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ABSTRACT The study of nucleic acid-binding protein (NBP) has important significance for us to understand
critical intracellular activities, such as the transmission of cellular genetic information, cell metabolism,
substance transport, and signal transduction. DNA-binding proteins (DBPs) and RNA-binding proteins
(RBPs) interact through their diverse binding domains and different types of nucleic acid molecules. In
this paper, we used a novel method that combines the CX algorithm and the fractal surfaces algorithm. This
method gets the molecular volume and solvent surface area in the local area of the NBPs binding domain
residues. Then, based on the algorithm results, the requisite domain residues are divided into three types:
peak, flat, and valley. At the same time, we analyzed the solvent accessibility and secondary structural
characteristics of the DBPs and RBPs binding domains. Finally, we found that there was an important
difference in the distribution of peak residues and valley residues in the two types of NBPs binding domains.
Similarly, there were significant differences in the solvent accessibility and secondary structural distribution
of the two types of NBPs binding domains. To verify the existence of differences, we constructed SVM
classifier to make a distinction between DBPs and RBPs using a 10-fold cross-validation method. Lastly,
the SVM classification model achieves AUC of 78%. In summary, we have proposed a new perspective
for the study of NBPs binding domains. This method not only calculates the geometric characteristics of the
molecule, but also analyzes the protein properties associated with the structure, which will assist in the study

of NBPs binding domains.

INDEX TERMS DNA-binding proteins, RNA-binding proteins, solvent accessibility, secondary structure.

I. INTRODUCTION

These NBPs play an important part in the physiological activ-
ities of cells, including gene transcription, DNA molecule
repair and replication, DNA virus-infected cells, DNA
molecule stacking and modification, post-transcriptional reg-
ulation of genes, selective cleavage of mRNA, and infec-
tion process of RNA viruses [1]-[8]. With the continuous
development of structural measurement techniques and
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high-throughput sequencing technologies, a large amount of
NBPs sequence data and structural data have been collected.
This provides a solid data foundation for studying NBPs.
In recent years, more ideas and methods have been put for-
ward for NBPs research, such as, the identification and pre-
diction of binding sites for binding proteins, building features
based on sequence information, establishing classification
models and training predicted protein binding sites [9], [10].
Increased protein structure data provides the basis for ana-
lyzing the structural features of binding proteins. Extracting
effective feature information from structural data and then
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constructing a classification model for predicting binding
sites has yielded significant results [11]-[14]. Existing stud-
ies have also proposed new methods for forecasting NBPs,
and explored the differences between different NBPs. For
example, Janin and Bahadur [15] studied the binding domains
of DBPs and RBPs, then analyzed the total area, composi-
tion, and some physicochemical properties on the binding
domains. Finally, the mechanism of the interaction between
nucleic acids and proteins was analyzed [15]. Shao er al. [16]
processed the sequence data of the NBPs and used a new
descriptor called conjoint triad to extract the sequence infor-
mation of the protein. The descriptor takes into account the
nature of amino acids and their neighboring amino acids,
and any three consecutive the amino acids are treated as one
unit. Finally, two SVM classifiers were constructed to clas-
sify DBPs/RBPs and non-nucleic-acid-binding proteins [16].
Yu [17] processed the sequence data of NBPs, extracted the
pseudo-amino acid composition of the sequence, and finally
used the SVM classifier to perform two-class processing on
the three proteins rRNA-, RNA-, and DNA-binding proteins.
Our paper presents a new set of methods for describing the
structural characteristics of residues in the binding domain.
The binding domains of DBPs mainly include: Zinc Fin-
ger, Leucine Zipper, Helix-Turn-Helix (HTH), Helix-Loop-
Helix (HLH) [18]-[20]. The binding domains of RBPs can
be subdivided into RNA recognition motifs, double-stranded
RNA-binding domains, K homology domains, arginine-rich
motifs [2], [21], [22]. Based on the existing studies on NBPs
binding domains, we calculated the characteristics of the local
morphological features, secondary structure distribution, and
solvent accessibility of residues extracted from the surface of
the binding domain based on nucleic acid-protein structure
data, and then analyzed the differences between the two
proteins. First, we obtained protein structure data from the
PDB database, screened out the qualified proteins, and then
calculated the local morphological characteristics, solvent
accessibility, and secondary structure characteristics of the
residues bound to the protein binding domain. The extracted
features were analyzed to investigate the differences in struc-
tural characteristics between the DBPs and RBPs. SVM clas-
sifier was used to demonstrate the differential presence of
structural features of NBPs binding domains. It is desired
that our research methods and experimental results will con-
tribute to the research and development of binding domains of
NBPs.

Il. MATERIALS AND METHODS

A. MATERIALS

In our work, structural data of NBPs are downloaded from
the PDB database. Until 2018, the 8021 DBPs and the
5660 RBPs have been collected in the PDB database.
We removed the low-resolution structure, leaving only X-
ray structures with a resolution higher than 3A and NMR
analytical structures. In addition, we used the PISCES
program  (http://dunbrack.fccc.edu/Guoli/PISCES.php) to
remove homology redundancy for the collection of protein
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FIGURE 1. Examples of the geometric structure of the binding domain
residues of NBPs. Peak residues are shown red. Flat residues are shown
yellow, and the valley residues are shown green. (a) The DBP’s ID is 3sqi;
(b) The RBP’s ID is 3bou.

data [23]. The structural data with a sequence homology
of no more than 30% and a minimum chain length of the
40 residues were chosen. At the same time the nucleotide-
free protein data was removed. Finally, we obtained the
non-redundant protein nuclear acids complexes (369 DBPs
and the 174 RBPs) as training datasets and the remaining
complexes (200 DBPs and 103 RBPs) were used as indepen-
dent test datasets. It is generally considered that the distance
between the residues Ca atoms of the binding domain and the
nucleic acid molecule should be less than 6 A, and thus we
calculated the binding domain of the NBPs.

B. DETERMINATION OF BINDING DOMAIN SHAPE

The surface shape of protein is irregular and contains a variety
of forms. There are various sizes of cracks and grooves. There
is a difference in the geometry of the binding domain of
DBPs and RBPs. Therefore, an algorithm for measuring the
local geometry of residues in the binding domain was pro-
posed. We performed statistical analysis on the distribution
of geometric features and tried to find structural differences
between the binding domains of DBPs and RBPs.

As showed in Fig. 1, we divided the local geometry of the
residues in the binding domain into three types: peak, flat, and
valley. Pintar et al. [24] proposed the CX algorithm, which
determined the shape of protrusions and depressions on the
protein surface by calculating the ratio of the occupied vol-
ume and the free volume of the protein in the sphere. Fractal
surfaces can be used to characterize protein surface rough-
ness or irregularity by calculating the relationship between
surface area and volume [25]. Based on CX algorithm and
fractal surfaces we have designed a new algorithm to measure
the local shape of residues. Take the three-dimensional coor-
dinates of the Ca atom of the residues in the binding domain
at the sphere center and set a fixed sphere radius R (R defaults
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FIGURE 2. Schematic representation of each protein surface identified by
improved CX algorithm.

to 10Af ). As shown in Fig. 2, R is the total surface area of
the binding domain residues contained within the sphere.S;;
is calculated by the solvent accessibility of residues. V;;,is the
volume of the residue inside the sphere:

N
Sint = Zsresidue (1)
i

Vine = Na % Vg (2)

where N, is the number of nonhydrogen atoms in the sphere,
and V, is the average volume of a nonhydrogen atom (the
value is set to 20.1 A3). Sresiduels the solvent accessibility area
of the ith residue of the binding domain. The solvent accessi-
bility area can be calculated using DSSP software [26]. The
formula for calculating the local geometry of residues in the
binding domain is as follows:

Sy = Sint/vint (€))

Sv is the ratio of the solvent accessibility area within the
sphere to the total volume of all atoms inside the sphere.
If the solvent accessibility area of the NBPs binding domain
in the sphere is larger and the total volume of the atoms is
smaller, the peripheral surface geometry of the residues at
the center of the sphere is more inclined to peak shape. If the
solvent accessibility area of the NBPs binding domain in the
sphere is smaller and the total volume of atoms is larger,
the peripheral surface geometry of the residue in the center
of the sphere is more inclined to the valley shape. Through
experimental analysis, we divide the surface residues into
three types: valley (Sv < 0.3), plane (0.3 < Sv < 0.5), and
peak (Sv > 0.5).

C. SOLVENT AVAILABILITY ANALYSIS

Based on the relative solvent accessibility values of the sur-
face residues, the degree of exposure to the residues in the
solution can be judged, indicating that the solvent accessi-
bility is closely related to the geometry of the protein bind-
ing domain [27]. By counting the average relative solvent
accessibility values (ASA) and the average solvent accessi-
bility values (RSA) of NBPs surface binding domain surface
residues, the degree of exposure of DBP and RBP binding
domain residues can be measured, these features can also
illustrate the morphological characteristics of the surface of
the binding domain from another direction. Sp;uging 1S the sur-
face area of the binding domain of proteins and nucleotides,
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TABLE 1. Abbreviations and Notes For Secondary Structure Categories.

Category Description of secondary structure types
3-turn helix (310helix). Min length 3 residues
4-turn helix (a helix). Min length 4 residues
5-turn helix (7 helix). Min length 5 residues
Hydrogen bonded turn (3, 4 or 5 turn)
Residue in isolated B-bridge
(single pair B-sheet hydrogen bond formation)
Bend (the only non-hydrogen-bond based assignment)

Coil (residues which are not in any of the above conformations)
Extended strand in parallel and/or anti-parallel 3-sheet
conformation. Min length 2 residues

m OQOwn W H9~=I0

Raceint 1 the RSA of the binding region residues, Rceper 18
the average RSA of the binding region residues,Sp, is the
average ASA of the binding region residues, the formula is
as follows:

n
Sbinding = Zsint @
i
Sper = Sbinding/n (5)
n
Raccper = ZRaccint/n (6)
i

where n is the number of all interface residues, S;;; is the ASA
of ith residue in the whole interface.

D. SECONDARY STRUCTURE ANALYSIS

DSSP is a standard in the field of secondary structure deter-
mination and prediction. According to Pauling’s proposed
hydrogen bonding pattern to determine which secondary
structure belongs, eight kinds of secondary structures are
defined as showed in Table 1.

For §8-state prediction, the «-helix is further subdivided into
three states: a-helix (H), 310 helix (G), and 7-helix (I). The
beta chain is subdivided into: beta chain (E) and beta bride
(B), and the coil region is subdivided into: high curvature
ring (S), beta turn (T’) and irregular (L). We constructed
an eight-dimensional vector (Sg, Si, Si, St, Se, Sp, S5, Se) to
characterize the secondary structure of residues in the NBPs
binding domain, where S; indicates the frequency of each
secondary structure in the binding domain surface.

n;

Si = (N

where n;is the number of occurrences of class isecondary
structure.

E. CLASSIFICATION MODEL AND EVALUATION METHOD

We constructed the SVM classification model based on the
previously mentioned features. SVM is a machine learning
method based on statistical learning theory [28]. The SVM
is performed by the Support Vector Machine scikit-learn
v0.19.1 package for python to evaluate the performance of
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the model [29]. The model was evaluated by 10-fold cross-
validation experiments. The overall performance was calcu-
lated by averaging the performance of the 10 subsets (at the
fold level). Because of the imbalance of datasets, the dataset
is selected by down sampling in the training phase. Test
indicators used in the classification model are the overall
prediction accuracy (ACC), F-measure (F1), the area under
the ROC (Receiver Operating Characteristic) curve (AUC),
Sensitivity and Specificity. The F-measure can be interpreted
as a weighted harmonic mean of the precision and recall.
The ROC curve is probably the most robust technique for
evaluating classifiers and visualizing their performance. The
area under the curve (AUC) is used to measure of the quality
of the separation between the examined protein classes. The
AUC of 0.5 represents a classification that corresponds to
a randomly generated prediction, while the area of 1 corre-
sponds to a perfect classifier.

Ill. RESULTS AND DISCUSSION

A. DISTRIBUTION OF THREE BINDING DOMAIN RESIDUES
We analyzed the DBPs and RBPs data, based on the ‘“lock
and key” paradigm and the morphology of nucleic acid
molecule [30]. We found that the interface surface of DBPs
and RBPs showed different shape distribution.

As showed in Fig. 3, the peak residues in the DBPs binding
domain are distributed more than the peak shape residues of
the RBPs binding domain. There is no significant difference
in the distribution of the flat shape residues in DBPs binding
domain and RBPs binding domain. The valley residues of
DBPs binding domain are less distributed than the valley
residues of RBPs binding domain. Previous studies have
found that zinc finger domains are generally found in the
binding domains of DBPs, particularly transcription factors.
However, as the research progresses, more and more evidence
shows that the zinc finger domain not only exists in the
DNA binding domain, but also can be found in the binding
domain of RBPs. The zinc finger structure present in the
bound protein binding domain highlights the protein surface
in the form of a finger. The physical interaction between
protein domains is the basis for interactions between proteins.
The lock-key structure defines the interaction between pro-
teins that contains complementary domains (locks and keys).
Under the "lock and key" paradigm, the interface of DBPs
should be significantly different from RBPs. As can be seen
from the analysis in Figure 3, there is a significant difference
in the distribution of the interface between the DBPs and the
RBPs in the peak and valley morphology.

This is in agreement with the conclusion that the distri-
bution of peak and the valley shape residues is more than
that of the flat shape residue at the two types of protein
binding domains. RBPs usually function during the transcrip-
tional or translational stages, and RNA molecules are more
flexible than DNA. Nucleotides in RBPs are often associ-
ated with groove regions in the protein, so there are more
concave surfaces in the binding domain of RBPs. However,
DNA usually infiltrates into the major or minor groove of

VOLUME 7, 2019

I DNA
06+ I RNA

0.5

0.4

0.3+

0.2

0.1+

0.0+
peak flat valley

FIGURE 3. Analysis of the residues shapes in DNA and RNA binding
domain. The statistical analysis of the distribution was performed using
the T-test to measure the significance of the difference. The asterisks
marked in the figure indicate significant differences in P-values < 0.05.

the binding protein, so that the interfaces of DBPs exhibit
more protrusions and the intermediate surface to bind the
DNA stably. Fig. 4 shows the state of distribution ratios for
residues of three shapes in the binding domain. It can be seen
from Fig. 4a that the frequencies of the peak shape residues
ARG, GLY, LYS and SER are higher than the others, and
the distribution of ARG and LYS shows significant differ-
ence. From Fig. 4b and Fig. 4c, it can be observed that the
distribution differences of two kinds of protein residues are
getting smaller and smaller. For example, the distribution
differences of ARG and LYS compared with other residues
are the largest at the peak surface, followed by the flat surface,
and the valley surface is the smallest. This phenomenon also
shows that peak residues are the major part of the interaction
between proteins and nucleic acid molecules. As showed in
additional S_Fig. 1, there is statistically significant difference
in the distribution of the two shapes of the CYS, GLN and
THR residues. There is statistically significant difference in
the distribution of one shape of the VAL, TRP, MET, LEU,
GLU and ASP residues.

B. SOLVENT ACCESSIBILITY

Solvent accessibility is a feature closely related to the surface
geometry of a protein. We calculated the average ASA and the
average RAS of the residues on the protein binding domain,
so as to analyze the solvent accessibility characteristics of
DBPs and RBPs surface domain residues. We also analyzed
the average ASA and the average RSA of residues in the
binding domain.

The distribution status of the solvent accessibility is illus-
trated in Fig. 5. We found that the ARG and LYS have the
higher values than ASA and RAS in the binding domain.
In addition, we observed in the previous section that the
ARG and LYS tend to show peaks. The binding domain
structure can be considered as an external manifestation, and
the intrinsic property of the binding protein is an important
factor determining the binding process. Among 20 kinds of
amino acids, Arg and Lys present positively charged, Asp and
Glu present negatively charged, and His has weak positive
charge depending on the local environment. Since the acidic
quality of the backbone phosphates, the surface of a DNA has
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FIGURE 4. The distribution of peak, flat and valley shape residues. The
asterisks marked in the figure indicate significant differences in P-values
< 0.05. (a) Distribution of residues in the peak region; (b) Distribution of
residues in the flat area; (c) Distribution of residues in the valley area.

a higher negative charge. The positively charged amino acids
(ARG and LYS) are more distributed on the binding surface
of proteins, which will contribute to bind the protein to the
nucleic acid. The SER and THR values shown are higher
than others in Fig. 5a, and the residues show statistically
significant differences. From the relationship between ASA
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FIGURE 5. The solvent accessibility value and relative solvent accessibility
value distribution in the DNA and RNA binding domains of 20 kinds of
amino acids. The statistical analysis of the distribution was performed
using the T-test to measure the significance of the difference. The
asterisks marked in the figure indicate significant differences in P-values
< 0.05. (a) Distribution of solvent accessibility values of 20 amino acids.
(b) Distribution of relative solvent accessibility values of 20 amino acids.

and RAS, we can infer that the two types of amino acids have
a higher exposure ratio on the surface of the NBPs binding
domain, and they tend to bind to nucleic acid molecules.
This demonstrates that the study of the solvent accessibility
of the NBPs binding domain is helpful in constructing a
classification model. As showed in additional S_Fig. 2, from
the eigenvalues of the solvent accessibility of the 20 kinds
of residues and the distribution tendency of the three shapes,
it can be observed that there is correlation between the geom-
etry of the residue and the solvent accessibility of the residue.
Because the linear trends of the two sets of variables in each
subgraph are very similar.

C. SECONDARY STRUCTURE DISTRIBUTION

The distribution of secondary structure in the protein binding
domain is illustrated in Fig. 6a. There are no significant
differences between DNA and RNA binding proteins for
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the H-type, T-type, and E-type secondary structures, and
the G- and C-type secondary structures present the signif-
icant differences. The distribution of the H-type secondary
structure in the DBPs and RBPs is the most common, and
there are more H-type secondary structures in DBPs than
in RBPs. The reason behind this could be that the DBPs
binding domains typically consists of zinc finger domains
and helix-turn-helices. These domains contain many H-type
secondary structures. Similarly, the RNA binding domain has
also the zinc finger structure. Fig. 6b shows the secondary
structure distribution of peak residues in the NBPs binding
domain. It can be seen that the distribution of the H-class
secondary structure is significantly different. Fig. 6¢ shows
the secondary structure distribution of flat residues in the
NBPs-binding domain. It can be found that there is no signif-
icant difference in the distribution of all classes of secondary
structure. Fig. 6d shows the secondary structure distribution
of flat residues in the NBPs-binding domain. It can be found
that there are significant differences in the distribution of H,
E, and S secondary structures. These results show that the
distribution characteristics of the secondary structure in the
binding domain which will conducive to the establishment of
a classification model.

D. PREDICTION PERFORMANCE OF

CLASSIFICATION MODEL

In the present study, Inbal Paz built a BindUP model based
on the electrostatic properties of protein surfaces and other
general properties of proteins, classifying and predicting
DBPs and RBPs [31]. Jing Yan had constructed a sequence-
based DRNApred model, the model could accurately and
high-throughputs the prediction and differentiation of DBPs
and RBPs binding residues [32]. These studies have some
significant results, but all of these are based on sequences
or the physicochemical properties of proteins. Shula Shaz-
man proposed an algorithm based on differential geometry.
The algorithm can extract the geometric characteristics of
the binding domain, and then predict the double-stranded
DBPs and the single-stranded RBPs [33]. Different from the
previous work, we calculated the geometric characteristics of
the NBPs binding domain from the perspective of the binding
domain structure.

In the experiment we used a total of three characteristics:
First, the distribution of three morphological residues in pro-
tein binding domain; second, the volume accessibility char-
acteristics of protein binding domain; third, the secondary
structure distribution of residues in protein binding domain.
We used the above individual features to build the SVM
classifier, and then we gathered all the features together to
train the dataset, and finally used the SVM model to per-
form 10-fold cross validation tests. As shown in Table 2, it
can be found that the ACC and AUC of the SVM model
only using solvent accessibility are the highest, 0.6381 and
0.7076, respectively. Followed by the shape of the residues,
the ACC and AUC results were 0.6095 and 0.6909, respec-
tively. The effect of using only the secondary structure for
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FIGURE 6. The distribution of secondary structure on NBPs binding
domains. The statistical analysis of the distribution was performed using
the T-test to measure the significance difference. The asterisks marked in
the figure indicate significant differences in P-values < 0.05. (a) The
distribution of secondary structures in the binding domain. (b) The
distribution of secondary structures of the peak shapes in the binding
domain. (c) The distribution of secondary structures of the flat shapes in
the binding domain. (d) The distribution of secondary structures of the
valley shape in the binding domain.

classification prediction was the worst, with ACC and AUC
being 0.5905 and 0.6280, respectively. This is consistent
with the previous analysis. For the binding domains of the
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TABLE 2. Evaluation Results of Different Characteristics of SYM Model.

Test Methods Feature Acc Sen Spe AUC
Residue Shapes
(P<0.05) 0.6095  0.6403  0.5852  0.6909
Solvent
Accessibility 0.6381  0.5800 0.6304  0.7076
10-fold Secoill()izo.osst:ucture
Cross- (<1;)y0> 0.5905 0.5454  0.6250  0.6280
Validation AllP F nf
eatures
(P<0.05) 0.7347  0.6000 0.7857  0.7847
Independent All Features
Test (P<0.05) 0.6907  0.5905 0.6425  0.6943

two types of proteins, the attribute values of the secondary
structure are the least distinguishable, and the three types of
peak, valley and flat are the most different.

This result shows that secondary structure contributes the
least to the classification model, because there are many
grooves and convex in the binding domain of NBPs. When all
features were used to predict, the results were the best. These
values of ACC and AUC reach 0.7347 and 0.7847 respec-
tively. These results show that using the three kinds of fea-
tures are complementary to each other, and the independent
dataset has achieved good results. So this results show that
these selected features are considered as the optimal feature
sets used in our final DBPs and RBPs classification model.

IV. CONCLUSIONS

In the work, we designed a classification model to divide
between DBPs and RBPs. The model was built on the struc-
tural characteristics of the NBPs binding domain, and finally
achieved significant results. The prediction model achieves
better prediction rate, and we have further proposed a new
method to measure the shape of residues in the binding
region. The algorithm uses the binding domain residue Ca
atom as the center of the sphere. First, the total volume and
surface area of the protein molecules inside the sphere are
calculated. Then, the ratio of surface area to volume can
represent the local depression and convex shape. In our work,
we not only extracted the geometric characteristics of protein,
but also calculated secondary structure and solvent accessi-
bility. Finally, the results show that there are significant dif-
ferences in the residue morphology, secondary structure, and
availability of solvent accessibility in the binding domains of
DBPs and RBPs. A series of feature extraction methods can
also be applied to the prediction of binding protein binding
sites, and the prediction of the binding relationship between
drug molecules and proteins.

REFERENCES

[11 Y. Yan, D. Zhang, P. Zhou, B. Li, and S.-Y. Huang, “HDOCK: A Web
server for protein—protein and protein-DNA/RNA docking based on a
hybrid strategy,” Nucleic Acids Res, vol. 45, no. W1, pp. W365-W373,
Jul. 2017.

[2] S. Helder, A. J. Blythe, C. S. Bond, and J. P. Mackay, ‘“‘Determinants
of affinity and specificity in RNA-binding proteins,” Current Opinion
Structural Biol., vol. 38, pp. 83-91, Jun. 2016.

30048

[3]

[4

=

[5

[l

[6

—

[7

[8]

9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]
[26]

(27]

W. Zhang, X. Yue, G. Tang, W. Wu, F. Huang, and X. Zhang,
“SFPEL-LPI: Sequence-based feature projection ensemble learning for
predicting LncRNA-protein interactions,” PLoS Comput. Biol., vol. 14,
no. 12, p. 1006616, 2018.

W. Zhang, Q. Qu, Y. Zhang, and W. Wang, “The linear neighborhood
propagation method for predicting long non-coding RNA—protein interac-
tions,” Neurocomputing, vol. 273, pp. 526-534, Jan. 2018.

W. Zhang, J. Liu, and Y. Niu, “Quantitative prediction of MHC-II peptide
binding affinity using relevance vector machine,” Appl. Intell., vol. 31,
no. 2, pp. 180-187, 2009.

Z. Peng and L. Kurgan, “High-throughput prediction of RNA, DNA and
protein binding regions mediated by intrinsic disorder,” Nucleic Acids Res.,
vol. 43, no. 18, p. e121, Oct. 2015.

W. Zhang, J. Liu, and Y. Niu, “Quantitative prediction of MHC-II binding
affinity using particle swarm optimization,” Artif. Intell. Med., vol. 50,
no. 2, pp. 127-132, 2010.

R. R. Walia et al.,, “Protein-RNA interface residue prediction using
machine learning: An assessment of the state of the art,” BMC Bioinf.,
vol. 13, no. 1, p. 89, 2012.

W. Zhang, J. Liu, Y. Q. Niu, L. Wang, and X. Hu, “A Bayesian regression
approach to the prediction of MHC-II binding affinity,” Comput. Methods
Programs Biomed., vol. 92, no. 1, pp. 1-7, 2008.

W. Wang et al., “Analysis and prediction of single-stranded and double-
stranded DNA binding proteins based on protein sequences,” BMC Bioinf.,
vol. 18, no. 1, p. 300, 2017.

Z. P. Liu, L. Y. Wu, Y. Wang, X. S. Zhang, and L. Chen, ‘““Prediction
of protein-RNA binding sites by a random forest method with combined
features,” Bioinformatics, vol. 26, no. 13, pp. 1616-1622, 2010.

F. Towfic, C. Caragea, D. C. Gemperline, D. Dobbs, and V. Honavar,
“Struct-NB: Predicting protein-RNA binding sites using structural fea-
tures,” Int. J. Data Mining Bioinf., vol. 4, no. 1, pp. 21-43, 2010.

H. Zhao, Y. Yang, and Y. Zhou, “Structure-based prediction of
RNA-binding domains and RNA-binding sites and application to structural
genomics targets,” Nucleic Acids Res., vol. 39, no. 8, pp. 3017-3025, 2011.
W. Wang, J. Liu, and L. Sun, “Cover image, volume 84, issue 7: Analysis
of SSBs and DSBs interface,” Proteins Struct. Function Bioinf., vol. 84,
no. 7, p. C4, 2016.

J. Janin and R. P. Bahadur, “Relating macromolecular function and asso-
ciation: The structural basis of protein—-DNA and RNA recognition,” Cel-
lular Mol. Bioeng., vol. 1, no. 4, pp. 327-338, 2008.

X. Shao, Y. Tian, L. Wu, Y. Wang, L. Jing, and N. Deng, “Predicting
DNA- and RNA-binding proteins from sequences with kernel methods,”
J. Theor. Biol., vol. 258, no. 2, pp. 289-293, 2009.

X. Yu, J. Cao, Y. Cai, T. Shi, and Y. Li, “Predicting rRNA-, RNA-,
and DNA-binding proteins from primary structure with support vector
machines,” J. Theor. Biol., vol. 240, no. 2, pp. 175-184, 2006.

W. H. Landschulz, P. F. Johnson, and S. L. McKnight, ““The leucine zipper:
A hypothetical structure common to a new class of DNA binding proteins,”
Science, vol. 240, no. 4860, pp. 17591764, 1988.

A. Tripathi and V. A. Bankaitis, “Molecular docking: From lock and key to
combination lock,” J. Mol. Med. Clin. Appl., vol. 2, no. 1, pp. 1-19, 2017.
S. J. Greive, “DNA recognition for virus assembly through multiple
sequence-independent interactions with a helix-turn-helix motif,” Nucleic
Acids Res., vol. 44, no. 2, pp. 776-789, 2016.

K. Musunuru and R. B. Darnell, “Determination and augmentation of RNA
sequence specificity of the Nova K-homology domains,” Nucleic Acids
Res., vol. 32, no. 16, pp. 4852-4861, 2004.

T. S. Bayer, L. N. Booth, S. M. Knudsen, and A. D. Ellington, “Arginine-
rich motifs present multiple interfaces for specific binding by RNA,” RNA,
vol. 11, no. 12, pp. 1848-1857, 2005.

G. Wang and R. L. Dunbrack, Jr., “PISCES: A protein sequence culling
server,” Bioinformatics, vol. 19, no. 12, pp. 1589-1591, 2003.

A. Pintar, O. Carugo, and S. Pongor, “CX, an algorithm that identifies
protruding atoms in proteins,” Bioinformatics, vol. 18, no. 7, pp. 980-984,
2002.

M. Lewis and D. C. Rees, ‘‘Fractal surfaces of proteins,” Science, vol. 230,
no. 4730, pp. 1163-1165, 1985.

R. P.Joosten et al., ““A series of PDB related databases for everyday needs,”
Nucleic Acids Res., vol. 39, pp. D411-D419, Nov. 2011.

L. Deng, C. Fan, and Z. Zeng, ““A sparse autoencoder-based deep neural
network for protein solvent accessibility and contact number prediction,”
BMC Bioinf., vol. 18, no. 16, p. 569, 2017.

VOLUME 7, 2019



W. Wang et al.: Analyzing the Surface Structure of the Binding Domain on DBP and RBP

IEEE Access

[28]

[29]

[30]

[31]

M. Kumar, M. M. Gromiha, and G. P. S. Raghava, “Prediction of RNA
binding sites in a protein using SVM and PSSM profile,” Proteins Struct.
Function Bioinf., vol. 71, no. 1, pp. 189-194, 2008.

F. Pedregosa et al., ““Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825-2830, Oct. 2011.

J. L. Morrison, R. Breitling, D. J. Higham, and D. R. Gilbert, “A lock-
and-key model for protein-protein interactions,” Bioinformatics, vol. 22,
no. 16, pp. 2012-2019, 2006.

I. Paz, E. Kligun, B. Bengad, and Y. Mandel-Gutfreund, “BindUP:
A Web server for non-homology-based prediction of DNA and RNA
binding proteins,” Nucleic Acids Res., vol. 44, no. W1, pp. W568-W574,
2016.

VOLUME 7, 2019

(32]

(33]

Authors’

J. Yan and L. Kurgan, “DRNApred, fast sequence-based method that
accurately predicts and discriminates DNA- and RNA-binding residues,”
Nucleic Acids Res., vol. 45, no. 10, p. e84, 2017.

S. Shazman, G. Elber, and Y. Mandel-Gutfreund, “From face to inter-
face recognition: A differential geometric approach to distinguish DNA
from RNA binding surfaces,” Nucleic Acids Res., vol. 39, no. 17,
pp- 7390-7399, 2011.

photographs and biographies not available at the time of

publication.

30049



	INTRODUCTION
	MATERIALS AND METHODS
	MATERIALS
	DETERMINATION OF BINDING DOMAIN SHAPE
	SOLVENT AVAILABILITY ANALYSIS
	SECONDARY STRUCTURE ANALYSIS
	CLASSIFICATION MODEL AND EVALUATION METHOD

	RESULTS AND DISCUSSION
	DISTRIBUTION OF THREE BINDING DOMAIN RESIDUES
	SOLVENT ACCESSIBILITY
	SECONDARY STRUCTURE DISTRIBUTION
	PREDICTION PERFORMANCE OF CLASSIFICATION MODEL

	CONCLUSIONS
	REFERENCES
	Biographies
	Authors'


