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ABSTRACT In this paper, a new camera calibration method based on the image of the absolute quadratic
curve (IAC) is proposed, and a new target is designed for this method, which is both convenient and flexible.
It first extracts the characteristic points and the characteristic lines of the target and finds out the vanishing
point and the vanishing line. The radial and tangential distortion coefficients are obtained by using the cross
ratio invariance to correct the target image distortion. Then, the four internal parameters of the camera are
obtained by IAC. The influence of the skew parameters is ignored. The rotation matrix is then calculated
by the orthogonal characteristic of the coordinate system, and the translation vector is calculated by the
center coordinates of the camera. In this way, the internal and external parameters of the camera can be
obtained. The internal and external parameters are taken as initial values, and the optimal results are obtained
by nonlinear optimization using the reprojection method. Finally, the relative position between different
target images can be obtained by using the fundamental matrix, namely, the rotation angle. In the process
of solving, the normalization method is used to improve the accuracy of data processing. Not requiring any
prior information of the camera, the method has a wide range of applications.

INDEX TERMS Camera calibration, image of the absolute quadratic curve (IAC), fundamental matrix, cross
ratio invariance, vanishing point, vanishing line, distortion correction.

I. INTRODUCTION
In recent years, with the development of artificial intelligence
research, computer vision (such as visual navigation SLAM,
3D reconstruction and augmented reality), as one of the key
technologies of artificial intelligence, has garnered increased
attention. Nowadays, an increasingly large number of people
are studying computer vision, the research is quickly gaining
depth, and the application of computer vision in daily life is
becoming more and more extensive. Before computer image
processing, the most important task is to know the parameters
of the camera, including its internal and external parameters.
The accuracy of camera calibration will directly affect the
accuracy of image processing. The way to calibrate camera
parameters quickly and accurately under the condition of
unknown camera parameters will be the focus of this paper.

The most commonly used camera calibration method is
the vanishing point and the vanishing line method to cal-
ibrate. Reference [1] presents a global calibration method
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for widely distributed cameras based on vanishing features
and vanishing line. References [2] and [3] propose a method
to self-calibrate dynamically moving and zooming cam-
eras and determine their absolute and relative orientations.
References [4] and [5] propose a camera calibration method,
which uses the property of the vanishing points. The rota-
tion matrix can be computed by matching the corresponding
vanishing points in the two images, and a simple triangula-
tion method can calculate the translation vector. The rotation
matrix and the translation vector of the camera, i.e., the exter-
nal parameters of the camera can be easily found by using
the vanishing point and the vanishing line methods. However,
the premise of using these methods is based on the knowledge
of the internal parameters of the camera, and cannot be solved
directly.

Homography is the correspondence between two planes.
This property is usually used to calibrate the camera.
References [6] and [7] propose a method to achieve both
dense 3D reconstruction of the scene and estimation of the
camera intrinsic parameters by using coplanarities and other
constraints derived from relations between planes in the scene
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and reflected curves of line lasers captured by a single cam-
era. Reference [8] proposes a novel auto-calibration method,
which used three eigenvectors of a plane-induced homog-
raphy to solve for the image of the absolute conic (IAC).
The camera calibration parameters can then be obtained.
References [9] and [10] present various self-calibration meth-
ods to calibrate the rotating and zooming cameras. These
methods make use of the infinite homography constraint,
which relates the unknown calibration matrices to the com-
puted inter-image homographies. The internal parameters of
the camera can be easily obtained by using plane homogra-
phy, but if the external parameters of the camera are required,
other methods must be used in combination.

References [11]–[13] introduce the multiview geometry
and projective geometry in detail, and they played an impor-
tant role in camera calibration. References [14]–[16] propose
a novel contour-based algorithm, which used the epipolar
geometry recovered from the image and the properties of
mirror reflection. It can reconstruct an arbitrary rigid object
without knowing the camera parameters and the mirror poses.
References [17] and [18] propose a method of calculating the
epipolar geometry from profiles under circular motion. After
estimating the epipolar geometry, the Euclidean motion is
recovered using the fixed intrinsic parameters of the camera,
obtained either from a calibration grid or from self-calibration
techniques. Multi view geometry plays an important role
in camera calibration and 3D reconstruction. The methods
provided in this paper will also use the knowledge of multi
view geometry. They provide some theoretical basis for this
paper.

It is a widely used method to calibrate the internal and
external parameters of the camera by using the outline of the
object and the plane mirror. References [19] and [20] propose
a method that uses a sequence of images of an object rotating
about a single axis and analyzes the projective geometry of
the situation. References [21] and [22] address a method
of recovering both the intrinsic and extrinsic parameters of
a camera from the silhouettes of an object in a turntable
sequence. According to the image invariants, the rotation
angle and a fixed scalar, the fundamental matrix and the
imaged circular points for the turntable plane can be calcu-
lated. References [23] and [24] propose a method to recover
both the intrinsic and extrinsic parameters of the camera
using multiple silhouettes from one single image. It uses the
projective properties of epipoles to recover both the imaged
circular points and the included angle between two mirrors.
References [25] and [26] present a self-calibration method to
calculate the focal length, principal point, mirror and camera
poses directly from the silhouette outlines of the object and
its reflections, which uses five views of an object from two
planar mirrors. The calibration method based on plane mirror
and rotating target is widely applied and has been researched
extensively. However, this method is too dependent on auxil-
iary calibration equipment, and the calibration method is too
cumbersome and practical.

This paper will design a new target to calibrate the internal
parameters of the camera, which is convenient and flexible
to use. The target can be used for de-distortion processing
and camera calibration. Before camera calibration, radial
and tangential distortion parameters are obtained by using
orthogonal invariance and vanishing points to eliminate target
image distortion. The method does not involve the internal
parameters of the camera and is easy to realize. The basic idea
of camera calibration is to first calibrate the internal param-
eters of the camera by the image of the absolute quadratic
curve (IAC), and then calculate the rotation matrix is cal-
culated by the orthogonal characteristic of the coordinate
system. The translation vector is computed from the center
of the triangle formed by the three vanishing points of the
coordinate axis. Finally, the optimal solution of the camera
parameters is obtained by using the reprojection method.
Fundamental matrix can be used to calculate the relative
position between different target images.

The organizational structure of this article is as follows:
Section II introduces the definition and basic principles of this
article. Section III introduces the method of camera calibra-
tion used in this paper. Section IV analyzes and compares the
method using physical experiments. Section V summarizes
the methods provided in this paper.

II. NOTATION AND BASIC PRINCIPLES
A. CCD CAMERA
In this paper, we use x = [ux , uy]T and X = [X, Y, Z]T to
represent the point in the 2-D image plane and the 3-D space
respectively. ux and uy are pixel coordinates in the image
coordinate system. X, Y and Z are 3-D space coordinates
respectively. The homogenous coordinates of x and X are
x̃ = [xT , 1]T , X̃ = [XT , 1]T , respectively.
The projection from the point in 3-D space to 2-D image

plane can be expressed as follows:

ζ x̃ = [K |03×1]T X̃ = K [R|t]X̃ = KR[I | − C]X̃ = PX̃ (1)

K =

 fx s ux
0 fy uy
0 0 1

 , T =
[
R3×3 t3×1
01×3 1

]
, t = −RC

(2)

where, ζ is a scale factor and fx and fy are the equiv-
alent focal lengths. s is the skew parameter. (ux , uy) is
the main point coordinate. R is the rotation matrix, rep-
resenting the direction of the camera coordinate system
relative to the global coordinate system. t is the transla-
tion vector, namely the translation of camera coordinate
system relative to the global coordinate system. C is the
coordinates of the camera center in the global coordinate
system. [K|0] indicates that the matrix is partitioned into a
3× 3 K matrix and a 3× 1 column matrix.

The skew parameter s is that a skewing of the pixel ele-
ments in the CCD array so that the x-axes and the y-axes are
not perpendicular to each other. In realistic circumstances a
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R(γ, θ, φ) =

 cosφcosγ + sinθsinφsinγ cosθsinφ sinφsinθcosγ − cosφsinγ
cosφsinθsinγ − sinφcosγ cosθcosφ sinφsinγ + sinθcosφcosγ

cosθsinγ −sinθ cosθcosγ

 (3)

non-zero skewmight arise as a result of taking an image of an
image, for example if a photograph is re-photographed, or a
negative is enlarged. Therefore, for most standard cameras,
the skew parameters is 0. So in this paper, the camera’s
internal parameter matrix K is composed of four elements,

its expression is simplified as follows: K =

 fx 0 ux
0 fy uy
0 0 1

.
Usually we call K the internal parameter of the camera.

K has four degrees of freedom, namely fx , fy, ux , uy. The
parameters ofR andC are related to the direction and position
of the camera in the global coordinate system. We usually
call them external parameters, and R and C each have three
degrees of freedom. P is the camera matrix.

B. DEFINITION OF TARGET COORDINATE SYSTEM
The target graph is shown in Fig. 1, the o is the origin
of the coordinate system, and the x and y axes are shown
in Fig. 1 (a), and the z axis is determined according to the
right-handed coordinate system. The target is an equilateral
right triangle, and the two right angles edges are L respec-
tively. The target consists of 9 feature points and 9 feature
lines.

FIGURE 1. The coordinate system of the target and the plane perspective
projection. (a) The top view of the target. (b) The perspective projection of
the target.

According to the target coordinate system, the Euler angles
(Z-X-Y) of the rotationmatrix can be defined by yaw angle γ ,
pitch angle θ and roll angle ϕ. The transformation relation-
ship is shown in (3), as shown at the top of this page.

Fig. 1 (b) is a perspective projection of a target, where v1,
v2, v3, v4 are the vanishing points, i and j are the images of
the imaginary dots, and l is the vanishing line.

C. VANISHING POINT AND VANISHING LINE
Geometrically, the vanishing point of a 3-D space line is
obtained by the intersection of the ray that is parallel to

the line and through the center of the camera and the plane
of the image. Therefore, the vanishing point only depends
on the direction of the straight line and has nothing to do
with its location. The vanishing point is an image of infinity,
unaffected by the change in camera position. It is only
affected by the rotation of the camera.
Conclusion 1: The vanishing point of the 3-D space line

with direction d is the intersection point v of the ray with
the direction of d and the plane of the image [11]. It can be
expressed as

v = Kd (4)

The parallel plane of the 3-D space is intersected with the
infinite plane π∞ in a common straight line, and the image
of this line is the vanishing line of the plane. The vanishing
line is only related to the orientation of the scene plane, not
its location. The vanishing line of the plane π is obtained by
the intersection of the plane passing through the center C of
the camera and the plane of the image.
Conclusion 2: In the camera Euclidean coordinate system,

the vanishing line of the plane set perpendicular to the direc-
tion n is [11]:

l = K−T n (5)

D. THE IMAGE OF THE ABSOLUTE QUADRATIC
CURVE (IAV)
In the non-homogeneous coordinate system, the equation of
the quadratic curve is:

ax2 + bxy+ cy2 + dx + ey+ f = 0 (6)

In the homogeneous coordinate system, let x = x1/x3,
y = x2/x3 and the quadratic curve is:

ax21 + bx1x2 + cx
2
2 + dx1x3 + ex2x3 + fx

2
3 = 0 (7)

The form of a matrix is: xTCx = 0, where, C = a b/2 d/2
b/2 c e/2
d/2 e/2 f

.
The quadratic curve has five degrees of freedom, and its

ratio is: {a : b : c : d : e : f}, equivalent to the number
of elements of the symmetric matrix minus one degree of
freedom [11].

The absolute quadratic curve �∞ is a quadratic curve on
the infinite plane π∞. In the homogeneous coordinate system
π∞ = (0, 0, 0, 1)T , the points on �∞ satisfy the following
conditions: {

X2
1 + X

2
2 + X

2
3 = 0

X2
4 = 0

(8)
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All circles cross �∞ at two points and these two points
are imaginary dots. The imaginary dot is a pair of complex
conjugate ideal points, whose standard form is: I = [1, i, 0]T ,
J = [1,−i, 0]T .
Conclusion 3:The image of absolute quadratic curve (IAC)

is a quadratic curve:

w = (KKT )−1 = K−TK−1 (9)

The image of the absolute quadratic curve (IAC) w is only
related to the internal parameter K of the camera matrix P,
which has nothing to do with the orientation and location
of the camera. The image of the imaginary dot is the point
on w, which is the intersection of the vanishing line of the
plane π and w.
Under orthogonal conditions, the vanishing point, vanish-

ing line and IAC have the following important properties:
(1) The vanishing point of a line with vertical direction is

satisfied when vT1wv2 = 0
(2) The relationship between the vanishing point v of a

plane normal direction and the vanishing line l of the plane
is l = wv.

E. THE INVARIANCE OF PERSPECTIVE PROJECTION
If A,B,C,D are four points on a single column, their coordi-
nates are a, b, c, d, and then the cross ratio of the 4 points A,
B, C, D are represented by R(A,B,C,D) or R(a,b,c,d), and the
relationship is as follows [12]:

R(A,B,C,D) = R(a, b, c, d) =
a− c
b− c

:
a− d
b− d

(10)

Under the projective transformation of any straight line,
the value of the cross ratio is the same, i.e., the intersection
ratio is the basic projective invariant.

If the four points, A, B, C, D, cross the ratio
R(A,B,C,D) = 1, these points are called harmonic points,
which constitute a harmonic point sequence. According to
point C and D harmonic to point A and B (point pair C, D
harmonic to point pair A, B), or A and B harmonic to point C
and D (point pair A, B harmonic to point pair C, D), also
called D for A, B, C on the fourth harmonic point and A, B
and C, D into harmonic conjugate.
At any point in the plane, the two straight lines lead to the

imaginary dot. Iand J are called the two isotropic straight
lines that passing through the point. They are called the
isotropic direction along the direction of the isotropic straight
line.

Lager’s theorem: Assuming that the angle between the
two non-isotropic lines is θ , the cross ratio between the two
lines and the two isotropic lines with their intersection points
at -iand i slopes is µ [12]. There are:

θ =
1
2i

lnµ or µ = e2iθ (11)

Corollary: when the two intersections of two straight lines
and infinity lines l∞ are the harmonic conjugation to the
imaginary circles I and J, then the two lines are perpendicular
to each other. That is, θ = π/2, e2iθ = −1.

FIGURE 2. Diagram of the invariant characteristics of the intersection
ratio.

As shown in Fig. 2, suppose that the two non-isotropic
straight lines are perpendicular to each other. According to
the inference, the following relations can be obtained:

R(X ,Y , I , J ) = R(x, x, i, j) = −1 (12)

F. THE EPIPOLAR GEOMETRY AND THE
FUNDAMENTAL MATRIX
Epipolar geometry is the intrinsic projective geometry
between the two views. It is independent of the scene structure
and depends only on the internal parameters and relative
position of the camera. The schematic diagram of the epipolar
geometry is shown in Fig. 3. The projection of a single pointX
on the space plane π on the two imaging planes is x and x ′

respectively. The plane composed of X, C and C ′ is called
the epipolar plane, which contains the baseline. The points
e and e′ are the epipoles. It is the intersection of the straight
line between the two camera centers and the image plane, and
the epipole is the image of the other camera center in one
view. It is also the vanishing point of the baseline direction.
l and l ′ are the epipolar lines, which are the intersection of
the epipolar plane and the plane of the image, and all of the
epipolar lines are handed to the epipole [11].

FIGURE 3. Schematic diagram of epipolar geometry.

Conclusion 4: For any pair of corresponding points in
two images, the fundamental matrix satisfies the condition:
x ′TFx = 0.
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The fundamental matrix is an algebraic representation
of the epipolar geometry. The fundamental matrix has two
important properties given as follows:

1) Using the fundamental matrix to find the epipoles:
Fe = 0,FT e′ = 0.

2) Using the fundamental matrix to find the epipolar lines:
l ′ = Fx, l = FT x ′ .

III. CAMERA CALIBRATION
The main steps of the calibration method used in this paper
are as follows:

a. Adopt the Harris corner point detection algorithm to
extract feature points;

b. Use the intersection point of parallel lines or use Lager’s
theorem and deduction to calculate the vanishing points and
use normalized homographic method to get the image of the
imaginary dot.

c. The radial distortion and tangential distortion of the cam-
era are obtained by using the cross ratio invariance, and the
calibrated target image is de-distorted by using the distortion
coefficient.

d. According to the known conditions, calculate the image
of the absolute quadratic curve (IAC) w and find the internal
parameter matrix K.
e. Use the orthogonal property to calculate the rotation

matrix R, using the center C of the camera to calculate the
translation vector t;
f. Calculate the Euler angle of the camera by using the

vanishing line calculated by the perspective projection model
and the vanishing line drawn by the vanishing point fitting.

g. Use the normalized 8-point algorithm to solve the funda-
mental matrix F, and then determine the constraint relation-
ship between different views.

A. FEATURE EXTRACTION
The basic idea of Harris corner detection algorithm is to use a
fixed window to slide in any direction on the image, compare
the degree of change of the pixel gray level in the fixed
window before and after sliding. If there is a large gray scale
change in any direction, then we can assume that there are
corner points in the window [27], [28].

Harris point detection operator has the following prop-
erties: (a) It is insensitive to changes in brightness and
contrast; (b) It has rotational invariance; (c) It is not scale
invariant.

It is appropriate to use the Harris corner detection algo-
rithm for this target model. The feature points of the target
are determined by the intersection points of different straight
lines. The gray level changes obviously at the intersection
points and the contrast is relatively high. So it is convenient
and fast to detect and extract the corner points.

After the Harris corner detection is completed, the cor-
responding feature points can be obtained, and the corre-
sponding characteristic lines can be fitted by the least square
method through the feature points.

B. THE CALCULATION OF THE VANISHING POINT AND
THE IMAGE OF THE IMAGINARY DOT
1) THE CALCULATION OF THE VANISHING POINT
A set of parallel lines in 3-D space is intersected to one
point in the image plane, which is the vanishing point, i.e.,
the image of infinity points in the image plane. According
to Fig. 1 (b), we can use the intersection point of the image
of parallel lines to find four vanishing points, v1, v2, v3, v4
respectively.

Another way to solve the problem is to use Lager’s theorem
and deduction to obtain the following formula [12], [23].

R(v1, v2, i, j) = −1
R(v3, v4, i, j) = −1
R(v2, v3, i, j) = e2i(π/4)

R(v1, v4, i, j) = e2i(3π/4)

(13)

The vanishing point can be obtained by solving the above
equation. The above two methods can be used synthetically,
and better results may be obtained.
After finding out four vanishing points, using the least

square method to fit four vanishing points, the vanishing line
of the image plane can be obtained.

2) A NORMALIZED SINGLE HOMOGRAPHIC METHOD FOR
THE IMAGE OF A VIRTUAL CIRCULAR POINT
The normalization of data can not only improve the accuracy
of the results, but also eliminate the influence of coordinate
transformation by selecting an effective standard coordinate
system for the measurement data. The normalization method
consists of the following steps [11]:
(1) Shift the coordinates of each image tomake the centroid

of the point set at the origin;
(2) Scale the point set, so that the average distance between

them and the origin is equal to
√
2;

(3) The above transformation is performed independently
of two images.

The homography is a mapping transformation from one
plane to another, and the homographic matrix is a 3 × 3
transformation matrixH. The homographic transformation is
given by the following equation:x ′ = Hx . Using direct linear
transformation (DLT)method to solveH, because of the same
direction, in order to eliminate the influence of non-zero
factors, vector cross multiplication is used to indicate that:
x ′ × Hx = 0. Assuming x ′i = (x ′i , y

′
i, 1)

T , xi = (xi, yi, 1)T ,
a pair of homographic points should be able to obtain the
following relation: 0 −xTi y′ix

T
i

xTi 0 −x ′ix
T
i

−y′ix
T
i x ′ix

T
i 0

 h = 0 (14)

In order to solve homographic matrixH, there are at least 4
sets of corresponding points. In order to improve the accu-
racy, we can first normalize each image, then solve it with
the DLT method, and finally decompose the normalization.
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The target is a square in this paper, and the correspondence
between its four corner points and their images determines
a homography H between the plane of the square π and
the image. Usually in order to facilitate calculation, we take
the four corners of a square as: (0,0,1)T, (1,0,1)T, (0,1,1)T,
(1,1,1)T. If the homographyH is applied to the imaginary dot
on the plane π , we can get the image of the imaginary dot:
H (1,±i, 0)T .

C. THE SOLUTION OF DISTORTION PARAMETERS
1) THE INTRODUCTION OF RADIAL AND TANGENTIAL
DISTORTION
Distortion is usually characterized by: the principal axis
image points are usually taken as the distortion center,
because the distortion is symmetrical with respect to the
principal axis of the camera lens. The distortion in the center
area is the least serious, and the closer it gets to the edge,
the more serious the distortion is. The straight line that passes
through the principal axis image point is still a straight line
after distortion, while other straight lines bend at the edge of
the image. For wide-angle cameras, the distortion is relatively
more serious. The main purpose of distortion correction is to
correct the image measurement approximately to the degree
obtained by ideal linear camera and improve the accuracy of
image processing. For computer vision, distortion is usually
divided into two categories: radial distortion and tangential
distortion.

The distortion caused by lens shape is called radial distor-
tion. Radial distortion can be divided into barrel distortion
and pincushion distortion. Pincushion distortion is due to
the increase of image magnification with the increase of the
distance from the optical axis, while barrel distortion is the
opposite. Radial distortion can be expressed by a polynomial
in terms of coordinate changes before and after distortion.{

xu − ex = (xd − ex)(1+ k1r2d + k2r
4
d )

yu − ey = (yd − ey)(1+ k1r2d + k2r
4
d )

(15)

where, (xu, yu) is the pixel coordinate of the ideal point,
(xd , yd ) is the pixel coordinate of the normalized plane point,
(ex , ey) is the pixel coordinate of the distortion center point,

rd =
√
(xd − ex)2 + (yd − ey)2 is the distance from the

distorted image point to the distorted center point, k1 and k2
are radial distortion coefficients, wherein, k1 mainly acts on
the image center area with less serious distortion, while k2
mainly acts on the image edge area with larger distortion.

In the process of assembling camera, the distortion caused
by failing to make the lens and imaging plane strictly parallel
is called tangential distortion. The tangential distortion is
expressed by polynomials as follows:

xu − ex = (xd − ex)+ 2p1(xd − ex)(yd − ey)
+ p2(r2d + 2(xd − ex)2)

yu − ey = (yd − ey)+ p1(r2d + 2(yd − ey)2)
+ 2p2(xd − ex)(yd − ey)

(16)

where, p1 and p2 are tangential distortion coefficients.

Let x̄u = xu − ex , ȳu = yu − ey, x̄d = xd − ex , ȳd =
yd−ey, through the above four distortion coefficients, the cor-
rect position of the image point in the pixel coordinate system
can be obtained. The formula is as follows:{
x̄u = x̄d (1+ k1r2d + k2r

4
d )+ 2p1x̄d ȳd + p2(r2d + 2x̄2d )

ȳu = ȳd (1+ k1r2d + k2r
4
d )+ p1(r

2
d + 2ȳ2d )+ 2p2x̄d ȳd

(17)

For most cameras, radial distortion and tangential distor-
tion can be corrected to the extent that the requirements of
application are met.

2) THE INTRODUCTION OF DISTORTION
CORRECTION METHORDS
In Fig. 4, a1, b1, c1, d1 and a2, b2, c2, d2 are the images of
A1, B1, C1, D1 and A2, B2, C2, D2 in the global coordinate
system, respectively. Where D1 and D2 are the infinity points
in the global coordinate system and d1 and d2 are the corre-
sponding vanishing points. Suppose that A1, B1, C1, D1 and
A2, B2, C2, D2 are in a line, respectively. According to the
cross ratio theorem, we can get that:

R(A1,B1,C1,D1) = R(a1, b1, c1, d1) =
A1C1/B1C1

A1D1/B1D1
(18)

where, A1C1, B1C1, A1D1 and B1D1 respectively corre-
spond to the distance between two points in the global
coordinate system. Since D1 is the infinity point, namely
A1D1/B1D1 ≈ 1, the above equation can be simplified as:

R(a1, b1, c1, d1) = A1C1/B1C1 (19)

FIGURE 4. A schematic diagram of distortion correction using cross-ratio
invariance.

Suppose that in the image coordinate system, the coordi-
nates of four ideal points are a1(x1, y1), b1(x2, y2), c1(x3, y3),
d1(x4, y4). Because a1 and b1 are relatively close to the center,
the distortion is relatively less serious, and the projection of d1
at infinity is also relatively less serious, so we assume that the
coordinates of a1, b1, d1 and ideal point are the same. Because
c1 is at the edge of the image, affected by the distortion,
the coordinates of the ideal point deviate from those of the
actual image point. According to a1, b1 and d1, the position
of ideal point c1 can be obtained. According to (19), we can
get the coordinates of c1 as follows:

x3 =
R · x2(x1 − x4)− x1(x2 − x4)
R · (x1 − x4)− (x2 − x4)

y3 =
R · y2(y1 − y4)− y1(y2 − y4)
R · (y1 − y4)− (y2 − y4)

(20)
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Similarly, we can obtain the coordinates of ideal and actual
points of a2, b2, c2 and d2.
According to (17), we can obtain four equations of distor-

tion parameters:
x̄d1r2d1 x̄d1r4d1 2x̄d1ȳd1 r2d1 + 2x̄2d1
ȳd1r2d1 ȳd1r4d1 r2d1 + 2ȳ2d1 2x̄d1ȳd1
x̄d2r2d2 x̄d2r4d2 2x̄d2ȳd2 r2d2 + 2x̄2d2
ȳd2r2d2 ȳd2r4d2 r2d2 + 2ȳ2d2 2x̄d2ȳd2

 ·

k1
k2
p1
p2



=


x̄u1 − x̄d1
ȳu1 − ȳd1
x̄u2 − x̄d2
ȳu2 − ȳd2

 (21)

Formula (21) can be written in the form of a matrix:

M · q = m (22)

where q is a distorted parameter matrix, q =
[
k1 k2 p1 p2

]T .
Using the linear least squares method, the value of the

distortion parameter matrix q can be obtained as follows:

q = (MT
·M )−1MT

· m (23)

Thus, the initial estimation of the distortion parameter
matrix q is obtained. In order to reduce the error and improve
the accuracy of the distortion parameter, LM algorithm is
used for the nonlinear optimization of the error function
below. The optimization function is as follows:

Q =
n∑
i=1

[(x̄ iu − x̃
i
u)

2
+ (ȳiu − ỹ

i
u)

2] (24)

where, x̄ iu and ȳiu are pixel coordinates after correction of
distortion obtained according to (17); x̃ iu and ỹiu are ideal
pixel coordinates without distortion; and n is the number of
distorted images.

So far, the parameters of radial and tangential distortion
can be obtained.

D. CALCULATE THE IAC W AND FIND OUT THE INNER
PARAMETER MATRIX K
According to the expression of the inner parameter matrix K,
we can get the expression of w as follows:

w = (KKT )−1

=
1

f 2x f 2y

 f 2y 0 −f 2y ux
0 f 2x −f 2x uy
−f 2y ux −f 2x uy f 2x f

2
y + u

2
x f

2
x + u

2
y f

2
y

 (25)

According to the method provided in the Section ćó.B,
we can find the image of the virtual dot as: i =

H (1, i, 0)T , j = H (1,−i, 0)T . Because both i and j are on
IAC, they meet the following:{

iTwi = 0
jTwj = 0

(26)

In Fig. 1, l1 and l2 are perpendicular to each other.
According to the inference of Lager’s theorem, we can get

the vanishing points in the straight line of l1 and l2 to satisfy
the following relations:

vT1wv2 = 0 (27)

The same reason can be obtained:

vT3wv4 = 0 (28)

According to (26) (27) (28), the value of w can be solved.

Assuming w =

w11 0 w13
0 w22 w23
w13 w23 w33

, the inner parameter

matrix K can be obtained according to the relational for-
mula (25), as shown below:

f 2x =
det(w)

w2
11w22

f 2y =
det(w)

w11w2
22

ux = −
w13

w11

uy = −
w23

w22

det(w) = w11w22w33 − w11w2
23 − w22w2

13

(29)

Another way to solve for K is to first obtain the inverse
matrix of w and then use the Cholesky decomposition to get
the value of K.

E. THE CALCULATION OF THE ROTATION MATRIX R AND
THE TRANSLATION VECTOR t
1) THE CALCULATION OF THE ROTATION MATRIX R
According to Fig. 1, v1 is the vanishing point in the Y axis
and v2 is the vanishing point in the X axis. According to the
formula d = K−1v, the direction vector of the X axis can be
obtained as follows: dx = K−1v2; the direction vector of the
Y axis is dy = K−1v1. According to the orthogonality of the
rotation matrix, we can get the rotation matrix of the camera
coordinate system relative to the global coordinate system.

R =
[

dx
‖dx‖

dy
‖dy‖

dx×dy
‖dx×dy‖

]
(30)

2) THE CALCULATION OF THE TRANSLATION VECTOR T
Assuming that the direction of the Z axis in the 3-D space
is dz = dx × dy, then according to the formula vz = Kdz,
we can find out the vanishing points in the Z axis. Using the
three vertical direction vanishing points inX axis, the Y axis
and the Z axis, the vertical center of the triangle formed by
these three points is the center C of the camera.
Assume that vx = (x1, y1, z1), vy = (x2, y2, z2),

vz = (x3, y3, z3), C = (x, y, z). According to Kramer’s law,
the following formula can be obtained:

a = x1(x3 − x2)+ y1(y3 − y2)+ z1(z3 − z2)

b = x2(x3 − x1)+ y2(y3 − y1)+ z2(z3 − z1)

c = x3(x2 − x1)+ y3(y2 − y1)+ z3(z2 − z1)
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D = det

 x3 − x2 y3 − y2 z3 − z2
x3 − x1 y3 − y1 z3 − z1
x2 − x1 y2 − y1 z2 − z1

 ,
Dx = det

 a y3 − y2 z3 − z2
b y3 − y1 z3 − z1
c y2 − y1 z2 − z1


Dy = det

 x3 − x2 a z3 − z2
x3 − x1 b z3 − z1
x2 − x1 c z2 − z1

 ,
Dz = det

 x3 − x2 y3 − y2 a
x3 − x1 y3 − y1 b
x2 − x1 y2 − y1 c


x =

Dx
D
, y =

Dy
D
, z =

Dz
D

(31)

The coordinates of C obtained above are the location of
the camera center in the global coordinate system. Using the
formula t = −RC , the translation vector can be obtained.
The internal and external parameters of the camera are now

figured out.

F. FINDING THE EULER ANGLE OF THE CAMERA
If the X axis is used as the benchmark, assuming that the
direction vector of the X axis is dx = (x1, x2, x3), then the
yaw angle is:

γ = arccos

 x1√
x21 + x

2
2

 (32)

Using the method outlined in Section ćó.B, the equation of
the vanishing line can be obtained as follows:

au+ bv+ c = 0 (33)

It is assumed that in the 3-D space, the infinity point is
X̃i = [xi, yi, 0, 0]T . According to the perspective projection
model:

sx̃i = K [R|t]X̃i(i = 1, 2)

K =

 fx 0 ux
0 fy uy
0 0 1

 , R =

R11 R12 R13
R21 R22 R23
R31 R32 R33

 ,
t =

[
t1 t2 t3

]T (34)

Therefore, the vanishing points obtained from the infinite
point projection are:

x̃i =
[
fx
R11xi + R12yi
R31xi + R32yi

+ ux fy
R21xi + R22yi
R31xi + R32yi

+ uy 1
]T
(35)

The vanishing line can be obtained according to l = x̃1×x̃2.
The direction is given in (36), as shown at the bottom of this
page.

Using equation (34) to further simplify, the equation of the
vanishing line can be obtained as follows:

−
sinφ
fx

u+
tanθ
fy

v+
sinφ
fx

ux −
tanθ
fy

uy + cosφ = 0 (37)

Comparison of equations (33) and (37) can be used to
calculate the pitch angle θ and the roll angle ϕ, and the
expression is as follows:

φ = arctan
(

−afx
aux + buy + c

)
θ = arctan

(
−
b
a
fy
fx
sinφ

) (38)

According to the above method, the azimuth angle of
the camera relative to the global coordinate system can be
obtained.

G. NONLINEAR OPTIMIZATION
The above calibration results are the camera’s internal and
external parameters and azimuth angle. Although the camera
model can well express a camera, the calibration results will
be erroneous because the data will be influenced by various
noises. Therefore, nonlinear optimization method is needed
to reduce the effect of noise on calibration results.

The above calibration results are taken as the initial value
of optimization. The image pixel coordinates obtained by
the reprojection are subtracted from the original image pixel
coordinates to minimize the error and to obtain the optimal
value of camera internal and external parameters.

L = min
N∑
i=1

∥∥∥x̃i − K [R|t]X̃i
∥∥∥2 (39)

where, x̃i is the pixel coordinates of the i feature points of
the original image, X̃i is the coordinates of the i characteristic
point in the global coordinate system, N is the total number
of feature points.

The optimal solution of the camera’s internal and external
parameters can be obtained through the LM method.

H. SOLVING THE FUNDAMENTAL MATRIX F
When using the sequence image to calibrate, we need to
calculate the fundamental matrix F, so that the relative rela-
tion between the sequence images can be obtained. The
fundamental matrix F is usually obtained by the normalized
eight-point algorithm [30].

The normalized eight-point algorithm includes the fol-
lowing four steps: normalization, solving linear solutions,

l =

 fy(R21R32 − R22R31)
fx(R12R31 − R11R32)

fx fy(R11R22 − R12R21)+ ux fy(R22R31 − R32R21)+ uyfx(R11R32 − R31R12)

 (36)
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FIGURE 5. Solve the vertical center of the triangle with the vanishing
point as the vertex.

forcing constraints and de-normalization. The value obtained
is regarded as the initial value, and then the LM method is
used to optimize it, and the optimal solution F is obtained.

F̃ =
n∑
i=1

(xi − Fx ′i )
2 (40)

where, xi and x ′ are the matching point pairs in the two
images, and n is the number of matching point pairs.

According to the formula Fe = 0,FT e′ = 0, the
epipoles of the epipolar geometry can be obtained, which
is the image of the camera in the other view and also the
vanishing point of the base line. According to the formula
l ′ = Fx, l = FT x ′, we can find out the epipolar line in two
images in view of a point in space.

Fig. 6 shows the projection of all camera centers and their
epipolar geometry relationships after circular motion of the
camera around the target [21], [23]. In the instance C1, C2
and Ci are the centers of the camera in the global coordinate
system, all camera centers are in a plane. The rotation angle

FIGURE 6. The projection of the center of the camera and the epipolar
geometric relation.

of the camera from C1 to C2 is θ , the circumference angle
6 C1CiC2 is ϕ, the relationship between θ and ϕ is θ = 2 ∗φ.
The ei1 and ei2 are the projections of camera center C1 and C2
in camera Ci, which are the epipoles. i and j are the images
of the imaginary dots in the image plane of the camera Ci,
respectively.

According to the Lager’s theorem, we can get the
following:

φ =
1
2i
ln(R(ei1, ei2, i, j)) (41)

The rotation angle of the two cameras can be obtained using
the formula θ = 2 ∗ φ.

IV. ANALYSIS OF EXPERIMENTAL RESULTS
The physical experiment used in this paper is shown in Fig. 7.
A GoPro HERO 6 digital camera is fixed to a tripod and
the target is taken by adjusting the position of the camera
by adjusting the tripod or control rod. The resolution of the
digital camera is: 4000 pixels × 3000 pixels. The Gopro has
four visual field modes: wide, linear, medium and narrow.

FIGURE 7. Picture of the physical experiment. (a) Calibrate the camera
with a checkerboard. (b) Calibrate the camera with the target.
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We choose the linear field of view mode to minimize the
distortion.

A. CAMERA DE-DISTORTION EXPERIMENT
The radial and tangential distortion parameters of the camera
can be obtained by using the method proposed in this paper.
The results are shown in Table 1.

TABLE 1. The solution of distortion coefficient.

The target image is de-distorted by using the distortion
coefficient, and the images before and after the processing
are shown in the Fig. 8 (a) (b), respectively.

FIGURE 8. Comparison of target image before and after correction.
(a) Before correction. (b) After correction.

By comparing the images, we can find that the distortion of
the target image is relatively less serious, and the difference
between the results before and after correction is not very
significant, which shows that the camera has a good linearity
and almost no distortion to the image.

B. COMPARISON OF CALIBRATION RESULTS OF CAMERA
INTERNAL PARAMETERS
In this paper, we used a checkerboard to calibrate the camera
internal parameters, and the result acts as the benchmark for

comparison. The tool used was Bouguet camera calibration
toolbox in Matlab [31]. The space between the checkerboard
cells used was 25mm. In order to improve the accuracy of
the parameters in the target calibration camera and reduce the
influence of random factors on the calibration results, the fol-
lowing measures were adopted: First, the tripod was placed in
different positions and at different angles to take a number of
group photographs. It was ensured that the size of the target
image accounted for 1/3∼ 3/4 of the entire image size, and it
was distributed at different positions of the image. Second,
the photo in each group was calibrated several times, the
average value calculated, and then the average of the cali-
bration results of all groups was measured again to minimize
the influence of random factors as much as possible. Third,
all experimental data were normalized to minimize the error
caused by coordinate transformation. The calibration results
of camera internal parameters are shown in the following
table.

TABLE 2. Alibration results of camera internal parameters.

It can be seen from the calibration results that the calibra-
tion results of distorted target and de-distorted target are not
too different from the checkerboard calibration results, indi-
cating that the distortion caused by camera has little impact on
the calibration of the target. It can be seen from the calibration
results that the error in some parameters is large, and the
possible reasons are as follows: in the calibration process,
human factors may have influenced the calibration results.
Since filtering is not used in the calibration process, some
image noises may have an effect on the result. The amount
of calibration data used is not enough, which may influence
the precision. However, the error in most calibration results
is controlled within 5%, so the calibration results can be used
and can meet the precision requirements of most commonly
used environments.

C. THE INFLUENCE OF YAW ANGLE AND PITCH ANGLE
ON CALIBRATION RESULTS
Since different yaw angles and pitch angles will affect the
calibration results, the following research will be studied on
the influence of yawing angles and pitching angles. The true
values of yaw and pitch angles are obtained by repeated
measurements and adjustments with protractors.

1) THE INFLUENCE OF YAW ANGLE ON CALIBRATION
RESULTS
Since the target is positioned relative to the camera, in the
study of the influence of the yaw angle on the calibration
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results, the position and attitude of the camera can be kept
constant. The target is rotated at its center, and it is placed in
the middle of the image as much as possible. The rotation
angle is the yaw angle of the camera. The results of the
experiment are shown in the following table.

TABLE 3. The influence of the yaw angle on the calibration results.

The calibration results obtained at yaw angles 0◦ and 90◦

are the worst, followed by the results of yaw angle 45◦. The
calibration results of 30◦ and 60◦ are better. This is because
when the yaw angle is either 0◦ or 90◦, the line between the
center of the camera and the space origin is perpendicular to
the target coordinate axis or characteristic line. At this time,
the vanishing point in the vertical line direction is infinitely
far away, which generates a large error compared with the
position of the vanishing point in other characteristic line
directions. This will affect the final calibration result, so the
calibration result is the worst. When the yaw angle is 45◦,
the connection line between the center of the camera and
the space origin is parallel to the target feature line. The
position of the vanishing point in the direction of this straight
line and that of other characteristic lines will also produce
a large error, but smaller than the vertical influence. Hence
the calibration result is better than that of 0◦ and 90◦. Only
when the line, which is between the center of the camera and
the space origin, and the characteristic lines in the target are
neither vertical nor parallel, the results of the calibration will
be ideal, so the results of the yaw angles 30◦ and 60◦ are
better.

2) THE INFLUENCE OF PITCH ANGLE ON
CALIBRATION RESULTS
When the position of the target and camera is fixed, the pitch
angle mainly affects the position of the target in the image.
The experimental results are shown in the table below.

The experimental results show that when the pitch angle is
−30◦ and −60◦, the calibration results are relatively poor,
and the calibration results are good when the pitch angle
is −45◦. This is mainly because when the pitch angle is
−30◦ and−60◦ in the experiment, the target is relatively close

TABLE 4. The influence of the pitch angle on the calibration results.

to the edge of the image, and it is easy for image distortion
to occur at the edges, which will affect the final calibration
result. When the pitch angle is −45◦, the target is right in
the middle of the image, and its distortion is relatively less
serious, so the calibration results are relatively accurate.

There is one point to be explained here. In this paper,
the pitch angle of−45◦ is better due to the height of the tripod
and the size of the target, but it is not recommended to use the
pitch angle of−45◦ for all camera calibration. Depending on
the circumstances, the pitch angle is most appropriate as long
as the target is in the middle of the image.

D. CALCULATE THE ROTATION ANGLE BETWEEN IMAGE
SEQUENCES USING THE FUNDAMENTAL MATRIX
In this experiment, the posture and position of the camera
remain unchanged, and the target rotates around the origin,
which is equivalent to the rotation of the camera around the
target. Sequential images are acquired by shooting the target
in turn. The fundamental matrix between different sequence
images is calculated, and then the epipoles are obtained.
Finally, the rotation angle of the target is calculated by using
equation (41). The basic principle of calculating the rotation
angle by using the fundamental matrix is shown in Fig. 6.
In the contrast experiment, the rotation angle of the target is
calculated by the difference of the yaw angle of the different
positions of the camera. The results of the experiment are
shown in the following table.

TABLE 5. Comparison of rotation angles calculated by fundamental
matrix and yaw angle.

It can be seen from the comparison results that the rotation
angle calculated by the fundamental matrix is more accurate
than that calculated by the yawing angle. The reasons for
the poor accuracy of calculating the rotation angle using the
yawing angle are as follows: First, the roll angle and pitch
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angle will have a certain influence on the calculation of the
yaw angle. This is especially true for the roll angle, since the
coupling phenomenon of the roll angle and the yaw angle is
more serious, and the roll angle will affect the calculation
precision of the yaw angle. Second, the artificial operation
error will also have certain influence on the result. Third,
the calibration results of camera parameters will directly
affect the calculation accuracy of yaw angle. The fundamental
matrix reflects the position relationship between two images,
which is a point to point homography relationship. It is not
affected by the roll angle and the calibration results of camera
parameters, so the calculation results are relatively accurate.

E. DISCUSSIONS
Through the experiment, we can conclude that: for the
calibration result of the camera, the effect of image distortion
on the final calibration result is inapparent, and the linear per-
formance of the image is better. When the target is calibrated,
the connection of the center of the camera and the target
space origin should be avoided in parallel or perpendicular
to the target coordinate axis or the characteristic line. The
angle selection of the pitch angle and the yaw angle has no
fixed range. It should be determined according to the actual
situation as much as possible to ensure the target is in the
middle of the image, and accounts for about 1/3 of the whole
picture. So for this case, the yaw angle is 30◦ or 60◦, and
the pitch angle is −45◦. It is more accurate to calculate the
rotation angle of the camera using the fundamental matrix
than to calculate the rotation angle using the yawing angle.

V. CONCLUSION
In this paper, a new calibration target is designed for the
calibration of internal and external parameters of the camera.
By calculating the target image, the solution of image dis-
tortion parameters and the calibration of camera internal and
external parameters can be established. The internal param-
eters of the camera are calculated by the image of the abso-
lute quadratic curve (IAC). The rotation matrix is calculated
by the orthogonal characteristic of the coordinate axis. The
translation vector is calculated by the center coordinates of
the camera. The calibration results are optimized by using the
reprojection method, and the internal and external parameters
of the camera can be obtained.

The method of camera calibration using the image of the
absolute quadratic curve (IAC) is simple and convenient to
use. In this paper, a new target is designed, which is relatively
flexible and simple to use. It only needs to shoot several target
images under different attitude, and then the calibration work
can be finished by calculation, and the final calibration pre-
cision is also high. The target can be applied to the occasion
in which the camera rotates, and the direction angles of the
camera motion can be easily obtained. The application of
SLAM in the initialization of visual SLAM is very convenient
and free from the constraints of conventional methods. This
method provides a train of thought for the application in
some special scenes. In this paper, the normalization method

is used in data processing, which improves the accuracy
of data processing and reduces the influence of coordinate
transformation on data. The reprojection method reduces the
influence of noise on data. In addition, the method presented
in this paper does not need any parameters of the camera in
the process of calibration. The distortion coefficient and inter-
nal and external parameters of the camera can be obtained
by calculating the target image, so it has a wide range of
practicability.
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