. Conf. Elect. Comput. Eng. (CCECE),
Regina, SK, Canada, May 2013, pp. 1–4.

[22] K. Xie, C. Peng, X. Wang, G. Xie, and J. Wen, ‘‘Accurate recovery of
internet traffic data under dynamic measurements,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Atlanta, GA, USA, May 2017, pp. 1–9.

[23] K.Xie et al., ‘‘Fast tensor factorization for accurate Internet anomaly detec-
tion,’’ IEEE/ACM Trans. Netw., vol. 25, no. 6, pp. 3794–3807, Dec. 2017.

[24] Y. K. Qian, B. N. Li, and X. Luo, ‘‘Network anomaly detection method
based on round-trip delay matrix subspace,’’ J. Nanjing Univ. Sci. Technol.,
pp. 215–224, 2015.

[25] C. Xia, Y. Shi, and Q. Zhao, ‘‘A new algorithm NA for IP traceback,’’
J. Comput. Res. Develop., vol. 41, no. 4, pp. 689–696, Apr. 2004.

[26] P. Barford, J. Kline, D. Plonka, and A. Ron, ‘‘A signal analysis of network
traffic anomalies,’’ in Proc. ACM SIGCOMM Internet Meas. Workshop,
2002, pp. 71–82.

[27] H. Tian, M. Roughan, Y. Sang, and H. Shen, ‘‘Diffusion wavelets-based
analysis on traffic matrices,’’ in Proc. 12th Int. Conf. Parallel Distrib.
Comput., Appl. Technol., Oct. 2011, pp. 116–121.

[28] A. Pavlidis, G. Sotiropoulos, K. Giotis, D. Kalogeras, and V. Maglaris,
‘‘NFV-compliant traffic monitoring and anomaly detection based on dis-
persed vantage points in shared network infrastructures,’’ inProc. 4th IEEE
Conf. Netw. Softwarization Workshops (NetSoft), Jun. 2018, pp. 197–201.

[29] M. Kourtis, G. Xilouris, G. Gardikis, and I. Koutras, ‘‘Statistical-based
anomaly detection for NFV services,’’ in Proc. IEEE Conf. Netw. Function
Virtualization Softw. Defined Netw. (NFV-SDN), Nov. 2016, pp. 161–166.

[30] A. Blaise, S. Wong, and A. H. Aghvami, ‘‘Virtual network function service
chaining anomaly detection,’’ in Proc. 25th Int. Conf. Telecommun. (ICT),
2018, pp. 411–415.

[31] L. S. R. Sampaio, P. H. A. Faustini, A. S. Silva, L. Z. Granville, and
A. Schaeffer-Filho, ‘‘Using NFV and reinforcement learning for anoma-
lies detection and mitigation in SDN,’’ in Proc. IEEE Symp. Comput.
Commun. (ISCC), 2018, pp. 432–437.

[32] M. Alberto et al., ‘‘BRITE: Universal topology generation from a user’s
perspective,’’ in Proc. 9th IEEE Int. Symp. Modelind, Anal. Simulation
Comput. Telecommun. Syst., 2001, pp. 346–356.

[33] K. Xie et al., ‘‘Recover corrupted data in sensor networks: A matrix
completion solution,’’ IEEE Trans. Mobile Comput., vol. 16, no. 5,
pp. 1434–1448, May 2017.

[34] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 2005.

[35] W. Austin, D. Anderson, and J. Ghosh, ‘‘Fully supervised non-negative
matrix factorization for feature extraction,’’ in Proc. IEEE Int. Geosci.
Remote Sens. Symp., Valencia, Spain, Jul. 2018, pp. 5772–5775.

[36] L. Li et al., ‘‘A first-principles approach to understanding the Internet’s
router-level topology,’’ in Proc. Conf. Appl., Technol., Archit., Protocols
Comput. Commun., New York, NY, USA, 2004, pp. 3–14.

JING CHEN is currently pursuing the master’s
degree with the College of Computer Science and
Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing, China. She was with
the School of Computer Science, Nanjing Uni-
versity of Posts and Telecommunications, from
2013 to 2017. Her main research interests include
computer networks, network security, and soft-
ware engineering.

MING CHEN was born in Nanjing, China,
in 1956. He received the B.S. degree in com-
munications engineering and the M.S. degree in
information system from the University of
Information Engineering, Zhengzhou, China,
in 1982 and 1985, respectively, and the Ph.D.
degree in information system from the Institute
of Communication Engineering, Nanjing, in 1991.
He is currently a Professor and a Doctoral Super-
visor with the College of Computer Science and

Technology, Nanjing University of Aeronautics and Astronautics, Nanjing.
His research interests include network architecture, UAV networks, network
measurement, and future networks.

XIANGLIN WEI received the bachelor’s degree
from the Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 2007, and the
Ph.D. degree from the University of Science and
Technology, Nanjing, in 2012. He is currently
a Researcher with the Nanjing Telecommunica-
tion Technology Research Institute, Nanjing. His
research interests include mobile edge computing,
wireless network optimization, and the Internet of
Things. He has served as an editorial member of

many international journals and as a TPC Member of a number of inter-
national conferences. He has also organized a few special issues for many
reputed journals.

BING CHEN received the B.S. and M.S. degrees
from the Department of Computer Science and
Technology, Nanjing University of Aeronautics
and Astronautics (NUAA), Nanjing, Jiangsu,
China, in 1992 and 1995, respectively, and the
Ph.D. degree from the College of Information Sci-
ence and Technology, NUAA, where he is cur-
rently a Professor. His main research interests are
computer networks and embedded systems.

VOLUME 7, 2019 29331


	INTRODUCTION
	RELATED WORK
	PROTOTYPE CONSTRUCTION AND PROBLEM STATEMENT
	PROTOTYPE CONSTRUCTION AND RTT MATRIX MEASUREMENT
	RTT MATRIX ANALYSIS
	PCA-BASED NAD ALGORITHM AND PROBLEM STATEMENT

	MATRIX DIFFERENTIAL DECOMPOSITION-BASED ANOMALY DETECTION AND LOCALIZATION
	PROBLEM ANALYSIS
	DIFFERENTIAL DECOMPOSITION ALGORITHM
	AN EXAMPLE

	EXPERIMENTS AND RESULTS ANALYSIS
	PERFORMANCE METRICS
	RESULTS AND ANALYSIS
	PARAMETER INFLUENCES
	THE IMPACT OF THE DEGREE OF NETWORK ANOMALIES
	THE IMPACT OF NETWORK STATE CONVERGENCE TIME
	THE IMPACT OF NETWORK SIZE


	CONCLUSION
	REFERENCES
	Biographies
	JING CHEN
	MING CHEN
	XIANGLIN WEI
	BING CHEN


