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ABSTRACT This paper studies the problem of adaptive fault estimation and accommodation for a class
of stochastic nonlinear systems with unknown time-varying faults. Different from existing fault estimation
methods, a novel adaptive prescribed performance fault estimator is designed, which guarantees that the
fault estimation error is confined within a pre-set region, and a better estimation accuracy is obtained. The
designed fault-tolerant tracking controller is capable of attenuating the effect of faults through using back-
stepping techniques. Furthermore, the proposed method guarantees that all the error signals of the closed-
loop system be bounded in probability, the fault estimation error and output tracking error both converge
to desired neighborhoods of origin in the sense of quadratic mean value. Finally, the simulation results are
provided to verify the method proposed in this paper.

INDEX TERMS Adaptive fault estimation, fault-tolerant control, stochastic nonlinear systems, back-
stepping technique.

I. INTRODUCTION
It is well known that fault detection (FD) and fault-tolerant
control (FTC) have been an active research area over the
past several decades, and it has been applied to flight con-
trol systems [1], [2], complex networks [3], [4], chemi-
cal processes [5], robot models [6], fuzzy methods [7]–[9],
Markov jump systems [10]–[12]. Particularly, a fault-tolerant
controller was designed based on adaptive fault estimation
in [13] for nonlinear system with dead-zone nonlinearity,
and for a class of stochastic nonlinear systems, fault esti-
mation and fault tolerant control problems are considered
in [14] and [15], respectively. Fuzzy adaptive fault-tolerant
tracking controller was designed to compensate actuator fail-
ures in [16]. In [17] and [18], fault detection methods are
proposed for switched control systems in finite frequency
domain and full frequency domain, respectively. In [19],
a fault estimation scheme was developed for a class of linear
systems with Lipschitz nonlinearities and actuator failures.
In addition, in [20] and [21], sensor failures were compen-
sated by using adaptive mechanisms for output feedback
systems.

On the other hand, stochastic disturbances often exist
in practical systems, which may lead to severe perfor-
mance deterioration or even instability of closed-loop sys-
tems [22]–[24]. Many significant control strategies have been
proposed for stochastic nonlinear systems [25]–[34]. In [35],
the tracking control object in the sense of quadratic mean
value can be achieved for a class of stochastic nonlinear
systems, and the proposed method can guarantee that all the
closed-loop signals be bounded in probability. Liu et al. [36]
studied the decentralized adaptive control strategy for a class
of large-scale stochastic nonlinear systems based on output
feedback. With unknown nonlinear functions being handled
by fuzzy logic systems, the adaptive fuzzy control problem
for a class of uncertain nonlinear stochastic systems was
considered in [37]. Based on intermediate value theorem
and neural network approximation technique, the adaptive
tracking control scheme for a class of stochastic nonlinear
systems with dead-zone nonlinearities was developed in [38].
Moreover, for non-Gaussian stochastic distributed control
systems, a fault diagnosis and fault-tolerant control method
was proposed by using Takagi-Sugeno fuzzy model in [39].
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However, to the best knowledge of us, fault estimation
and accommodation for uncertain nonlinear systems with
stochastic disturbances have not been well investigated in
the literature. The main difficulties are that 1) the design of
observer-based fault estimation algorithms are quite difficult
for uncertain nonlinear system; and 2) the exact informa-
tion of stochastic disturbance is unknown, which may lead
to severe deterioration in the accuracy of fault estimation.
To deal with these issues, the prescribed performance con-
straint technique [40]–[43] is introduced in this paper to
design fault estimation and accommodation schemes. Com-
pared with existing methods, the main contributions of this
paper are summarized as follows: 1) A novel adaptive pre-
scribed performance fault estimator (APPFE) is designed to
guarantee that fault estimation error is confined within a
pre-set region for a class of stochastic nonlinear systems,
which is more general than existing methods. 2) A fault-
tolerant tracking control scheme is developed to compensate
faults based on back-stepping technique, where disturbances
are also attenuated effectively. 3) A prescribed performance
constrained term is constructed such that the adaptive fault
estimation law proposed in this paper can receive better
estimation accuracy than exiting method. In addition, the
proposed method guarantees that all the signals of the closed-
loop system be bounded in probability, and the fault esti-
mation error and output tracking error converge to desired
neighborhoods of origin in the sense of quadratic mean value.

The organization of the rest of this paper are arranged as
follows. In Section 2, the problem formulation and some
related assumptions are given. In Section 3, APPFE is
designed. In Section 4, a fault-tolerant tracking control
scheme is proposed. Simulation results are provided in
Section 5 to verify the efficiency of the approach developed
in this paper. Section 6 concludes this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. STOCHASTIC NONLINEAR SYSTEM DESCRIPTIONS
Consider the following stochastic nonlinear system

dx1 = (x2 + f1(x̄1))dt +W T
1 (y)dω,

dx2 = (x3 + f2(x̄2))dt +W T
2 (y)dω,

...

dxn−1 = (xn + fn−1(x̄n−1))dt +W T
n−1(y)dω,

dxn = (τv+ fn(x̄n)+ θ (t))dt +W T
n (y)dω,

y = x1 (1)

where x̄i = [x1, x2, · · · , xi]T ∈ Ri, i = 1, 2, · · · , n are
system states, v ∈ R is control input, and y ∈ R denotes the
output. ω is an l− dimensional standard Brownian motion,
which is defined on the complete probability space (�,F ,P).
� denotes a sample space, F is a σ−field, and P represents
a probability measure, respectively. τ is a known control
gain, fj(x̄j+1) : Rj+1

→ R, j = 1, 2, · · · , n − 1,Wi(·) :
R → Rl stand for known smooth system functions with

fi(0) = Wi(0) = 0, i = 1, 2, · · · , n, and θ (t) is an unknown
time-varying fault function which needs to be estimated.

B. STOCHASTIC STABILITY
The following definitions and lemmas are essential for later
development, consider the following stochastic system

dx = F(x)dt + H (x)dω (2)

where x and ω are defined in (1), and F(·) : Rn
→ Rn and

H (·) : Rn
→ Rn×r are locally Lipschitz functions in x and

satisfy F(0) = 0 and H (0) = 0, respectively.
Definition 1 [44]: For any given V (x) ∈ C2, associated

with the stochastic differential equation (2), define the differ-
ential operator L as follows

LV = (
∂V
∂x

)TF(x)+
1
2
Tr{HT (x)

∂2V
∂x2

H (x)} (3)

where Tr(A) is the trace of A.
Definition 2 [44]: The solution process {x(t)|t ≥ 0} of

stochastic system (2) is said to be bounded in probability,
if limn→∞ supt≥0 P{||x(t)|| > n} = 0, where P{A} denotes
the probability of event A.
Lemma 1 [45]: Consider the stochastic system (2).

If there exists a positive definite, radially unbounded, twice
continuously differentiable Lyapunov function V (·) : Rn

→R,
and constants λ1 > 0, λ2 > 0 such that the following
inequality

LV ≤ −λ1V + λ2 (4)

then the system (2) has a unique solution almost surely and
is bounded in probability.
Lemma 2 [48]: For ∀(X ,Y ) ∈ R2, the following inequal-

ity holds

XY ≤
ca0
a
|X |a +

1

bcb0
|Y |b (5)

where c0 > 0, a > 1, b > 1, and 1
a +

1
b = 1.

The objects of this paper are as follows: 1) a APPFE
is designed such that the fault estimation error is confined
within a pre-set region; 2) the designed fault-tolerant track-
ing controller guarantees that all the closed-loop signals are
bounded in probability; and 3) the system output tracking
error converges to desired neighborhoods of origin in the
sense of quadraticmean value. To achieve these control objec-
tives, the following assumptions are necessary.
Assumption 1 The time-varying fault function θ (t) and its

derivative θ̇ (t) satisfy that θ̄∗l ≤ |θ (t)| ≤ θ̄
∗
u and |θ̇ (t)| ≤

¯̇θ∗

with θ̄∗l and θ̄
∗
u being two positive known constants, and

¯̇θ∗

being a positive unknown constant, respectively.
Assumption 2 The nonlinear function fi(·) is assumed to be

subject to Lipschitz for any xi1, xi2 ∈ Ri, i.e., there exist the
Lipschitz constants Li such that |fi(xi1) − fi(xi2)| ≤ Li‖xi1 −
xi2‖, i = 1, 2, · · · , n.
Assumption 3 [38]: For each 1 ≤ i ≤ n, there exists a

known nonnegative smooth function ωi(·) : R → R with
ωi(0) = 0 such that ||Wi(y)|| ≤ ωi(y).
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Remark 1 Assumption 1 is standard in the literature.
A large number of fault signals and their derivatives are
bounded, for slowing time varying faults [46] and actuator
stuck faults [47], the bounds of faults can be known. Assump-
tion 2 implies that nonlinear functions fi(·), i = 1, 2, · · · , n
are subject to Lipschitz, and it is common for many practi-
cal systems. By constructing nonnegative smooth functions,
Assumption 3 means that all the stochastic disturbances of
nonlinear system (1) are bounded within an appropriate
compact set.

III. ADAPTIVE PRESCRIBED PERFORMANCE
FAULT ESTIMATOR DESIGN
In this section, to achieve the fault estimation and fault-
tolerant tracking control objective, a novel APPFE is
designed to obtain the estimates of both unknown faults
and unmeasured states. Firstly, note that stochastic nonlinear
system (1) can be rewritten as

dx = (Ux + Ly+
n−1∑
i=1

Bifi(x̄i)

+B(τv+ fn(x)+ θ (t)))dt +W (x)dw

y = Cx (6)

where L = [l1, l2, · · · , ln]T ,B = [0, 0, · · · , 1]T ,Bi =
[0, · · · , 0, 1︸︷︷︸

ith

, 0, · · · , 0]T , i = 1, 2, · · · , n − 1,W (x) =

[W1(y),W2(y), · · · ,Wn(y)]T ,C = [1, 0, · · · , 0] and

U =


−l1 1 0 · · · 0
−l2 0 1 · · · 0

. . .
. . .

−ln−1 0 0 · · · 1
−ln 0 0 · · · 0

 (7)

By choosing appropriate parameters li, i = 1, 2, · · · , n,
U can be constructed as an Hurwitz matrix from the structure
of U . Moreover, there exists a positive definite matrix P =
PT > 0 such that

UTP+ PU = −Q (8)

withQ = QT > 0, whereU ,P,Q are matrices of appropriate
dimensions.

Next, the APPFE is designed as follows

˙̂x = Ux̂ + Ly+
n−1∑
i=1

Bifi( ˆ̄xi)

+B(τv+ fn(x̂)+ θ̂ (t))

ŷ = Cx̂ (9)

with fault estimation update law

˙̂
ξ = −κ0ξ̂ − κ0(τv+ fn(x̂)+ κ0x̂n)+ N (θσ ) (10)

where v is control input and ξ = θ−κ0xn, ξ̂ = θ̂−κ0x̂n, θ̃ =
θ − θ̂ with θ̂ being the estimation of θ , and κ0 > 0, li,

i = 1, 2, · · · , n are corresponding design parameters. Espe-
cially, prescribed performance function N (θσ ) is defined as

N (θσ )=
1
2

θσ

ρ2θ − θ
2
σ

+ τ0θσ − κ0ln(y− x̂1)+ ε
−1
0 ρ2θ θσ (11)

with θσ being chosen as

θσ =


θσ0, θ̂ ≤ θ̄∗l ,

θ̄σ , θ̄∗l < θ̂ < θ̄∗u ,

−θσ0, θ̂ ≥ θ̄∗u

(12)

where τ0, κ0, ε0, θσ0 are positive constants, and ρθ is a pos-
itive adjustable parameter satisfying |θ̃ | ≤ θσ0 < ρθ , and
θ̄σ = θ̄

∗
u − θ̂ satisfying |θ̄σ | ≤ θ

∗

σ0 < ρθ , where θ∗σ0 is a posi-
tive constant. For convenience, denote θσm = max{θσ0, θ∗σ0}
and a prescribed set �θ̃ := {θ̃ ||θ̃ | < ρθ }, which will be
specified later.
Remark 2 It should be pointed out that the proposed

adaptive fault estimation algorithm is different from existing
results. By introducing a nonlinear prescribed performance
term N (θ̃ ), both the unmeasurable states and unknown fault
signals are estimated by the APPFE in (9)-(12) with better
estimation accuracy. In addition, the fault estimation error θ̃
is confined in a pre-assigned set �θ̃ by the driving signal v
and the tuning signal θσ , respectively.
Based upon (6) and (9), the estimation error equation of the

stochastic nonlinear system (1) can be obtained as

dx̃ = (Ux̃ +
n−1∑
i=1

Bi(fi(x̄i)− fi( ˆ̄xi))

+B(fn(x)− f̂n(x̂)+ θ̃ (t)))dt +W (x)dw (13)

where x̃ = x − x̂ is the observer error vector. Furthermore,
the following lemma is necessary for the stability analysis.
Lemma 3 Under Assumptions 1-3, given positive con-

stants τ0, κ0, εi, i = 0, 1, 2, 3, 4, if the initial value of θ̃
satisfies θ̃ (0) ∈ �θ̃ , fault estimator (9)-(12) guarantees that
fault estimation error θ̃ is uniformly ultimately bounded.

Proof: Choose Lyapunov function

V0 = x̃TPx̃ +
1
2
log(

ρ2θ

ρ2θ − θ̃
2
)+

1
2
κ−10 ξ̃2

for the error system (13), similar to the proof of
[41, Lemma 1], we can obtain that the fault estimator
(9)-(12) guarantee that the following inequality holds

LV0 ≤ −x̃T (Q− µI )x̃ − χξ̃2 −
τ0θ̃

2

ρ2θ − θ̃
2
+ ν(y) (14)

hold, where µ = ε0‖P‖2 +
∑n

i=1 Li‖P‖ +
L2n
2ε2
+

κ0
2ε2
+

l2n
2ε4
, χ = 1 −

κ−10
2 −

ε1
2 −

ε2
2 −

κ0ε3
2 −

κ−10 ε4
2 and ν(y) =

||P||
∑n

i=1 W̄
2
i ω

2
i (y)+

1
2
¯̇θ∗2+ε−11 θ̄∗2+

κ−10
2 (τ0ρθ+ 1

2ρθ
+
ρ3θ
ε0
)2,

in addition, since log(
ρ2θ

ρ2θ−θ̃
2 ) <

θ̃2

ρ2θ−θ̃
2 where ˜|θ | < ρθ [41],

we have that θ̃ is uniformly ultimately bounded by adjusting
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parameters τ0, κ0, εi, i = 0, 1, 2, 3, 4 appropriately, this
completes the proof.
Remark 3 A novel adaptive fault estimation law (10) with

a prescribed performance term (11) and a tuning func-
tion (12) is designed to obtain better fault estimation per-
formance. Also, the proposed adaptive law (10) will degrade
into (17) of [13] when the prescribed performance term
N (θσ ) becomes zero. This implies that (17) of [13] is a special
case of (10) of this paper.

IV. FAULT-TOLERANT TRACKING CONTROLLER DESIGN
In this section, a fault-tolerant tracking control schemewill be
developed for stochastic nonlinear system (1) based on back-
stepping design method. Accordingly, the recursive design
procedure contains n steps. From Step 1 to n − 1, a virtual
control is constructed at each step by Young’s inequality and
Itô formula. In the end, the actual control v is designed at
Step n. For this purpose, the controller design begins with the
following transformations

e1 = y− yd
ei = x̂i − αi−1, i = 2, 3, · · · , n (15)

where yd is a reference signal of n-order differentiability,
αi−1 is the virtual control function in Step i − 1, and the
actual controller v will be given in Step n. For simplicity,
denote ȳ(i)d = [yd , ẏd , · · · , y

(i)
d ]T , i = 1, 2, · · · , n − 1. Next,

the standard back-stepping method will be used to design
fault-tolerant tracking controller.

Step 1: Invoking (1), (15) and Itô formula, it can be
obtained that

de1 = (x2 + f1(x1)− ẏd )dt +W T
1 (y)dw

= (x̂2 + x̃2 + f1(x1)− ẏd )dt +W T
1 (y)dw (16)

Choose the Lyapunov function as follows

V1 = V0 +
1
4
e41 (17)

Based on (16), taking the differential operator of (17) yields

LV1 = LV0 + e31(x̂2 + x̃2 + f1(x1)− ẏd )+
3
2
e21||W1(y)||2

≤ −x̃T (Q− µI )x̃ − χξ̃2 −
τ0θ̃

2

ρ2θ − θ̃
2
+ ν(y)+ e31x̃2

+ e31(x̂2 + f1(x1)− ẏd )+
3
2
e21||W1(y)||2 (18)

By triangle inequalities e31x̃2 ≤
1
2e

6
1 +

1
2 ||x||

2 and
e21||W1(y)||2 ≤ 1

2c
2
1 +

1
2c21
e41ω

4
1(y), we have

LV1 ≤ −x̃T (Q− (µ+
1
2
)I )x̃ − χξ̃2 −

τ0θ̃
2

ρ2θ − θ̃
2
+ ν(y)

+ e31(x̂2 + S1(
ˆ̄E1))−

3
4
e41 +

3
4
c21 (19)

where c1 > 0 is a design parameter, and S1( ˆ̄E1) =
3
4c21
e1ω

4
1(y) +

1
2e

3
1 +

3
4e1 − ẏd with ˆ̄E1 being ˆ̄E1 =

[x1, yd , ẏd ]T ∈ R3.

Furthermore, it should be noted that ||P||
∑n

i=1 ω
2
i (y) ≤

||P||
∑n

i=1 ω
∗2
i with ω∗i being an upper bound of ωi(y) over

the corresponding compact �̄ ˆ̄E1
. Accordingly, setting ν∗ =

||P||
∑n

i=1 ω
∗2
i +

κ−10
2 (τ0ρθ + 1

2ρθ
+

ρ3θ
ε0
)2, and combining

(15), (19) becomes

LV1 ≤ −x̃T (Q− (µ+
1
2
)I )x̃ − χξ̃2 −

τ0θ̃
2

ρ2θ − θ̃
2
+ ν∗

+ e31e2 + e
3
1(α1 + S1(

ˆ̄E1))−
3
4
e41 +

3
4
c21 (20)

By utilizing Lemma 2 with p = 3
4 , q = 4, one can get that

e31e2 ≤
3
4
e41 +

1
4
e42 (21)

Construct a virtual control function α1 as follows

α1 = −k1e1 − S1( ˆ̄E1) (22)

where k1 is a positive design parameter.
Substituting (21) and (22) into (20) leads to

LV1 ≤ −x̃T (Q− (µ+
1
2
)I )x̃ − χξ̃2 −

τ0θ̃
2

ρ2θ − θ̃
2
+ ν∗

+
1
4
e42 − k1e

4
1 +

3
4
c21 (23)

where the function 1
4e

4
2 will be handled in the next step.

Step 2: Using Itô formula for e2 = x̂2 − α1 gives

de2 = (x̂3 + f2( ˆ̄x2)+ l2x̃1)dt −
1∑
i=0

∂α1

∂y(i)d
y(i+1)d dt

−
1
2
∂2α1

∂x21
||W1(y)||2dt −

∂α1

∂x1
dx1

= (x̂3 + f2( ˆ̄x2)+ l2x̃1 −
1∑
i=0

∂α1

∂y(i)d
y(i+1)d

−
∂α1

∂x1
(x2 + f1(x1))−

1
2
∂2α1

∂x21
||W1(y)||2)dt

−
∂α1

∂x1
W T

1 (y)dw (24)

Consider the following Lyapunov function

V2 = V1 +
1
4
e42 (25)

applying the differential operator to V2 yields

LV2 ≤ LV1 + e32(x̂3 + f2( ˆ̄x2)+ l2x̃1 −
1∑
i=0

∂α1

∂y(i)d
y(i+1)d

−
∂α1

∂x1
(x̂2 + f1(x1))−

1
2
∂2α1

∂x21
||W1(y)||2)

−
∂α1

∂x1
e32x̃2 +

3
2
e22|
∂α1

∂x1
|
2
||W1(y)||2 (26)
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Noticing that − ∂α1
∂x1

e32x̃2 ≤
1
2 ||x̃||

2
+

1
2 |
∂α1
∂x1
|
2e62 and

e22|
∂α1
∂x1
|
2
||W1(y)||2 ≤ 1

2c
2
2 +

1
2c22
e42|

∂α1
∂x1
|
4ω4

1(y) and using

(15), (26) becomes

LV2 ≤ −x̃T (Q− (α + 1)I )x̃ − χξ̃2 −
τ0θ̃

2

ρ2θ − θ̃
2
+ ν∗

− k1e41 + e
3
2(x̂3 + S2(

ˆ̄E2))−
3
4
e42 +

3
4
c22 +

3
4
c21

= −x̃T (Q− (α + 1)I )x̃ − χξ̃2 −
τ0θ̃

2

ρ2θ − θ̃
2
+ ν∗

− k1e41 + e
3
2e3 + e

3
2(α2 + S2(

ˆ̄E2))−
3
4
e42

+
3
4
c22 +

3
4
c21 (27)

where c2 > 0 is a design parameter, and S2( ˆ̄E2) =
3
4c22
e2|

∂α1
∂x1
|
4ω4

1(y) +
1
2 |
∂α1
∂x1
|
2e32 + f2( ˆ̄x2) + l2x̃1 −

∂α1
∂x1

(x̂2 +

f1(x1)) −
∑1

i=0
∂α1

∂y(i)d
y(i+1)d +

3
4e2 with ˆ̄E2 being ˆ̄E2 =

[x1, x̂1, x̂2, yd , ẏd , ÿd ]T ∈ R6.
Subsequently, by e32e3 ≤

3
4e

4
2 +

1
4e

4
3, the virtual control

function α2 can be chosen as

α2 = −k2e2 − S2( ˆ̄E2) (28)

where k2 is a positive design parameter. Substituting (28) into
(27) yields

LV2 ≤ −x̃T (Q− (α + 1)I )x̃ − χξ̃2 −
τ0θ̃

2

ρ2θ − θ̃
2
+ ν∗

−

2∑
i=1

kie4i +
1
4
e43 +

3
4

2∑
i=1

c2i (29)

with the function 1
4e

4
3 will be handled in the next step.

Step i(3 ≤ i ≤ n−1): Recursively, by invoking Itô formula
for ei = x̂i − αi−1, we have

dei = (x̂i+1 + fi( ˆ̄xi)+ lix̃1)dt −
i−1∑
j=0

∂αi−1

∂y(j)d
y(j+1)d dt

−

i−1∑
j=2

∂αi−1

∂ x̂j
(x̂j+1 + fj( ˆ̄xj)+ ljx̃1)dt

−
1
2
∂2αi−1

∂x21
||W1(y)||2dt −

∂αi−1

∂x1
dx1

= (x̂i+1 + fi( ˆ̄xi)+ lie1 −
i−1∑
j=0

∂αi−1

∂y(j)d
y(j+1)d

−
∂αi−1

∂x1
(x2 + f1(x1))−

1
2
∂2αi−1

∂x21
||W1(y)||2

−

i−1∑
j=2

∂αi−1

∂ x̂j
(x̂j+1 + fj( ˆ̄xj)+ lje1))dt

−
∂αi−1

∂x1
W T

1 (y)dw (30)

Then, the Lyapunov function can be chosen as follows

Vi = Vi−1 +
1
4
e4i (31)

From (31), taking the differential operator of Vi yields

LVi ≤ LVi−1 + e3i (x̂i+1 + fi( ˆ̄xi)+ lix̃1 −
i−1∑
j=0

∂αi

∂y(j)d
y(j+1)d

−
∂αi−1

∂x1
(x̂2 + f1(x1))−

1
2
∂2αi−1

∂x21
||W1(y)||2

−

i−1∑
j=2

∂αi−1

∂ x̂j
(x̂j+1 + fj( ˆ̄xj)+ lje1))−

∂αi−1

∂x1
e3i x̃2

+
3
2
e22|
∂αi−1

∂x1
|
2
||W1(y)||2 (32)

Applying mathematical induction procedures and not-
ing the fact that − ∂αi−1

∂x1
e3i x̃2 ≤

1
2 ||x̃||

2
+

1
2 |
∂αi−1
∂x1
|
2e6i

and e2i |
∂αi−1
∂x1
|
2
||W1(y)||2 ≤

1
2c

2
i +

1
2c2i
e4i |

∂αi−1
∂x1
|
4ω4

1(y),

(32) becomes

LVi ≤ −x̃T (Q− (α +
i
2
)I )x̃ − χξ̃2 −

τ0θ̃
2

ρ2θ − θ̃
2
+ ν∗

−

i−1∑
j=1

kje4j + e
3
i (x̂i+1 + Si(

ˆ̄Ei))−
3
4
e4i +

3
4

i∑
j=1

c2j

≤ −x̃T (Q− (α +
i
2
)I )x̃ − χξ̃2 −

τ0θ̃
2

ρ2θ − θ̃
2
+ ν∗

−

i−1∑
j=1

kje4j + e
3
i ei+1 + e

3
i (αi + Si(

ˆ̄Ei))

−
3
4
e4i +

3
4

i∑
j=1

c2j (33)

where ci > 0 is a design parameter, and Si( ˆ̄Ei) =
3
4c2i
ei|

∂αi−1
∂x1
|
4ω4

1(y)+
1
2 |
∂αi−1
∂x1
|
2e3i + fi( ˆ̄xi)+ lix̃1 −

∂αi−1
∂x1

(x̂2 +

f1(x1))−
∑i−1

j=0
∂αi−1

∂y(j)d
y(j+1)d −

∑i−1
j=2

∂αi−1
∂ x̂j

(x̂j+1+ fj( ˆ̄xj)+ lje1)+

3
4ei with

ˆ̄Ei being ˆ̄Ei = [x1, ˆ̄xi, ȳ
(i)
d ]T ∈ R2i+2.

By using the Young’s inequality e3i ei+1 ≤
3
4e

4
i +

1
4e

4
i+1,

the virtual control function αi is chosen as follows

αi = −kiei − Si( ˆ̄Ei) (34)

with ki is a positive design parameter. Substituting (34) into
(33) yields

LVi ≤ −x̃T (Q− (α +
i
2
)I )x̃ − χξ̃2 −

τ0θ̃
2

ρ2θ − θ̃
2
+ ν∗

−

i∑
j=1

kje4j +
1
4
e4i+1 +

3
4

i∑
j=1

c2j (35)

where 1
4e

4
i+1 will be handled in the next step.
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Step n: The actual control input v will be obtained in final
step. Invoking Itô formula for en = x̂n − αn−1 yields

den = (τv+ fn( ˆ̄xn)+ lnx̃1 −
n−1∑
j=0

∂αn−1

∂y(j)d
y(j+1)d

−

i−1∑
j=2

∂αn−1

∂ x̂j
(x̂j+1 + fj( ˆ̄xj)+ lje1)−

∂αn−1

∂x1
e2

−
∂αn−1

∂x1
(x̂2 + f1(x1))−

1
2
∂2αn−1

∂x21
||W1(y)||2)dt

−
∂αn−1

∂x1
W T

1 (y)dw (36)

Then, choose the Lyapunov function as follows

Vn = Vn−1 +
1
4
e4n (37)

From (37), the differential operator of Vn is

LVn ≤ LVn−1 + e3n(τv+ fn( ˆ̄xn)+ lnx̃1

−

n−1∑
j=0

∂αn−1

∂y(j)d
y(j+1)d −

∂αn−1

∂x1
(x̂2 + f1(x1))

−
1
2
∂2αn−1

∂x21
||W1(y)||2 −

n−1∑
j=2

∂αn−1

∂ x̂j
(x̂j+1

+ fj( ˆ̄xj)+ ljx̃1))−
∂αn−1

∂x1
e3nx̃2

+
3
2
e2n|
∂αn−1

∂x1
|
2
||W1(y)||2 (38)

By using the inequalities− ∂αn−1
∂x1

e3nx̃2 ≤
1
2 ||x̃||

2
+

1
2 |
∂αn−1
∂x1
|
2e6n

and e2n|
∂αn−1
∂x1
|
2
||W1(y)||2 ≤

1
2c

2
n +

1
2c2n
e4n|

∂αn−1
∂x1
|
4ω4

1(y),
we have

LVn ≤ −x̃T (Q− (α +
n
2
)I )x̃ − χξ̃2 −

τ0θ̃
2

ρ2θ − θ̃
2
+ ν∗

−

n−1∑
j=1

kje4j + e
3
n(τv+ Sn(

ˆ̄En)+θ̂ )+
3
4

n∑
j=1

c2j (39)

where cn > 0 is a design parameter, and Sn( ˆ̄En) =
3
4c2n
en|

∂αn−1
∂x1
|
4α41(y) +

1
2 |
∂ωn−1
∂x1
|
2e3n + fn( ˆ̄xn) + lnx̃1 −∑n−1

j=0
∂αn

∂y(j)d
y(j+1)d −

∂αn−1
∂x1

(x̂2 + f1(x1))− 1
2
∂2αn−1

∂x21
||W1(y)||2 −∑n−1

j=2
∂αn−1
∂ x̂j

(x̂j+1 + fj( ˆ̄xj) + ljx̃1) with ˆ̄En being ˆ̄En =

[x1, ˆ̄xn, ȳ
(n)
d ]T ∈ R2n+2.

Based on (39), the actual controller can be designed as

v = τ−1(−knen − Sn( ˆ̄En)− θ̂ ) (40)

Substituting (40) into (39) leads to

LVn ≤ −x̃T (Q− (α +
n
2
)I )x̃ − χξ̃2 −

τ0θ̃
2

ρ2θ − θ̃
2
+ ν∗

−

n∑
j=1

kje4j +
3
4

n∑
j=1

c2j (41)

Meanwhile, from the definitions of V0 and Vn, it is easy to
see that

Vn = x̃TPx̃ +
1
2
log(

ρ2θ

ρ2θ − θ̃
2
)+

1
2
κ−10 ξ̃2 +

1
4

n∑
i=1

e4i (42)

As proved in [42], the following inequality holds

log(
ρ2θ

ρ2θ − θ̃
2
) ≤

θ̃2

ρ2θ − θ̃
2

(43)

It follows from (42) and (43) that

LVn ≤ −λmin(Q− (α +
n
2
)I )||x̃||2 − χξ̃2 −

τ0θ̃
2

ρ2θ − θ̃
2
+ ν∗

−

n∑
j=1

kje4j +
3
4

n∑
j=1

c2j

≤ −λ1Vn + λ2 (44)

where λ1 = min{
λmin(Q−(α+ n

2 )I )
λmax(P)

, 2χκ0, 2τ0, 4kj|j =

1, 2, · · · , n} and λ2 = 3
4

∑n
j=1 c

2
j + ν

∗.
So far, the fault-tolerant tracking control design has been

completed via back-stepping technique, and the main result
is given in the following theorem.
Theorem 1 Consider the stochastic nonlinear system

described by (1) with unknown fault function, adaptive fault
estimator (9)-(12), and fault-tolerant controller (40). Under
Assumptions 1-3, the proposed fault estimation and track-
ing control method can guarantee that the error of fault
estimation is confined in a pre-assigned set, all the closed-
loop signals are uniformly bounded in probability, and error
signals x̃, ej, j = 1, 2, · · · , n, ξ̃ remain in the compact sets
3x̃ ,3e, 3ξ̃ and 3θ̃ in the sense that

3x̃ = {x̃|E[‖x̃‖
2] ≤

√
V ∗n /λmin(P)}

3e = {ei|E[
n∑
i=1

|ei|4] ≤ 4V ∗n , 1 ≤ i ≤ n}

3ξ̃ = {ξ̃ ||E[|ξ̃ |
2]| ≤ 2κ0V ∗n }

3θ̃ = {θ̃ |E[|θ̃ |] ≤ ρθ

√
1− e−

2λ2
λ1 }, (45)

where V ∗n = Vn|t=0 +
λ2
λ1
.

Proof: By the above analysis in (44), it can be concluded
that LVn ≤ −λ1Vn + λ2. Furthermore, following similar
proof of [48, Th.4.1] and [35, eqs. (61)–(63)], we have

E[V (t)] ≤ Vn|t=0 +
λ2

λ1
(46)

where V ∗n = Vn|t=0 = x̃T (0)Px̃(0) + 1
2 log(

ρ2θ
ρ2θ−θ̃

2(0)
) +

1
2κ
−1
0 ξ̃2(0) + 1

4

∑n
i=1 e

4
i (0). In addition, considering the fol-

lowing inequality

log(
ρ2θ

ρ2θ − θ̃
2
) ≤ 2(V ∗n −

λ2

λ1
)e−λ1t +

2λ2
λ1

(47)
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Then, taking exponentials on both sides of (47) results in

|θ̃ | ≤ ρθ

√
1− e−2(V

∗
n−

λ2
λ1

)e−λ1t− 2λ2
λ1 (48)

If V ∗n =
λ2
λ1
, then |θ | ≤ ρθ

√
1− e−

2λ2
λ1 . If V ∗n 6=

λ2
λ1
,

we conclude that for any given U > ρθ

√
1− e−

2λ2
λ1 , the

inequality |θ̃ | ≤ ρθ

√
1− e−

2λ2
λ1 holds as t → ∞. Moreover,

it follows from (46)-(48) that (45) holds, which implies that
all the closed-loop signals x̃, ξ̃ , θ̃ , ei, i = 1, 2, · · · , n are
uniformly bounded in probability. This completes the proof.
Remark 4 From Theorem 1, it can seen that adaptive

fault estimation and fault-tolerant tracking control scheme
is developed for stochastic nonlinear system based on back-
stepping method, and the designed APPFE and fault-tolerant
controller can guarantee that all the closed-loop signals are
bounded in probability, and the errors of fault estimation and
output tracking can converge to a desired neighborhood of
origin.

V. SIMULATION STUDIES
In this section, two numerical examples are studied to demon-
strate the advantages of the proposed adaptive fault estimation
and accommodation scheme.

A. EXAMPLE 1
The following stochastic nonlinear system is first studied:

dx1 = (x2 + 0.2x21 cos(x1))dt + 0.1x1 cos(x2)dw

dx2 = (τv−
0.3 sin(x21x2)

1+ x22
+ θ )dt

+ (0.2− 0.1x42 sin(x1))dw

y = x1 (49)

for τ = 1, and the reference signal is yd = 0.2 sin(2t).
Additionally, the faulty function is designed by

θ (t) =

{
0.2, t < 30,
0.5, 30 ≤ t ≤ 50

(50)

The simulation parameters and the initial values are chosen
as l1 = 10, l2 = 20, k1 = 6, k2 = 5, c1 = c2 = 5,
ρθ = 0.03, θ0 = 0.01, κ0 = 5, τ0 = 0.8, ε0 = 0.6 and
x(0) = [−0.1, 0.1]T , x̂(0) = [0, 0]T , ξ̂ (0) = 0, respectively.
Fig. 1 shows the fault signal and its estimation by the adaptive
observer designed in this paper, and Fig. 2 shows the refer-
ence output yd and the system output y, from which it can
be seen that satisfactory fault estimation and output tracking
performance are obtained. Fig. 3 and Fig. 4 show the state
estimation results.

B. EXAMPLE 2
In this subsection, a single-link robot system [13] with the
corresponding stochastic nonlinear model is given by

dx1 = (x2 + 0.1x1 cos(2x1))dt − x31 sin(x1)dw

FIGURE 1. Respond curves of fault signal θ and is estimations θ̂ in
Example 1.

FIGURE 2. System output y and the reference signal yd in Example 1.

FIGURE 3. System state x1 and its estimation x̂1 in Example 1.

dx2 = (τv−
1
2
mgl sin(x1)+ θ )dt

+ (x22 cos(x1 + 0.5))dw

y = x1 (51)
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FIGURE 4. State x2 and its estimation x̂2 in Example 1.

FIGURE 5. Respond curves of fault signal θ and is estimations θ̂ .

where x1 = q and x2 = q̇ are the angle position and
angle velocity, and the system parameters are chosen as m =
1 kg,M = 0.5kgm2, g = 9.8m/s2, l = 1m, τ = 1

M . The
reference signal is assumed to be yd = cos(t) + 0.5 sin(t),
and to verify the method proposed in this paper, fault θ is
assumed to be

θ (t) =


0.8, t < 35,
0.02t + 0.1, 35 ≤ t < 55,
1.8, 55 ≤ t ≤ 80

(52)

In addition, the parameters of fault estimator (9)-(10) and
fault tolerant controller (40) are chosen as l1 = 8, l2 =
15, k1 = 2.2, k2 = 2.2, c1 = 1, c2 = 1, ρθ = 0.05, θ0 =
0.03, κ0 = 5, τ0 = 1, ε0 = 0.5, and the initial values are
selected as x(0) = [0, 0.5]T , x̂(0) = [0, 0]T , ξ̂ (0) = 0.
Figs. 5-6 show the fault estimation results by using the
adaptive fault estimator designed in this paper and the non-
prescribed performance fault estimation method proposed
in [13] without considering the dead-zone effect, from which
it can be seen that the fault estimationmethod proposed in this
paper receives better result. The output y and the reference yd

FIGURE 6. Respond curves of fault estimation errors θ̃ .

FIGURE 7. System output y and the reference signal yd .

FIGURE 8. System state x1 and its estimation x̂1.

are shown in Fig. 7, which shows that the output tracking per-
formance is satisfactory and the system output tracking error
can converge to a desired neighborhood of origin. State x1, x2
and their estimation x̂1, x̂2 are shown in Figs. 8 and 9, which
show that state estimation performance is also satisfactory.
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FIGURE 9. State x2 and its estimation x̂2.

FIGURE 10. Response curve of ξ̂ .

FIGURE 11. Response curve of the control signal v (t).

In addition, the boundedness of fault estimation signal ξ̂ and
the designed control u are demonstrated in Figs. 10 and 11,
respectively.

VI. CONCLUSION
This paper is concerned with the adaptive fault estimation
and output tracking control problem for a class of stochastic
nonlinear systems. By introducing a prescribed performance
term and a switching tuning function, a novel adaptive fault
estimator is designed which can receive better estimation
accuracy. Moreover, the corresponding fault-tolerant track-
ing controller is constructed via back-stepping method. The
proposed control scheme guarantees that all the closed-loop
signals are uniformly bounded in probability, and the system
output tracking error can converge to a small neighborhood in
the sense of mean quadratic value via stochastic Lyapunov-
based analysis. Finally, a numerical example is provided to
verify the efficiency of the method proposed.
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