
Received December 16, 2018, accepted January 12, 2019, date of publication January 18, 2019, date of current version February 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2893486

Task Scheduling for Smart City Applications
Based on Multi-Server Mobile Edge Computing
YIQIN DENG 1, (Member, IEEE), ZHIGANG CHEN1,2, (Member, IEEE),
XIN YAO 2, (Member, IEEE), SHAHZAD HASSAN 1, AND JIA WU 2, (Member, IEEE)
1School of Information Science and Engineering, Central South University, Changsha 410083, China
2School of Software, Central South University, Changsha 410075, China

Corresponding author: Zhigang Chen (czg@csu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672540, in part by the National
Natural Science Foundation of China through the Major Program under Grant 71633006, and in part by the Mobile Health Ministry of
Education-China Mobile Joint Laboratory.

ABSTRACT The smart city is increasingly gaining worldwide attention. It has the potential to improve
the quality of life in convenience, at work, and in safety, among many others’ utilizations. Nevertheless,
some of the emerging applications in the smart city are computation-intensive and time-sensitive, such as
real-time vision processing applications used for public safety and the virtual reality classroom application.
Both of them are hard to handle due to the quick turnaround requirements of ultra-short time and large
amounts of computation that are necessary. Fortunately, the abundant resource of the Internet of Vehicles
(IoV) can help to address this issue and improve the development of the smart city. In this paper, we focus
on the problem that how to schedule tasks for these computation-intensive and time-sensitive smart city
applications with the assistance of IoV based on multi-server mobile edge computing. Task scheduling is
a critical issue due to the limited computational power, storage, and energy of mobile devices. To handle
tasks from the aforementioned applications in the shortest time, this paper introduces a cooperative strategy
for IoV and formulates an optimization problem to minimize the completion time with a specified cost.
Furthermore, we develop four evolving variants based on the alternating direction method of multipliers
(ADMM) algorithm to solve the proposed problem: variable splitting ADMM, Gauss–Seidel ADMM,
distributed Jacobi ADMM, and distributed improved Jacobi (DIJ)-ADMM algorithms. These algorithms
incorporate an augmented Lagrangian function into the original objective function and divide the large
problem into two sub-problems to iteratively solve each sub-problem. The theoretical analysis and simulation
results show that the proposed algorithms have a better performance than the existing algorithms. In addition,
the DIJ-ADMM algorithm demonstrates optimal performance, and it converges after approximately ten
iterations and improves the task completion time and offloaded tasks by 89% and 40%, respectively.

INDEX TERMS Task scheduling, smart city, mobile edge computing, Internet of Vehicle, alternating
direction method of multipliers (ADMM) algorithm.

I. INTRODUCTION
Smart city is an urban area that manages available resources
more efficiently by collecting electronic data from citizens,
devices, and assets. It is increasingly gaining worldwide
attention. Statistics show that global spending on smart cities
reached 14.85 billion U.S. dollars in 2015 and is fore-
casted to increase to 34.35 billion U.S. dollars in 2020 [1].
Smart city has the potential to improve the quality of
life in convenience, at work, and in safety, among many
others utilizations [2], [3]. However, some of the emerg-
ing applications in smart city are computation-intensive

and time-sensitive, which means they require many com-
putation resources within a very short completion time.
Some of smart city applications even require a response in
2 milliseconds [4], [5]. For instance, the ‘‘intelligent’’ polic-
ing application in smart city requires real-time vision process-
ing near the cameras to ensure public safety [7], and virtual
reality classroom application [6].

Fortunately, the abundant resource of IoV can help to
address the aforementioned issues and improve the develop-
ment of the smart city. The Gartner forecasts that there will
be 250+ million smart cars connected to high-tech networks

14410
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-4231-6954
https://orcid.org/0000-0001-7165-937X
https://orcid.org/0000-0003-0034-3778
https://orcid.org/0000-0001-9013-0818


Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

by 2020 [8]. At the same time the computational capability
of one Nvidia automatous vehicle Drive PX 2 is roughly
the same as 150 MacBook Pros [9]. Academic and govern-
ment environments are often interested in the technology to
build smart city [10], [11]. Ding and Fang [10] design a
data transportation scheme based on the vehicular temporary
storage to support urban sensing services in smart cities. The
U.S. Department of Transportation advocates leveraging the
connected and autonomous vehicles to improve the integrated
corridor management and operations in smart city [11]. Incor-
porating the IoV into the facilitation of a smart city can not
only sharply reduce the cost of physical infrastructures, but
also utilize reasonable idle resources of vehicles, which is
also feasible from a future perspective.

To the best of our knowledge, this paper is the first work
focusing on the problem that how to schedule tasks for
computation-intensive and time-sensitive smart city applica-
tions with the assistance of IoV based on multi-server mobile
edge computing. Task scheduling in this problem refers
to selecting the right components in the IoV to complete
tasks with the shortest completion time with the constrained
cost, e.g., min CT (an•) constrained E totaln (an•). Intuitively,
to solve this problem, we need to seek a tradeoff between the
completion time and the cost of tasks. These tasks refer to
computation-intensive, time-sensitive and independent tasks,
such as the real-time vision processing task and view render-
ing task in applications previously mentioned.

Task scheduling is a critical issue due to the limited com-
putational power, storage and energy of mobile devices. It can
improve computing efficiency, reduce task completion time,
and utilize idle resources from other devices in the sys-
tem [13], [14]. Task scheduling has been studied extensively
in wireless networks [15]–[19]. In our recent work, we have
developed a dynamic task scheduling algorithm for single-
hop Fog-IoT architecture based on the Lyapunov optimiza-
tion technique [15]. Chen and Hao [16] present an efficient
task scheduling strategy to minimize the latency and extend
the battery life of user’s equipment for software defined ultra-
dense network. However, all of these solutions consider a
single edge server and are still not sufficient to handle the
multi-server MEC environment with the support of IoV for
smart city applications.

In our proposed situation, there are still some challenges
to address task scheduling for smart city applications: 1)
it is challenging to design cooperative algorithms to obtain
resources from the IoV, including computation, storage and
communication resources; 2) it is difficult to handle the prob-
lem of completing the task from computation-intensive and
time-sensitive applications in an ultra-short time with a low
time complexity algorithm.

In this paper, we design a system mainly consisting of
three parts: cognitive radio router enabled vehicles (CRVs),
cognitive radio capable roadside units (CRSUs), and the
task publisher. To complete the task from the computation-
intensive and time-sensitive applications utilizing the abun-
dant resources of the IoV, we formulate an optimization

problem to minimize the completion time with a speci-
fied cost. Additionally, we propose four evolving variants
based on the ADMM algorithm to solve the proposed prob-
lem: VS-ADMM, GS-ADMM, DJ-ADMM and DIJ-ADMM
algorithm. The ADMM algorithm is a mature and effective
computational method for solving distributed optimization
problems [20]. It introduces an augmented Lagrangian func-
tion and divides a large problem into two sub-problems to
iteratively solve each sub-problem. Nevertheless, we cannot
directly solve the proposed problem with more than two vari-
ables by using the ADMM algorithm. Thus, we introduce the
VS-ADMMalgorithm by applying the splitting variable tech-
nique into the ADMM algorithm. Then, in order to improve
the effectiveness of the VS-ADMM algorithmwhen the num-
ber of nodes is large, we develop a GS-ADMMalgorithm, but
it does not update the variables parallelly. Therefore, a DJ-
ADMMalgorithm is put forward. The DIJ-ADMMalgorithm
further improves performance by injecting a proximal term
and a damping parameter.

Furthermore, we analyze the performance of each algo-
rithm thoroughly and prove that the DIJ-ADMM algorithm
has the lowest time complexity and the best performance.
Especially, the DIJ-ADMM algorithm has the capability to
preserve privacy for users by solving the independent sub-
problems. Simulation results show that the DIJ-ADMM algo-
rithm can converge after approximately 10 iterations and
improve task completion time and offloaded tasks by 89%
and 40%, respectively. In short, the specific contributions of
this paper are as follows:
• We first consider task scheduling for computation-
intensive and time-sensitive smart city applications with
the assistance of IoV based on multi-server mobile edge
computing; and formulate an optimization problem to
minimize the completion time with a specified cost.

• We design four evolving algorithms based on the exist-
ing alternating directionmethod ofmultipliers algorithm
and analyze the advantages and disadvantages and scope
of application of these four algorithms.

• Further, we theoretically analyze the optimality and
complexity of the DIJ-ADMM algorithm and prove that
it protects the privacy of the user in the IoV.

• Through implementing the proposed four algorithms,
we find that they significantly reduce task comple-
tion time while increasing offloaded tasks and the DIJ-
ADMM algorithm possesses the optimal performance
with the best convergence rate o(1/t), where t is the
number of time slots in the network.

The rest of the paper is organized as follows: Section II
describes related works. System model and problem formu-
lation are presented in Section III. In Section IV, we pro-
pose four algorithms to solve the completion time minimiza-
tion problem. The performance of the proposed algorithms
is analyzed in Section V. Finally, extensive simulation
results and conclusions are provided in Sections VI and VII,
respectively.

VOLUME 7, 2019 14411



Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

II. RELATED WORK
Task scheduling is a classical method that involves trans-
ferring tasks to the external platform due to the limited
computational power, storage and energy of the mobile
device [21]. It can improve computing efficiency, reduce task
completion time, and utilize resources efficiently from other
devices in the system, and it has been extensively investi-
gated in wireless networks [15]–[19], [22]–[24], [26]. In our
recent work [15], we have developed a workload dynamic
scheduling algorithm for single-hop Fog-IoT architecture
based on Lyapunov optimization technique. It makes a trade-
off between the optimal throughput utility and worst-case
delay. Chen and Hao [16] present an efficient task schedul-
ing strategy to minimize the latency and extend battery life
of user’s equipment for software defined ultra-dense net-
work. Zhang et al. [24] propose a task scheduling algorithm
to minimize the maximum tolerable delay in mobile edge
computing. Chen et al. [26] introduce the Edge-CoCaCo,
a task scheduling solution by jointly considering computa-
tion, caching, and communication on the edge cloud.

Mobile Edge Computing (MEC) is an emerging technol-
ogy which brings computation and storage close to the client
(e.g., user’s personal computers, IoT devices and routers) as
much as possible to minimize communication latency and
bandwidth utilization. MEC is a supplement to cloud com-
puting, not an alternative [27]. With the emergence of sig-
nificant amounts of computation-intensive and time-sensitive
applications, MEC is becoming increasingly significant in all
fields. In some Virtual Reality (VR) scenarios, it makes much
steeper requirements of views due to distance between user
eyes and the screen of head-mounted device is very short.
However, traditional approaches that uploading all the views
to the cloud center for rendering and streaming will not only
take a long time and occupy a large bandwidth, but also harms
the user experience. Thus, a novel wireless VR strategy is
implemented based on edge computing [6]. In the traditional
video surveillance application, videos generated in cameras
are sent to the cloud center for processing. Nevertheless,
with the ubiquity of cameras and high usage of bandwidth,
the amount of video that can be transmitted to the cloud center
is limited. Zhang et al. [12] design and implement a real-time
distributed wireless video surveillance system by leveraging
MEC to preprocess videos, and thus greatly improve the
coverage area and relevant objects. To address the big data in
IoV, Zhang et al. [24] develop the regional cooperative fog-
computing-based intelligent vehicular network architecture.
By incorporating cognitive computing into edge computing,
Chen et al. [28], [29] propose the edge cognitive computing
(ECC) paradigm and a smart-healthcare system based on
the ECC. To control the traffic intelligently, Chen et al. [30]
design the LLTC algorithm based on label-less learning and
edge computing.

Task scheduling is increasingly becoming the focus of
MEC due to the development of computation-intensive
and time-sensitive applications [31]. Mao et al. [17] develop
a dynamic task scheduling method for a MEC system

with an energy harvest mobile device and an edge server.
Hao et al. [18] propose an energy efficient task caching and
scheduling algorithm for a mobile device and an edge cloud
MEC architecture based on the alternating iterative algo-
rithm. Chen et al. [32] investigate multi-user task scheduling
problem in MEC with multi-channel wireless interference
and give a distributed solution based on a game theoretic
approach. Nevertheless, to the best of our knowledge, almost
all works only consider the scenario of a single edge server
except studies in [16] and [33]. However, works in [16]
and [33] do not consider to complete tasks in the shortest
time via utilizing the resources of the IoV, which is critical to
handle tasks in the computation-intensive and time-sensitive
smart city applications.

Alternating direction method of multipliers (ADMM)
algorithm is a mature and effective computational method for
solving optimization problems, especially for distributed con-
vex optimization problems [34]. It decomposes large prob-
lems into multiple small, easy-to-solve local sub-problems
through the decomposition-coordination process, and obtains
solutions to large problems by coordinating the solutions of
sub-problems. Boyd et al. [20] review and prove that it is very
suitable for large-scale distributed optimization problems.
However, the limitations of ADMM algorithm start to bring
out when it deals with complicated scenarios. For instance,
ADMM can only be used to solve optimization problems
without inequality restrictions and with two variables [20].
Additionally, it is a centralized optimization method that
requires private information for each node [35].

Considering the limitations of traditional ADMM algo-
rithm and existing works in task scheduling methods, this
paper designs task scheduling for MEC-supported smart city
applications and develops several novel task scheduling opti-
mization algorithms based on the classical ADMMalgorithm.
In addition, we analyze strengths and weaknesses of each
algorithm.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we introduce the systemmodel andmathemat-
ically define the newmetrics of the network: completion time
and cost. Then we give a definition of the proposed problem
and provide a formulation for the problem.

A. OVERVIEW
As shown in Figure 1, we use the real-time vision process-
ing application for public safety as the typical computation-
intensive and time-sensitive application scenario in smart
city. Follow the same line in [36], we assume that vehicles
are equipped with powerful communication devices, called
cognitive radio routers (CR routers), and one vehicle can
discover other vehicles via user datagram protocol broad-
casting messages. The task of real-time vision processing
comes from smart cameras (task publisher in this scenario)
in this application and then it is published on the plat-
form consisting of the cognitive radio capable roadside units
(CRSUs) and cognitive radio router enabled vehicles (CRVs).

14412 VOLUME 7, 2019



Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

FIGURE 1. An illustration of system model.

After identifying behaviors in the vision with the cooperation
of the CRSUs and CRVs, the task publisher obtains the feed-
back from them and chooses to generate alerts or not in real-
time. In short, this system mainly consists of the following
three parts.
• CRVs: One part is composed of n ∈ {1, 2, · · · ,N }
cognitive radio router enabled vehicles (CRVs), which
are regarded as stationary at each time slot t ∈
{1, 2, · · · , T }. CRVs refer to vehicles equipped with CR
routers as their communication devices [36].

• CRSUs: The second part includes m ∈ {1, 2, · · · ,M}
cognitive radio capable roadside units (CRSUs). The
CRVs and CRSUs are connected through cognitive
radio, thus we can ignore the bandwidth resources of the
connections between the CRSUs and CRVs since there
are a wide range of under-utilized spectrum resources.
Since that the scenario we consider is the urban area,
the installation cost of CRSUs is high and the number of
CRSUs is much smaller than the number of CRVs, e.g.,
M � N . In addition, both the CRSUs and CRVs have
the capability of communication and computation. The
CRSUs and CRVs are both equivalent to edge servers,
but CRSUs’ power of communication and computing is
much greater than that of the CRVs.

• Task publisher: The third part is the task publisher,
which refers to the smart cameras in this scenario. It pro-
duces these tasks by monitoring behaviors of citizens
in urban areas and then publishes these tasks on the
platform, which consists of CRSUs and CRVs. After
identifying behaviors in the vision with the cooperation
of the CRSUs and CRVs, the task publisher obtains the
feedback from them and chooses to generate alerts or not
in real-time. In addition, task publisher pays a reward to
the initiator CRVs.

Figure 2 shows the procedure of processing the task in this
scenario. First, an initiator CRVs accepts the task published

FIGURE 2. The comprehensive process of task.

TABLE 1. Main symbols and their meanings.

by the task publisher and then divides these tasks into sub-
tasks. Then, it will request help from the surrounding CRSUs
and CRVs. After completing this task cooperatively, the ini-
tiator CRVs aggregates results from helper CRSUs and CRVs
and pays reward (described as cost in section III.C) for them.
Finally, the initiator CRVs send feedback to the task publisher
and obtain the money. Specifically, in our system, each CRVs
can act as the initiator and helper for the task. The meanings
of main symbols in this paper are summarized as Table 1.

In the following section, we propose the model of com-
pletion time and cost of the task, and develop the problem
formulation to complete the task in the shortest time with the
specified cost constraint.

B. COMPLETION TIME
To meet the ultra-short time requirement of the tasks,
we define a new metric called the completion time. It refers
to the total time of completing the whole task.

In this system, initiator CRVs can divide the task into three
parts: αnn, αnι and αnm, which are processed in its own com-
puting system, other helper CRVs and CRSUs, respectively,
e.g., αn• = {αnn, αnι, αnm}. Recall that the CRSUs is an edge
server withmuchmore computing power than the CRVs, thus,
we ignore the time spent by the CRSUs processing tasks as
shown in many previous works. Let νn, snm, and µn be the

VOLUME 7, 2019 14413



Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

arrival rate of tasks in the CRVs n, the transmission time of
the computation task from the initiator CRVs n to the CRSUs
m, and the maximum processing capacity per unit time of the
CRVs n, respectively. Therefore, the task completion time
(CT ) of the initiator CRVs n is mainly made up of the fol-
lowing three parts: the time initiator CRVs handles by itself,
the time that both the helper CRVs process and the CRSUs
processes. CT is denoted as

CT (αn•) =
1∑

n∈N νn
[αnn(

1
µn − αnn

)+
∑
n∈N

∑
ι∈N \{n}

αnι

×(snι +
1

µι −
∑
αnι

)]+
∑
n∈N

∑
m∈N \{n}

αnmsnm.

(1)

where the following restrictions should hold:

αnn +
∑

ι∈N \{n}
αnι +

∑
m∈N \{n}

αnm = νn. (2)

C. COST
To obtain the computation, storage, and communication
resources of the CRVs and CRSUs, the initiator CRVs pays a
reward to the helper CRVs and CRSUs. This section defines
a new metric which is the cost.

Cost is defined as the total money expenditure for com-
pleting the task, including the cost incurred by the CRSUs
(e.g., Enm) and CRVs involved in completing the task (e.g.,
Enι). Thus, the cost of initiator CRVs n for completing the
task is

E totaln (αn•) =
∑
n∈N

∑
ι∈N \{n}

αnιEnι +
∑
n∈N

∑
m∈N \{n}

αnmEnm.

(3)

Let 8n be the upper limit of the cost that initiator CRVs
n permits, which is related to the reward ς that the initiator
CRVs n can obtain from the task publisher, e.g., 8n = ες .
Here, ε is a coefficient and ε ∈ [0, 1], which depends on the
pure benefit expected by the initiator CRVs n. Furthermore,
the cost cannot exceed the upper limit of the cost that the
initiator CRVs can accept. That is,

E totaln (αn•) ≤ 8n, ∀ n ∈ N . (4)

Recall that the installing cost of CRSUs is high, thus the
cost required to utilize the CRSUs’ resources is also much
greater than that of the CRV resources, i.g., Enm � Enι.
Considering both section III-B and section III-C, we know
that if we want to exploit the resources of the CRVs and
CRSUs to complete the computation task in the shortest
time, we tend to transfer as many tasks as possible to the
CRSUs due to its powerful computation capability. Never-
theless, the cost will increase greatly, which may exceed the
permission of the initiator CRV. In the next section, we will
define and formulate this problem to make a tradeoff between
the completion time and the cost.

D. PROBLEM FORMULATION
According to the previous definition of completion time and
cost, we define the ST-SC problem as follows.
Definition 1 (ST-SC Problem): In this paper, we focus

on the problem of how to schedule tasks for computation-
intensive and time-sensitive smart city applications (ST-SC
problem) with the assistance of IoV based on multi-server
mobile edge computing. These tasks are independent, such as
the real-time vision processing task and view rendering task
in applications as we mentioned previously. ST-SC problem
refers to selecting the optimal policy P = {αn•}, n ∈ N ,
which means choosing the right helper CRVs αnι and CRSUs
αnm to complete the task in the shortest completion time with
a constrained cost.

ST-SC problem can be mathematically formulated as fol-
lows:

min
α1•,··· ,αn•

N∑
n=1

CT (αn•)

s.t. E totaln (αn•) ≤ 8n, ∀ n ∈ N ,
αnn +

∑
ι∈N \{n}

αnι +
∑

m∈N \{n}
αnm = νn. (5)

IV. FOUR DISTRIBUTED TASK SCHEDULING
ALGORITHMS FOR ST-SC PROBLEM
In this section, we will give an analysis for the ST-SC
problem and then propose four evolving task scheduling algo-
rithms for it.

A. PROBLEM ANALYSIS
As we know from the previous discussion, it is critical to
decide the optimal policy for the ST-SC problem, but it seems
like a complex problem due to a largeN and the requirement
of processing parallelly in the context of this paper.

Intuitively, we can use the alternating direction method of
multipliers (ADMM) algorithm to solve the ST-SC problem.
Then, let us briefly review the ADMM algorithm. For the
following general convex optimization problem,

min
x1,x2,··· ,xN

N∑
i=1

fi(xi)

s.t.
N∑
i=1

Aixi = c. (6)

The ADMM algorithm gives the augmented Lagrangian form
of the problem (6) as follows:

Lρ(x1 · · · , xN , ϕ) =
N∑
i=1

fi(xi)− ϕT

 N∑
i=1

Aixi − c


+
ρ

2

∥∥∥∥∥∥
N∑
i=1

Aixi − c

∥∥∥∥∥∥
2

2

. (7)

14414 VOLUME 7, 2019



Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

where ρ is a parameter of the augmented Lagrange method
and ρ > 0. The variables are updated as follows:

x t+11 = arg minx1 L(x1, x
t
2, ϕ

t ). (8)

x t+12 = arg minx2L(x
t+1
1 , x2, ϕt ). (9)

ϕt+1 = ϕt − ρ(A1x
t+1
1 +A2x

t+1
2 − c). (10)

The ADMM algorithm combines the advantages of both the
method of multipliers and the dual ascent method: conver-
gence of weak conditions and the decomposable solvabil-
ity. However, as we can observe from the ST-SC problem
and Eq. (8),(9),(10), there are three main reasons that the
ADMM algorithm fails to directly solve the ST-SC problem.
First, the ADMM algorithm can only solve the problem of
two blocks of variables. Second, the ADMM algorithm can-
not solve the problem with inequality restrictions. Finally,
the ADMM algorithm also cannot solve problems with some
inseparable variables. Hence, we explore some better solu-
tions to the ST-SC problem in the next section.

B. A DISTRIBUTED VARIABLE SPLITTING
ADMM ALGORITHM
In this section, we combine the variable splitting tech-
nique and the construct indicator function technique with the
ADMM algorithm to solve the ST-SC problem.

It is common to construct the indicator function for han-
dling complicated constraints in optimization problems. This
paper attempts to follow this idea and introduce two indicator
functions to deal with the inequality and inseparable variables
constraint. Let kn = {α•n :

∑
n∈N E totaln (αn•) ≤ 8n, ∀ n ∈

N } be the polyhedra of each constraint of CRVs and CRSUs
i in the ST-SC problem where α•ι = 〈αnι〉n∈N is the vector
of amount of task to be completed by CRVs and CRSUs
i. Then, follow the same line on variable splitting in [41],
we can obtain the following equivalent problem of the ST-SC
problem:

min
{α•n},{x}

N∑
n=1

(
CT (α•n)+ Ikn (α•n)

)
+ Ikc (x)

s.t. α•n − xn = 0, n ∈ N . (11)

where Ikn and IZ are the indicator function defined as fol-
lows:

Ikn (α•n) =
{
0, if α•n ∈ kn
+∞, else.

(12)

Ikc (x) =
{
0, if x ∈ kc
+∞, else.

(13)

and kc is defined as follows:

kc =

x :
N∑
n=1

IN xn ≤ 1

 , (14)

where IN is an identity matrix with size N .

Problem (11), mentioned above, meets the requirements of
the ADMM algorithm and the augmented Lagrangian form
of it is as follows:

Lρ(α, x, ϕ) =
N∑
n=1

{CT (α•n)+ Ikn (α•n)− ϕ(α•n − xn)

+
ρ

2
‖α•n − xn‖22}. (15)

Next, we decompose the above problem (15) into N inde-
pendent sub-problems. Initializing x0, ϕ0 and updating α as
follows:

αt+1 = arg min
N∑
n=1

{CT (α•n)+ Ikn (α•n)− ϕtn(α•n − x tn)

+
ρ

2

∥∥α•n − x tn∥∥22}. (16)

Then, update x and ϕ:

x t+1 = arg min
ρ

2

∥∥∥∥αt+1•n − x tn + 1
ρ
ϕt
∥∥∥∥2
2
+ Ikc (x). (17)

ϕt+1 = ϕt − ρ(αt+1 − x t+1). (18)

It is observed that the distributed variable splitting ADMM
(VS-ADMM) algorithm is not efficient whenN is large since
this algorithm requires a large number of matrix multipli-
cations and 2-Norm operations. Therefore, in the following
section, we try to incorporate the Gauss-Seidel method to
solve the above TS-SC problem in a better way.

C. A DISTRIBUTED GAUSS-SEIDEL ADMM ALGORITHM
To obtain a better solution than VS-ADMM algorithm, this
section introduces the Gauss-Seidel method into solving the
ST-SC problem. Initializing α0, ϕ0 and updating α, ϕ as
follows:

αt+1 = arg min
N∑
n=1

{CT (α•n)+ Ikn (α•n)− ϕtn(α•n)}

+
ρ

2

∥∥∥∥∥∥
N∑
n=1

α•n +
∑
j≤n

I t+1kj (α•j)+
∑
j>n

I tkj (α•j)

∥∥∥∥∥∥
2

2

.

(19)

ϕt+1 = ϕt − ρ

 N∑
n=1

I t+1kn (α•n)

 . (20)

where j is a CRVs or CRSUs, e.g., j ∈ N .
From Eq. (19) and (20), we find that the distributed

Gauss-Seidel ADMM (GS-ADMM) algorithm is much more
efficient than the distributed VA-ADMM algorithm because
GS-ADMM only requires one time 2-Norm operation. How-
ever, it has two drawbacks. First, it may not converge when
N ≥ 3 [38]. Second, there is a term I t+1kj (α•j) in the
Eq. (19), which means that all values of α must be updated
sequentially. It does not meet the requirements of processing
tasks in parallel among the CRVs and CRSUs in the proposed
scenario.

VOLUME 7, 2019 14415



Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

To overcome the shortcomings of non-parallelization for
the distributed GS-ADMM algorithm, we consider to incor-
porate a novel method, known as Jacobi, into solving the
ST-SC problem in the following section.

D. A DISTRIBUTED JACOBI ADMM ALGORITHM
This section introduces a more efficient algorithm: the dis-
tributed Jacobi ADMM (DJ-ADMM) algorithm, which uti-
lizes the advantages of parallel computing of Jacobi method.
DJ-ADMM algorithm updates α in parallel as follows:

αt+1 = arg min
N∑
n=1

{CT (α•n)+ Ikn (α•n)− ϕtn(α•n)}

+
ρ

2

∥∥∥∥∥∥
N∑
n=1

α•n +
∑
j 6=i

I tkj (α•j)

∥∥∥∥∥∥
2

2

. (21)

Then, update ϕ as follows:

ϕt+1 = ϕt − ρ

 N∑
n=1

I t+1kn (α•n)

 . (22)

By comparing Eq. (19) and (21), we observe that the value
of I t+1kj (α•j) is no longer needed when updating α; thus,
we can process the task in parallel. However, DJ-ADMM
algorithm is harder to converge than the GS-ADMM algo-
rithm even for two block variables [39].

E. A DISTRIBUTED IMPROVED JACOBI ADMM
ALGORITHM
Motivated by the proximal scheme [44], we propose a dis-
tributed and improved Jacobi ADMM (DIJ-ADMM) algo-
rithm. The DIJ-ADMM algorithm adds a term 1

2‖α•n −

αt•n‖
2
2n

and a weight τ ≥ 0 for the update of α and ϕ,
respectively.2n is a matrix and ‖α•n‖22n

:= αT•n2nα•n. First,
update α as follows:

αt+1 = arg min
N∑
n=1

{CT (α•n)+ Ikn (α•n)− ϕtn(α•n)}

+
ρ

2

∥∥∥∥∥∥
N∑
n=1

α•n +
∑
j 6=n

I tkj (α•j)

∥∥∥∥∥∥
2

2

+
1
2
‖α•n − α

t
•n‖

2
2n
.

(23)

Then, update ϕ as follows:

ϕt+1 = ϕt − τ · ρ

 N∑
n=1

I t+1kn (α•n)

. (24)

The proposed DIJ-ADMM algorithm has several advan-
tages over the previous ones. For example, as we will show
in Section V-A, it possesses the global convergence with
an high rate o(1/t). In addition, DIJ-ADMM algorithm can
make a subproblem strictly or strongly convex. That is, it can
help to give an unique solution. The process of DIJ-ADMM
algorithm shows in Algorithm 1.

Algorithm 1 DIJ-ADMM algorithm

Input: α0, ϕ0, ρ, n ∈ N
Output: αt , t ∈ T

1 for t = 0, 1, · · · do
2 Update αt in parallel by:

αt+1 = arg min
N∑
n=1

{CT (α•n)+ Ikn (α•n)− ϕtn(α•n)}

3 +
ρ

2

∥∥∥∥∥∥
N∑
n=1

α•n +
∑
j 6=n

I tkj (α•j)

∥∥∥∥∥∥
2

2

+
1
2
‖α•n − α

t
•n‖

2
2n
.

Update

ϕt+1 = ϕt − τ · ρ

 N∑
n=1

I t+1kn (α•n)

 .

F. A CASE STUDY
In this section, we present a case study to map the proposed
DIJ-ADMM algorithm with the considered scenario.

The real-time vision processing application that we consid-
ered in this paper is different from the traditional surveillance
application to find the ‘‘Person of Interest.’’ To ensure public
safety in the smart city, the real-time vision processing appli-
cation identifies behaviors instead of identities of citizens
through smart cameras. After the vision is processed with
the cooperation of CRVs and CRSUs near the smart camera,
it generates an alert in real-time accordingly.

Once accepting the task from smart cameras, the initiator
CRVs can discover both helper CRVs and CRSUs via user
datagram protocol broadcasting messages. Then, the initiator
CRVs sets up initial parameters for the DIJ-ADMM algo-
rithm, e.g., ρ, α0, ϕ0 and τ . It also determines the part
of tasks completed by itself, helper CRVS, and CRSUs via
the proposed DIJ-ADMM algorithm, e.g., αnn, αnι and αnm.
Then, the initiator CRVs transfers the corresponding tasks to
the right CRVs and CRSUs through the CR routers deployed
on them. After completing the task, the initiator CRVs aggre-
gates results from the participated CRVs and CRSUs and
transfers the feedback to smart cameras.

V. PERFORMANCE ANALYSIS
In this section, we analyze the optimality and complexity of
the proposed DIJ-ADMM algorithm in detail and prove that
all of the proposed four algorithms provide privacy preserving
for participated CRVs and CRSUs.

A. OPTIMALITY AND COMPLEXITY ANALYSIS OF THE
PROPOSED DIJ-ADMM ALGORITHM
Lemma 1: When t ≥ 1, we have∥∥<t −<∗∥∥2P − ∥∥∥<t+1 −<∗∥∥∥2P ≥ ∥∥∥<t −<t+1∥∥∥2H ,

14416 VOLUME 7, 2019



Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

where∥∥∥<t −<t+1∥∥∥2
H
:=

∥∥∥αt − αt+1∥∥∥2
P
+

2− τ
ρτ 2

∥∥∥ϕt − ϕt+1∥∥∥2
−
2
τ
(ϕt − ϕt+1)TCT (αt − αt+1),∥∥<t −<∗∥∥2P is the bound of error.

Proof: For the process proofing, please refer to [44,
Lemma 2.1].
Lemma 2: The proposed DIJ-ADMM algorithm possesses

the convergence rate o(1/t) of converging to the global opti-
mal policy for the ST-SC problem.

Proof: First, we prove that the convergence of proposed
DIJ-ADMM algorithm.

WhenH is a positive definite matrix, we have∥∥∥<t −<t+1∥∥∥2
H
≥ ` ·

∥∥∥<t −<t+1∥∥∥2 ≥ 0. (25)

where ` > 0. Then, according to Lemma 1, the following
inequality is established∥∥<t −<∗∥∥2P − ∥∥∥<t+1 −<∗∥∥∥2P ≥ ` · ∥∥∥<t −<t+1∥∥∥2 .

(26)∥∥<t −<∗∥∥2P represents the gap between the proposed DIJ-
ADMM algorithm and the optimal policy after t itera-
tions. (26) indicates that this gap is non-increasing, as well as
this algorithm is converging, e.g.,

∥∥<t −<t+1∥∥2→ 0, which
proves the optimality of the proposed DIJ-ADMM algorithm.
Then, let us prove the convergence rate o(1/t) of proposed

DIJ-ADMM algorithm. We have the following inequality∥∥<t −<∗∥∥2P − ∥∥∥<t+1 −<∗∥∥∥2P ≥ ∥∥∥<t −<t+1∥∥∥2H
≥ ` ·

∥∥∥<t −<t+1∥∥∥2
G
. (27)

summing (27) over t gets
∑
∞

t=1

∥∥<t −<t+1∥∥2G < ∞.

Furthermore,
∑
∞

t=1

∥∥<t −<t+1∥∥2G is monotonically non-
increasing. When t → +∞, the following formula is estab-
lished

t · <2t ≤ <t+1 +<t+2 + · · · + <2t → 0. (28)

thus,
∥∥<t −<t+1∥∥2G = o(1/t) holds. That is,

∥∥αt − αt+1∥∥2 =
o(1/t) and

∥∥ϕt − ϕt+1∥∥2 = o(1/t). It means that the conver-
gence rate of proposed DIJ-ADMM algorithm is o(1/t).

The minimum time complexity of existing algorithms
is O(1/t). However, the proposed DIJ-ADMM algorithm
achieves a lower time complexity with the convergence rate
o(1/t). Note that time complexity is sharply decreased when
the convergence rate changes from O(1/t) to o(1/t).

In the next section, from the perspective of security,
we analyze the ability of preserving the privacy of the pro-
posed four algorithms. Preserving the privacy of users is very
important in task scheduling, but almost all works do not
consider this, such as surrogate vehicle selection strategies
in [40] require multi private attributes (e.g., locations, speed,

computation capability, etc.) of vehicles. Nevertheless, note
that preserving privacy is not the main focus of this paper,
further information about security can be obtained from our
recent work in [42].

B. PRIVACY PRESERVING ANALYSIS OF THE PROPOSED
FOUR ALGORITHMS
Lemma 3:The optimization problem in (5) can be divided into
N independent sub-problems, which means that each CRUs
and CRSUs can independently complete its own computing
tasks, thus protecting the privacy of them.

Proof: We prove the privacy preserving of the proposed
four algorithms from two aspects. First, we analyze the aug-
mented Lagrangian form of the objective function in (5) and
prove that it is separable. We can rewrite (5) as the following:

L(α•1, α•2, · · · , α•N , ϕ,3) =
N∑
i=1

LD(α•n, ϕn,3n), (29)

where

LD(α•n) = D(α•)+ IZ (α•n)+3T
n α•n − ϕn)

+
ρ

2
‖α•n − ϕn‖

2
2 , (30)

and D(α•n) is defined as

D(α•n) = αnn

(
1

µn − αnn

)
+

∑
ι∈N \{n}

αnι

(
snι

+
1

µι −
∑
ι∈N \{n} αnι

)
+

∑
m∈N \{n}

αnmsnm. (31)

Eq. (30) shows that variables in LD are independent from
each other. It validates that the augmented Lagrangian form
of the objective function in (5) can be divided into N sub-
problems and each of them can be solved by the respec-
tive CRVs and CRSUs with their own private information.
Shortly, the proposed algorithms for the objective function
in (5) can preserve the privacy of CRVs and CRSUs in the
system.
Lemma 3 is consistent with the observation in variable

update of four proposed algorithms.

VI. SIMULATION RESULTS
In this section, we provide performance analysis based
on simulation concerning task scheduling for the real-time
vision process applications with the assistance of IoV based
on multi-server mobile edge computing.

A. SIMULATION SETUP
In the simulation, the task publisher (e.g., smart cameras)
publishes a task, e.g., processing real-time vision to ensure
public safety, which is completed with the cooperation of the
CRVs and the CRSUs (as the distributed edge servers). The
number of the CRVs and the CRSUs are 5 and 1, respectively,
but the numbers are not fixed to validate the effect. The task
publisher, CRVs and the CRSUs are connected via Wi-Fi

VOLUME 7, 2019 14417



Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

FIGURE 3. Completion time on number of iterations with different node
numbers when the task arrival rate is fixed. (a) Completion time vs.
Number of iterations (N = 6). (b) Completion time vs. Number of
iterations (N = 60).

networks, which is ubiquitous in future smart city, for exam-
ple, new Wi-Fi standards (802.11ah) have been developed
to operate below 1GHz that have a greater range [43]. The
distance between the CRVs andCRSUs follows the uniformly
randomly distribution with the mean of 90 meters. The con-
sidered network system is managed by a network operator
(e.g., cloud center.).

In the following analysis of the simulation results, two
comparative experiments are set to evaluate the performance
of the proposed algorithms. 1) The comparison between
the no cooperation algorithm and the cooperation algorithm.
No cooperation algorithm refers to processing tasks indepen-
dently by each individual node and the algorithm with coop-
eration is represented by the VS-ADMM algorithm proposed
in this paper. 2) The comparison of the four task scheduling
algorithms proposed in this paper.

B. CONVERGENCE ANALYSIS
First, we consider the convergence iperformance of each
algorithm with respect to the number of iterations in Fig-
ure 3. From Figure 3(a), we find that all algorithms can
converge to the global optimal value and the proposed DIJ-
ADMM algorithm has the fastest convergence rate (roughly
10 iterations) and the shortest completion time when the
number of nodes (nodes refers to CRVs and CRSUs) is 6.
From Figure 3(b), we find that the VS-ADMM algorithm,
GS-ADMM algorithm and DIJ-ADMM algorithm can con-
verge to the global optimal value when the number of nodes
is 60, but the GS-ADMM algorithm takes the longest time
to complete the task. Because the parameters in GS-ADMM

FIGURE 4. Completion time on different number of nodes. (a) Completion
time vs. Number of nodes. (b) Completion time vs. Number of nodes.

algorithm are updated one after another instead of parallelly,
as described in section IV-C, which brings a long processing
time. To sum up, the proposed DIJ-ADMM algorithm has the
fastest convergence rate and the least completion time, which
is consistent with the conclusions we made in the algorithm
description and theoretical performance analysis.

C. PARAMETERS ANALYSIS
Further, we explore the relationship between the number of
nodes and the convergence performance. From Figure 4(a),
we observe that the completion time of the no cooperation
algorithm is much larger than the algorithm with cooperation
and the gap increases as the number of nodes increases. For
that reason, the cooperation algorithm can make full use of
the resource of the surrounding nodes to offload computation
tasks. From Figure 4(b), we observe that the VS-ADMM
algorithm and the DJ-ADMM algorithm converge slowly
as the number of nodes increases. However, the proposed
DIJ-ADMM algorithm still maintains good convergence per-
formance and the shortest completion time when N is large.
Next, we explore the impact of task arrival rate on task

completion time. Here, we set the task arrival rate of all nodes
to a fixed value except for node n. From Figure 5(a), we find
that the task completion time of both no cooperation algo-
rithm and the proposed VS-ADMM algorithm increases as
the task arrival rate increases. However, the task completion
time of the DIJ-ADMM algorithm is much smaller than the
no cooperation algorithm and it increases slower than the no
cooperation algorithm. From Figure 5(b), we find that the
four algorithms approximately increase linearly with the task
arrival rate and the DIJ-ADMM algorithm has the smallest
increase with the arrival rate of the task.

14418 VOLUME 7, 2019



Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

FIGURE 5. Completion time on different task arrival rate. (a) Completion
time vs. Task arrival rate of node n (N = 6). (b) Completion time vs. Task
arrival rate of node n (N = 6).

FIGURE 6. Offloaded task on different task arrival rate. (a) Offloaded
task vs. Task arrival rate of node n. (b) Offloaded task vs. Task arrival rate
of node n.

In Figure 6, we study the relationship between the amount
of offloaded tasks and the task arrival rate. Figure 6(a) reflects
that the amount of offloaded tasks of both no cooperation
algorithm and cooperation algorithm have an approximate
linear growth relationship with the task arrival rate when
the task arrival rate is small (about 80 or less). After that,
both algorithms converge to a fixed value individually and

FIGURE 7. Performance comparison on different task arrival rate of
node n. (a) Offloaded tasks vs. Task arrival rate of node n (No cooperation
algorithm). (b) Offloaded tasks vs. Task arrival rate of node n
(Cooperation algorithm). (c) Expense vs. Task arrival rate of node n
(Cooperation algorithm).

the VS-ADMM algorithm converges to a value much larger
than the no cooperation algorithm. According to Figure 6(b),
we observe that the DIJ-ADMM algorithm is capable of
scheduling the most tasks among four proposed distributed
algorithms.

Next, in Figure 7, we discuss the impact of task arrival
rate on the cost and the amount of offloaded tasks. From
Figures 7(a), 7(b) and 7(c), the cooperation algorithm can
balance the cost and the amount of offloaded tasks of different
nodes. Because in the cooperation algorithm, the task initiator
node n process the task by itself when the task arrives at a
small rate. It offloads the tasks to the other nodes when the
task arriving is beyond the capability of initiator node or a
ultra low latency is required. The cooperation algorithm can
offload to helper CRVs and CRSUs in our scenario.

D. TRADEOFF ANALYSIS
In Figure 8, we investigate the tradeoff between completion
time and cost. Here, we merely change the cost of node

VOLUME 7, 2019 14419



Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

FIGURE 8. Tradeoff between completion time and cost. (a) Completion
time vs. Cost. (b) Completion time vs. Cost.

n while the other nodes are constant. From Figure 8(a),
we observe that the completion time for both of the cooper-
ation algorithm and no cooperation algorithm decrease with
the increase of the cost. The decrease speed is very large when
the cost is small (approximately within 60). Moreover, as the
number of nodes increases, the completion time decreases
drastically. From Figure 8(b), we observe that the proposed
four algorithms reduce the completion time with the increase
of the cost, but the DIJ-ADMM algorithm has the fastest
decline rate and the fastest tendency to obtain the stable value.

VII. CONCLUSIONS
In this paper, we utilize the resources of the IoV to
handle the tasks produced by computation-intensive and
time-sensitive applications in smart city.We consider the real-
time vision process application as the scenario in this paper.
To acquire the resources from the IoV for task processing,
we formulate an optimization problem to minimize the com-
pletion time with a given cost of task scheduling. Further-
more, we develop four evolving task scheduling algorithms
to solve the proposed problem based on the classic ADMM
algorithm: VS-ADMM, GS-ADMM, DJ-ADMM, and DIJ-
ADMM algorithm. By theoretical analysis, we observe that
the DIJ-ADMM algorithm can achieve the optimality with a
significantly fast convergence rate o(1/t) and these four algo-
rithm have better performance than the existing solutions.
At the same time, these algorithms have the ability of privacy
preserving. Comparison with the existing methods on task
scheduling proves that our algorithms can greatly reduce task
completion time and increase the number of offloaded tasks.
Additionally, through the comparison of the proposed four

methods, we find that the proposed DIJ-ADMM algorithm
achieves optimal performance while significantly reduces
complexity.

REFERENCES
[1] The Statistics Portal. (Jul. 2018). Spending on Smart Cities World-

wide in 2015 and 2020 (in Billion U.S. Dollars). [Online]. Available:
http://bit.ly/2rxQF6Z

[2] J. Woetzel et al., ‘‘Smart cities: Digital solutions for a more livable future,’’
McKinsey Global Inst., New York, NY, USA, Tech. Rep., Jun. 2018.
[Online]. Available: https://mck.co/2JCWOdq

[3] X. Yao, Y. Lin, Q. Liu, and J. Zhang, ‘‘Privacy-preserving search over
encrypted personal health record in multi-source cloud,’’ IEEE Access,
vol. 6, pp. 3809–3823, Jan. 2018.

[4] H. Ding, C. Zhang, Y. Cai, and Y. Fang, ‘‘Smart cities on wheels:
A newly emerging vehicular cognitive capability harvesting network for
data transportation,’’ IEEEWireless Commun., vol. 25, no. 2, pp. 160–169,
Oct. 2018.

[5] J. Feng, S. Yang, and Z. Feng, ‘‘Vehicle-assisted offloading on metropoli-
tan streets: Enhancing geographical fluidity of wireless resources,’’ IEEE
Wireless Commun. Lett., vol. 6, no. 5, pp. 622–625, Oct. 2017.

[6] X. Hou, Y. Y. Lu, and S. Dey, ‘‘Wireless VR/AR with Edge/cloud comput-
ing,’’ in Proc. ICCCN, Vancouver, BC, Canada, Jul./Aug. 2017, pp. 1–8.

[7] National Science Foundation. (2018). SCC: Building Safe and Secure
Communities through Real-Time Edge Video Analytics. [Online]. Avail-
able: http://bit.ly/2JTOFy2

[8] V. D. Rob. (Jan. 2015). Predicts 2015: The Internet of Things. [Online].
Available: http://www.gartner.com/document/2952822

[9] M. Weinberger. (Jan. 2016). Processor Company Nvidia’s New Car-
Mounted Supercomputer is as Powerful as 150 MacBook Pros. [Online].
Available: https://read.bi/2PjWbYZ

[10] H. Ding and Y. Fang, ‘‘Virtual infrastructure at traffic lights:
Vehicular temporary storage assisted data transportation at signalized
intersections,’’ IEEE Trans. Veh. Technol., to be published,
doi: 10.1109/TVT.2018.2871414.

[11] T. McGuckin et al. (2017). Leveraging the Promise of Connected
and Autonomous Vehicles to Improve Integrated Corridor Management
and Operations: A Primer. [Online]. Available: https://ops.fhwa.dot.gov/
publications/fhwahop17001/fhwahop17001.pdf

[12] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, and S. Banerjee, ‘‘The
design and implementation of a wireless video surveillance system,’’ ACM
MobiCom, Paris, France, Sep. 2015, pp. 426–438.

[13] Y. Wu et al., ‘‘Secrecy-driven resource management for vehicular com-
putation offloading networks,’’ IEEE Netw., vol. 32, no. 3, pp. 84–91,
May/Jun. 2018.

[14] X. Yao, R. Zhang, Y. Zhang, and Y. Lin, ‘‘Verifiable social data outsourc-
ing,’’ in Proc. IEEE INFOCOM, Atlanta, GA, USA, May 2017, pp. 1–9.

[15] Y. Deng, Z. Chen, D. Zhang, and M. Zhao, ‘‘Workload scheduling toward
worst-case delay and optimal utility for single-hop fog-IoT architecture,’’
IET Commun., vol. 12, no. 17, pp. 2164–2173, Oct. 2018.

[16] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing in
software defined ultra-dense network,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[17] Y. Mao, J. Zhang, Z. Chen, and K. B. Letaief, ‘‘Dynamic computation
offloading for mobile-edge computing with energy harvesting devices,’’
IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[18] Y. Hao,M. Chen, L. Hu,M. S. Hossain, andA. Ghoneim, ‘‘Energy efficient
task caching and offloading for mobile edge computing,’’ IEEE Access,
vol. 6, pp. 11365–11373, Mar. 2018.

[19] L. Pu, X. Chen, J. Xu, and X. Fu, ‘‘D2D fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted
D2D collaboration,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 12,
pp. 3887–3901, Dec. 2016.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ‘‘Distributed
optimization and statistical learning via the alternating direction method
of multipliers,’’ Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[21] A. ur R. Khan, M. Othman, A. N. Khan, J. Shuja, and S. Mustafa, ‘‘Com-
putation offloading cost estimation in mobile cloud application models,’’
Wireless Pers. Commun., vol. 97, no. 3, pp. 4897–4920, Dec. 2017.

[22] L. Xiao, C. Xie, T. Chen, H. Dai, and H. V. Poor, ‘‘A mobile offloading
game against smart attacks,’’ IEEE Access, vol. 4, pp. 2281–2291, 2016.

14420 VOLUME 7, 2019

http://dx.doi.org/10.1109/TVT.2018.2871414


Y. Deng et al.: Task Scheduling for Smart City Applications Based on Multi-Server MEC

[23] S. J. Lee andX. Lin, ‘‘Energy-aware paired sampling-based decisionmodel
for dynamic mobile-to-mobile service offloading,’’ IEEE Access, vol. 5,
pp. 5031–5045, Apr. 2017.

[24] W. Zhang, Z. Zhang, S. Zeadally, and H.-C. Chao, ‘‘Efficient task
scheduling with stochastic delay cost in mobile edge computing,’’
IEEE Commun. Lett., vol. 23, no. 1, pp. 4–7, Jan. 2018, doi:
10.1109/LCOMM.2018.2879317.

[25] W. Zhang, Z. Zhang, and H.-C. Chao, ‘‘Cooperative fog computing for
dealing with big data in the Internet of vehicles: Architecture and hier-
archical resource management,’’ IEEE Commun. Mag., vol. 55, no. 12,
pp. 60–67, Dec. 2017.

[26] M. Chen, Y. Hao, L. Hu, M. Hossain, and A. Ghoneim, ‘‘Edge-CoCaCo:
Towards joint optimization of computation, caching and communication on
edge cloud,’’ IEEEWireless Commun., vol. 25, no. 3, pp. 21–27, Jun. 2018.

[27] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[28] M. Chen et al., ‘‘A dynamic service-migration mechanism in edge cogni-
tive computing,’’ ACM Trans. Internet Techn., to be published. [Online].
Available: https://arxiv.org/pdf/1808.071981

[29] M. Chen,W. Li, Y. Hao, Y. Qian, and I. Humar, ‘‘Edge cognitive computing
based smart healthcare system,’’ Future Gener. Comput. Syst., vol. 86,
pp. 403–411, Sep. 2018.

[30] M. Chen, Y. Hao, K. Lin, Z. Yuan, and L. Hu, ‘‘Label-less learning for
traffic control in an edge network,’’ IEEE Netw., vol. 32, no. 6, pp. 8–14,
Nov./Dec. 2018.

[31] P. P. Mach and Z. Becvar. (2017). ‘‘Mobile edge computing: A sur-
vey on architecture and computation offloading.’’ [Online]. Available:
https://arxiv.org/abs/1702.05309

[32] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[33] T. X. Tran and D. Pompili. (2017). ‘‘Joint task offloading and resource
allocation for multi-server mobile-edge computing networks.’’ [Online].
Available: https://arxiv.org/abs/1705.00704

[34] M. Hong, Z.-Q. Luo, and M. Razaviyayn, ‘‘Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,’’ SIAM J. Optim., vol. 26, no. 1, pp. 337–364, 2016.

[35] R. Zhang and J. Kwok, ‘‘Asynchronous distributed ADMM for consensus
optimization,’’ in Proc. Int. Conf. Mach. Learn., Jan. 2014, pp. 1701–1709.

[36] H. Ding, C. Zhang, B. Lorenzo, and Y. Fang, ‘‘Access point recruitment in
a vehicular cognitive capability harvesting network: How much data can
be uploaded?’’ IEEE Trans. Veh. Techn., vol. 67, no. 7, pp. 6438–6445,
Jul. 2018.

[37] Y. Xiao and M. Krunz, ‘‘QoE and power efficiency tradeoff for fog com-
puting networks with fog node cooperation,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), May 2017, pp. 1–9.

[38] C. Chen, B. He, Y. Ye, and X. Yuan, ‘‘The direct extension of ADMM for
multi-block convex minimization problems is not necessarily convergent,’’
Math. Program., vol. 155, nos. 1–2, pp. 57–79, 2016.

[39] B. He, L. Hou, and X. Yuan, ‘‘On full Jacobian decomposition of the
augmented Lagrangian method for separable convex programming,’’ SIAM
J. Optim., vol. 25, no. 4, pp. 2274–2312, 2015.

[40] B. Li, Y. Pei, H. Wu, Z. Liu, and H. Liu, ‘‘Computation offloading
management for vehicular ad hoc cloud,’’ in Proc. Int. Conf. Algorithms
Architectures Parallel Process., 2014, pp. 728–739.

[41] D. Bertsekas and J. Tsitsiklis. (2003). Parallel and Distributed Compu-
tation: Numerical Methods. [Online]. Available: https://dspace.mit.edu/
bitstream/handle/1721.1/3719/part1.pdf

[42] X. Yao, Y. Chen, R. Zhang, Y. Zhang, and Y. Lin, ‘‘Beware of what you
share: Inferring user locations in Venmo,’’ IEEE Internet Things J., vol. 5,
no. 6, pp. 5109–5118, Dec. 2018, doi: 10.1109/JIOT.2018.2844218.

[43] TechRadar Pro. (Jul. 2018). Are WiFi Networks Ready for Smart Cities?
[Online]. Available: https://www.techradar.com/news/are-wifi-networks-
ready-for-smart-cities

[44] W. Deng, M. J. Lai, Z. M. Peng, and W. T. Yin, ‘‘Parallel multi-
block ADMM with o(1/k) convergence,’’ J. Sci. Comput., vol. 66, no. 3,
pp. 889–916, Mar. 2016.

YIQIN DENG received the B.S. degree in project
management from the Hunan Institute of Engi-
neering, in 2014, and the M.S. degree in software
engineering from the Central South University,
China, in 2017, where she is currently pursuing
the Ph.D. degree in computer science and tech-
nology. Her research interests include edge/fog
computing, the Internet of Vehicles, smart city,
and resource management. She is a member of the
IEEE and the China Computer Federation.

ZHIGANG CHEN received the B.S., M.S., and
Ph.D. degrees from Central South University,
China, in 1984, 1987, and 1998, respectively. He
is currently a Professor, a Ph.D. Supervisor, and
the Dean of the School of Software, Central South
University. His research interests include cluster
computing, parallel and distributed systems, com-
puter security, and wireless networks. He is also
the Director and an Advanced Member of the
China Computer Federation (CCF) and a member

of the Pervasive Computing Committee of CCF.

XIN YAO received the B.S. degree in computer
science from Xidian University, in 2011, and the
M.S. degree in software engineering and the Ph.D.
degree in computer science and technology from
Hunan University, in 2013 and 2018, respectively.
From 2015 to 2017, he was a Visiting Scholar
with Arizona State University. He is currently an
Assistant Professor with Central South University.
His research interests include security and privacy
issues in social networks, the Internet of Things,

cloud computing, and big data. He is a member of the IEEE and the China
Computer Federation.

SHAHZAD HASSAN received the B.S. degree in
software engineering from Riphah International
University, Pakistan, in 2013, and the M.Eng.
degree in software engineering from Central South
University, China, in 2016, where he is currently
pursuing the Ph.D. degree in computer application
and technology. His research interests include sen-
sors, the Internet of Things, fog computing, and
edge computing.

JIA WU received the Ph.D. degree in soft-
ware engineering from Central South University,
Changsha, Hunan, China, in 2016, where he cur-
rently holds a Postdoctoral position at the School
of Information Science and Engineering. Since
2010, he has been an Algorithm Engineer with
IBM, Seoul, South Korea, and Shanghai, China.
His research interests include wireless commu-
nications and networking, wireless networks, big
data research, and mobile health in network com-

munication. He is a Senior Member of the China Computer Federation and
a member of the IEEE and ACM.

VOLUME 7, 2019 14421

http://dx.doi.org/10.1109/LCOMM.2018.2879317
http://dx.doi.org/10.1109/JIOT.2018.2844218

	INTRODUCTION
	RELATED WORK
	SYSTEM MODEL AND PROBLEM FORMULATION
	OVERVIEW
	COMPLETION TIME
	COST
	PROBLEM FORMULATION

	FOUR DISTRIBUTED TASK SCHEDULING ALGORITHMS FOR ST-SC PROBLEM
	PROBLEM ANALYSIS
	A DISTRIBUTED VARIABLE SPLITTING ADMM ALGORITHM
	A DISTRIBUTED GAUSS-SEIDEL ADMM ALGORITHM
	A DISTRIBUTED JACOBI ADMM ALGORITHM
	A DISTRIBUTED IMPROVED JACOBI ADMM ALGORITHM
	A CASE STUDY

	PERFORMANCE ANALYSIS
	OPTIMALITY AND COMPLEXITY ANALYSIS OF THE PROPOSED DIJ-ADMM ALGORITHM
	PRIVACY PRESERVING ANALYSIS OF THE PROPOSED FOUR ALGORITHMS

	SIMULATION RESULTS
	SIMULATION SETUP
	CONVERGENCE ANALYSIS
	PARAMETERS ANALYSIS
	TRADEOFF ANALYSIS

	CONCLUSIONS
	REFERENCES
	Biographies
	YIQIN DENG
	ZHIGANG CHEN
	XIN YAO
	SHAHZAD HASSAN
	JIA WU


