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ABSTRACT Recently, Brain–computer interface (BCI) oriented electroencephalographic (EEG) studies
have received due attention for decoding human brain signals corresponding to a specific mental state and
providing an alternate solution to the disabled or paralyzed persons for communicating with the computer,
robotic arm, or various neural prostheses. In this paper, we propose a two-phase approach to distinguish
EEG signals of different mental tasks. The first phase combines the cross-correlation features and slow
cortical potentials mean extracted from the most significant channels to form feature vectors. The second
phase performs a classification of these feature vectors using SVM and KNN classifiers. It further boosts the
classification performance by creating an ensemble of SVM classifiers trained with complementary feature
sets extracted during the first phase. EEG signals generated for the same mental task are similar in shape
to each other and dissimilar to other activities. The basic principle of cross-correlation is to measure the
similarity in shape between two signals whichmakes it suitable for the EEG analysis.We test the performance
of the proposed approach on the BCI competition II dataset Ia representing the cursor movement EEG data
for a healthy subject. Experimental results on this dataset demonstrate a significant improvement in the
classification accuracy compared to other reported results. Moreover, the proposed work requires fewer
channels and features compared to the recent study, which uses all six channels and 42 features, manifesting
the efficacy of the proposed work.

INDEX TERMS Brain-computer interface (BCI), cross-correlation, EEG classification, ensemble.

I. INTRODUCTION
Over the past few years, many researchers across the world
have been analyzing the electroencephalographic (EEG)
signals for various applications such as detection of brain
disorders like Epilepsy [1], [2] and Alzheimer [3], emo-
tion recognition [4], [5], sleep stage classification [6], [7],
etc. Another type of EEG study involves developing brain-
computer interface (BCI) systems which provide a platform
for persons with disabilities or severe neurological disorders
to control a computer or robotic arm through their brain
signals.

In the BCI oriented EEG study, a subject (an individual)
is stimulated to perform an imaginary task such as the move-
ment of hand, tongue, limb, imagery cursor movement, etc.
Simultaneously, the brain activities are recorded from the
subject’s scalp in the form of EEG signals. The analysis of
these signals is then provided to the subject in visual or audial
form for learning to produce distinguishable EEG signals for

different mental tasks. These distinct signals are further ana-
lyzed in real time to decode the type of motor imagery activity
performed by the subject. EEG signals are non-stationary,
subject-specific, task-specific and usually contain artifacts
like eye blinks, eye movements, muscle movements, etc.
Therefore, each BCI application requires different features
and classification methods for analyzing EEG signals.

In EEG-based BCI systems, EEG signals, particularly
in the mu (8-14 Hz) or beta (14-30 Hz) frequency
ranges [8]–[10] or event related potentials such as P300
[11], [12] or slow cortical potentials (SCP) [13], [14] have
been widely used in the previous studies as they are highly
distinctive. The accurate recognition of the mental activ-
ity from EEG signals mainly relies on the discriminative
power of the features extracted from EEG signals. During
EEG signal processing, features are commonly extracted
from time, frequency, time-frequency or a combination of
multiple domains. The most widely used feature extraction
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methods for motor imagery EEG signals are summarized as
follows:
• Fast Fourier Transform (FFT):- Varsta et al. [15] and
Polak and Kostov [16] extracted Fourier spectral fea-
tures by applying Fourier transform over windowed sig-
nal segments.

• Autoregressive (AR) parameters:- An AR model is built
for the input signal, and then the model coefficients are
used as features [17]–[20]. Both AR and FFT meth-
ods assume that the input signal is stationary. However,
the EEG signals are non-stationary. Therefore, AR and
FFT methods may not give good results on EEG signals.

• Specific frequency band related features [21]–[25].
• Common spatial pattern (CSP):- This method builds the
spatial filters to extract the features with a maximum
variance between two classes [26], [27].

• Coefficients of wavelet transform:- In [28] and [29],
researchers have used the wavelet transform coefficients
of the desired frequency bands for EEG analysis.

• Wavelet packet decomposition (WPD):- Ting et al. [29]
have used the specific sub-band energy and coefficients
mean of the wavelet transform. Göksu [30] developed a
method which computes the log energy entropy of the
WPD coefficients for each frequency band.

• Cross-correlation:- This technique has been widely
applied to the analysis of EEG signals related to brain
disorders like Epilepsy [31] and EMG signals of neu-
romuscular diseases [32]. In the recent years, cross-
correlation technique has been applied to the multi-
channel motor imagery EEG analysis, where the sta-
tistical features are extracted from the cross-correlation
between signals of different channels. The cross-
correlation technique offers low computational com-
plexity andminimizes the effect of random noise present
in EEG signals [32].

The dataset Ia of BCI competition II [33], described in
Section II, has been analyzed by other researchers using
different approaches. Mensh et al. [13], the winner of the
BCI competition II on dataset Ia, combined the SCP mea-
sures extracted from the channels 1 and 2 with the gamma-
band power estimated from the channels 4 and 6. They
further trained a simple linear discriminant (LDA) classi-
fier and reported an accuracy of 88.7% on the test data.
Sun and Zhang [34] complemented the SCP measures of the
channels 1 and 2 with the spectral centroid on channel 4 and
improved the accuracy to 90.44%. Wang et al. [35] observed
that the wavelet packet coefficients of the channels 4 and 6
in the beta-band show a significant cue-class difference.
Therefore, they computed the average energy of the signals
using beta-band wavelet coefficients for each of the chan-
nels 4 and 6. Further, they combined these features with
SCP means of the channels 1 and 2. Finally, neural network
and SVM classifiers were used to perform classification of
these feature vectors, obtaining an accuracy of 91.47% on
the test data. Ting et al. [29] applied wavelet packet decom-
position to extract coefficient means and energy of 0-50 Hz

sub-band from all the six channels to form a 17-dimensional
feature vector. Ting et al. then used a probabilistic neural
network (PNN) classifier and achieved 90.8% test accuracy.
Kayikcioglu and Aydemir [36] introduced a method that fits
a second order polynomial to the channel 1 signals. They
extracted two features from the coefficients of the second
order polynomial, followed by classification using KNN to
improve the accuracy to 92.15% on the test data. Hu et al. [37]
achieved 90.1% test accuracy using the coefficients mean
and specific sub-band energy of WPD of all six channels.
Nguyen et al. [38] performed a wavelet decomposition of
the signals of each channel and extracted most informative
wavelet coefficients from each channel. These features were
combined to form a feature vector, followed by classification
using interval Type-2 fuzzy logic system, achieving an accu-
racy of 90.1% on the test data. Recently, Göksu [30] proposed
a method to extract log energy entropy of the wavelet packets
from all six channels and trained an MLP classifier, improv-
ing the classification performance to 92.83%.

Most of the above methods, except the method proposed
by Kayikcioglu and Aydemir [36], have extracted the fea-
tures from EEG signals without considering the shape char-
acteristics of these signals. Therefore, there is still some
scope to enhance the classification accuracy by utilizing a
fewer number of distinctive features. EEG signals vary in
amplitude but exhibit similar shape characteristics for the
same mental activity and different shape characteristics for
different mental activities. Kayikcioglu and Aydemir fit-
ted a second order polynomial to the EEG signals to cap-
ture the upward/downward curve pattern of these signals.
However, their method utilized only one type of information
extracted from a single channel for classification, producing
only 92.15% test accuracy.

In this work, we propose to extract discriminative fea-
tures from each cross-correlation sequence because the cross-
correlation between two signals measures the similarity in
shape between these signals. Reference signal selection is a
solid criterion for performing cross-correlation. The proposed
work performs intra-channel cross-correlation (i.e. cross-
correlation between signals of the same channel), where the
reference signal is not intuitive. Thus, it is challenging to
select the suitable reference signal.

CONTRIBUTIONS
• Reference signal selection: As the reference signal
selection is critical for cross-correlation, we propose a
unique approach to select the reference signal instead of
randomly picking the reference.

• Feature extraction: After selecting the suitable ref-
erence signal, we extract discriminative features from
each cross-correlation sequence. We then combine these
features with the SCPmeans as the use of different types
of information enhances the accuracy of classification
[13], [35]. The features of onlymost significant channels
are utilized in the proposed work as they produce better
classification accuracy.
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• Reduced feature dimensionality: The recent study by
Göksu [30] extracts 42 features using all six channels.
As opposed to this, the proposed approach utilizes only
two channels and five features, reducing the feature
dimensionality. Thus, the proposed approach leads to
a relatively efficient classification model and makes it
suitable for BCI oriented EEG analysis, where disabled
persons can control the computer or various neural pros-
theses through their brain signals.

• Classification: Features extracted from different signif-
icant channels and multiple suitable reference signals
may correspond to diverse characteristics which com-
plement each other and enhance the overall classifica-
tion accuracy. Therefore, we propose to construct an
ensemble of base classifiers trained on complementary
feature sets to further boost the classification accuracy.
Experimental analysis demonstrates the superiority of
the proposed approach compared to other reported stud-
ies on the dataset Ia of BCI competition II.

The rest of the paper is organized as follows. Section II
briefly describes the EEG dataset used in this study. The
details of the proposed approach are given in Section III.
Section IV presents an experimental analysis and discussion.
The proposed work is concluded in Section V.

II. DATASET
EEG signals used in this study are obtained from BCI compe-
tition II dataset Ia [33] available at the competition website.1

The recordings were collected from a single healthy subject
at the Institute of Medical Psychology and Behavioral Neu-
robiology, University of Tuebingen, Germany. The cortical
potentials were measured when a subject moved a cursor
up or down on a computer screen. The total duration of
each trial is 6 seconds. The structure of the trial is shown
in Figure 1. In each trial, the visual cue was presented
by a highlighted goal at either the top or bottom of the
screen to denote ‘up’ or ‘down’ activity from 0.5 seconds
to 6 seconds. The subject received a visual feedback of his
cortical potentials from 2 seconds to 5.5 seconds. Data from
feedback phase of 3.5 seconds is made available for training
and testing. As mentioned in [30], the vertical eye movement
artifacts were removed from the SCP measurements. The
upward/downwardmovement of the cursor on the screen indi-
cates cortical negativity/positivity produced by the subject.

1https://www.bbci.de/competition/ii/tuebingen_desc_i.html

FIGURE 1. Trial structure.

EEG signals were collected from the six electrodes placed
on the subject’s scalp as per the International 10-20 system
and are referenced to the Cz electrode as follows: Channel 1:
A1 (left mastoid); Channel 2: A2 (right mastoid);
Channels 3 and 5: 2 cm frontal of C3 and C4 respectively;
Channels 4 and 6: 2 cm parietal of C3 and C4 respectively.
The training set consists of total 268 trials: 135 from class ‘0’
i.e. up and 133 from class ‘1’ i.e. down. Test set consists of
total 293 trials. Both training and test trials consist of data
from only 3.5 seconds feedback phase. The goal of this study
is to predict the class label as ‘0’ or ‘1’ for the EEG trials in
the test set.

III. METHODOLOGY
As discussed in Section I, if a subject performs the samemen-
tal activity, then the generated EEG signals exhibit similar
shape otherwise, the shapes of the signals produced for dif-
ferent mental activities are different. As the cross-correlation
technique measures the similarity in shape between two
signals, we propose to extract the features from the cross-
correlation sequence between two signals. Moreover, the use
of different types of features improves the class separability
of different EEG signals. In this work, we propose a novel
two-phase approach to classify the EEG signals of up and
down cursor movement imagery data. The two phases are
1) feature extraction and 2) building the classification model.
The first phase extracts the cross-correlation features and
slow cortical potentials (SCP) means from the significant
channels. Then, these features are integrated into a single
vector which serves as an input to SVM and KNN classifiers.
The second phase constructs an ensemble of SVM classifiers
trained with complementary feature sets to boost the clas-
sification accuracy. The proposed approach is diagrammed
in Figure 2 and the various steps involved are as follows:

A. PHASE I: FEATURE EXTRACTION
Cross-correlation is one of the feature extraction techniques
in the time domain. This technique offers low computational
complexity and it curtails the effect of random noise present
in EEG signals while extracting features from the cross-
correlation sequence. The cross-correlation between two sig-
nals p (t) and q (t) is calculated as shown in (1).

CCpq[l] =

{∑N−l−1

t=0
pt+lqt if l ≥ 0

CCqp[−l] if l < 0
(1)

where, l = − (N − 1) , ....,−2,−1, 0, 1, 2, ...., (N − 1).
The variable ‘l’ denotes a lag or time shift parameter and
CCpq[l] denotes the cross-correlation between two signals
p and q with lag ‘l’. For l ≥ 0, signal p (t) is leading the
signal q (t) by ‘l’ positions and for l < 0, p (t) lags behind
the signal q (t). If ‘N ’ is the finite length of the signals p (t)
and q (t), then the number of samples in the resultant cross-
correlation sequence is 2N − 1.
Selection of the reference signal is a solid criterion for per-

forming the cross-correlation as the quality of classification
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FIGURE 2. Flow diagram of the proposed approach. (a) Feature extraction. (b) building the classification model.

not only depends on the type of features extracted from the
cross-correlation sequence, but also depends on the reference
signal used to generate the cross-correlation sequence. Thus,
in this work, we propose an approach to select the suitable
reference signals for performing the cross-correlation. Steps
involved in the feature extraction phase are as follows:

1) STEP 1: REFERENCE SIGNAL SELECTION
In certain EEG studies, the reference signal is intuitive. For
example, identifying subjects with the epileptic seizure from
a group of healthy subjects and subjects with epilepsy. In this
case, signals of healthy subjects are quite different from the
signals of the subjects with epileptic seizures [31]. However,
in studies such as identification of different mental activities
performed by the subject from his/her EEG signals, the EEG
signals of different activities are not easily differentiable.
In this work, we analyze these signals using intra-channel
cross-correlation, where the selection of the reference signal
is not trivial. One may randomly select the reference signal.
However, randomness does not ensure the accurate results.

The dataset Ia of BCI competition II has EEG signals for
two classes, viz. ‘up’ and ‘down’ cursor movements. In this
case, a reference signal can be a representative of any one
of these classes. After detailed analysis, we observe that if a

signal, whose sample mean is either closer to or farther from
the overall mean of the same class, but farther from the overall
mean of the other class, is selected as a reference signal, then
the extracted cross-correlation features give better accuracy.
However, if a signal, whose mean value is closer to the overall
mean of the other class, is selected as a reference, then the
cross-correlation features degrade the classification perfor-
mance. This scenario for channel 1 is depicted in Figure 3.
In this figure, the channel 1 signals, viz. ‘r1’ and ‘r2’ are
closest to and farthest from the overall mean of the ‘up’
activity, respectively but farther from the overall mean of the
‘down’ activity. These signals are shown in Figure 4. It can be
seen from Figure 3 that the test accuracies achieved using ‘r1’
and ‘r2’ as the reference signal are higher than that obtained
with other reference signals chosen randomly.

Let T : set of training samples, Tu: set of ‘up’ class sam-
ples, Td : set of ‘down’ class samples, p: # data points per
signal, and j: channel index. We select the reference signal
corresponding to a given channel from the ‘up’ activity as
follows:
• ∀ r ∈ Tu, compute the mean and standard deviation as
follows,

µ
um
j =

1
p

∑p
i=1 r

um
ji , σ umj =

√∑p
i=1

(
rumji −µ

um
j

)2
p−1
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FIGURE 3. Test accuracies obtained with various reference signals of
channel 1.

• ∀ r ∈ Td , compute the mean and standard deviation as
follows,

µ
dq
j =

1
p

∑p
i=1 r

dq
ji , σ

dq
j =

√∑p
i=1

(
r
dq
ji −µ

dq
j

)2
p−1

• Compute the mean of ‘up’ class,
µuj =

1
|Tu|

∑|Tu|
m=1 µ

um
j

• Compute the mean of ‘down’ class,
µdj =

1
|Td |

∑|Td |
q=1 µ

dq
j

• Let rulj ∈ Tu where, µulj is either closest to or farthest
from µuj with smaller σ ulj and farther from µdj . Then,
rulj becomes the candidate reference signal.

In this work, we experiment with both signals whose mean
values are either closest to or farthest from the ‘up’ class
mean. The reference signal selection process for channel 1 is
depicted in Figure 4.

FIGURE 4. Reference selection for channel 1.

2) STEP 2: CROSS-CORRELATION FEATURE EXTRACTION
After selecting the reference signal, the remaining EEG sig-
nals of both ‘up’ and ‘down’ activity are correlated with the
reference signal. The dataset Ia has EEG recordings from six
different channels. Therefore, a reference signal is different
for each channel. Bose et al. [32] and Krishna et al. [39]
extracted different types of features, viz. Hjorth parameters,
statistical features, etc. Chandaka et al. [31] extracted fol-
lowing features from the cross-correlation sequence for the
detection of epileptic seizure and achieved promising results.

1) Peak / Maximum value:
2) Instant at which peak occurs:
3) Centroid (cent)

cent =

∑(N−1)
l=−(N−1) l ∗ CC[l]∑(N−1)
l=−(N−1) CC[l]

(2)

4) Equivalent width (W )

W =

∑(N−1)
l=−(N−1) CC[l]

Peak value of CC[l]
(3)

5) Mean square abscissa (msa)

msa =

∑(N−1)
l=−(N−1) l

2
∗ CC[l]∑(N−1)

l=−(N−1) CC[l]
(4)

Experimental results demonstrate that the aforementioned
features are more discriminative than the statistical and
Hjorth features for both channels 1 and 2. Hence, in the
proposed work, we extract these features from each cross-
correlation sequence corresponding to the channels 1 and 2.
It is also observed that the cross-correlation features extracted
from the channels 1 and 2 give better classification accuracies
compared to those extracted from other channels. This is
manifested in Section IV. Thus, we utilize the proposed cross-
correlation features of the channels 1 and 2 only.

Figure 5 depicts a reference signal which is a represen-
tative of ‘up’ activity, whereas the typical ‘up’ and ‘down’
activity signals are shown in Figures 6 and 7 respectively.
These signals correspond to channel 1. Figures 8 and 9
depict a cross-correlation between the reference signal and

FIGURE 5. Reference signal of channel 1.
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FIGURE 6. Typical ‘up’ activity signal of channel 1.

FIGURE 7. Typical ‘down’ activity signal of channel 1.

FIGURE 8. Crosscorrelogram of the reference and ‘up’ activity.

the typical ‘up’ and ‘down’ activity signals respectively. The
cross-correlograms of some trials of the ‘up’ and ‘down’
activities may be somewhat different from their typical cross-
correlograms due to noise in SCP measurements.

3) STEP 3: SLOW CORTICAL POTENTIALS (SCP) ANALYSIS
In [13], the winner of BCI competition II dataset Ia
demonstrated that the channels 1 and 2 show a significant

FIGURE 9. Crosscorrelogram of the reference and ‘down’ activity.

difference between the cue class means. It can be seen from
Figures 10 and 11 that the cue class difference is 20-30 µV
for the channels 1 and 2, except an initial transient which may
be due to the inception of feedback phase. Therefore, for each
trial, the SCP voltages of the channels 1 and 2 are averaged
from 0.5s to 3.5s ignoring the initial transient. Cue class
differences are marginal for the remaining four channels.

FIGURE 10. SCP analysis of the channel 1, training samples.

4) STEP 4: CONSTRUCTION OF FEATURE VECTOR
The use of different types of information enhances the per-
formance of the classifier [13], [35]. Hence, we propose to
combine the discriminative cross-correlation features of the
significant channel and SCP means of the channels 1 and 2,
forming a feature vector for each trial.

B. PHASE II: BUILDING THE CLASSIFICATION MODEL
Several different types of classifiers such as SVM,KNN, neu-
ral network, LDA, etc. have been employed in the EEG signal
classification. SVM and KNN classifiers are most widely
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FIGURE 11. SCP analysis of the channel 2, training samples.

used and shown to be effective in the EEG classification.
The following subsections describe the steps involved in the
phase II.

1) STEP 1: BUILDING THE BASE CLASSIFIER USING
FEATURE VECTORS CONSTRUCTED IN PHASE I
Using the feature vectors constructed in phase I, the pro-
posed work builds SVM and KNN as the base classifiers.
SVM classifier needs a regularization parameter C and the
hyperparameters like degree for polynomial kernel and σ
for RBF kernel. By harnessing a well-known method called
grid search, we estimate the optimal hyperparameters and
a suitable regularization parameter which yields the best
accuracy for test samples. For KNN classifier, the best value
of parameter ‘k’ is estimated by training the model with
different ‘k’ values and selecting the one which gives the
highest accuracy.

2) STEP 2: CONSTRUCTION OF AN ENSEMBLE OF
BASE CLASSIFIERS
To boost the classification performance further, we employ an
ensemble approach which can benefit from multiple models
trained with complementary sets of features and the same
base classifier. It is observed that the base classifier, trained
with different feature sets, produces the results which corre-
spond to diverse aspects of these features. We construct an
ensemble of SVM classifiers trained with different feature
sets obtained using different significant channels and multi-
ple reference signals. The outcome of the ensemble model
is determined using two different approaches: 1) majority
voting, and 2) maximum probability where the class label
with maximum posterior probability is predicted.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
All experiments have been conducted on an Intel Core 2 Duo
machine with 3.17 GHz CPU, 4GB main memory and 64 bit
Windows environment. The proposed approach is imple-
mented in Matlab R2016a. The dataset used in this study is

FIGURE 12. Performance of classifier built using different types of
features extracted from the cross-correlation sequences for channel 1.

taken from BCI competition II dataset Ia where the goal is
to differentiate the ‘up’ and ‘down’ cursor movements of a
healthy subject. The performance metric for this dataset is
classification accuracy.

In this work, we proposed to extract the cross-correlation
features, viz. peak value, instant at which peak occurs, cen-
troid (cent), equivalent width (W ), and mean square abscissa
(msa). We compare the classification accuracy of the clas-
sifier built using the proposed cross-correlation features
and the classifier built using other types of features, viz.
statistical [39] and Hjorth [32] extracted from the cross-
correlation sequence by other researchers. Figures 12 and 13
for the channels 1 and 2 show that the proposed features
are more discriminative than other types of features. In the
experimental analysis, the channels 1 and 2 are found to
be most significant in terms of the classification accuracy,
see Figure 14. Therefore, we built the classifier using the
proposed cross-correlation features extracted from the most
significant channels 1 and 2.

FIGURE 13. Performance of classifier built using different types of
features extracted from the cross-correlation sequences for channel 2.
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FIGURE 14. Test accuracies obtained using proposed cross-correlation
features from each channel.

It can be seen from Figures 12 and 13 that the classifica-
tion accuracy on the test samples is higher than that on the
training samples for all types of features, except statistical
and Hjorth features extracted from the channel 2. For the
cases with higher test accuracy, the class separation power
of the underlying features on the test samples is better than
that on the training samples. Moreover, the previous studies
[13], [35], [36] obtained better test accuracy than the training
accuracy which also suggests that the test samples have better
class separation than the training samples. We compute the
class separability criterion J3 [40] for both training and test
samples using (5).

J3 = trace
(
Sw−1 ∗ SB

)
(5)

where,
Sw: within class scatter matrix.
SB: between class scatter matrix.
Tables 1 and 2 suggest that the value of the criterion J3

of the test samples is better than that of the training samples
for most of the cases. Thus, for these cases, the test accuracy
is higher than the training accuracy which is evident from
Figures 12 and 13.

TABLE 1. Class separability criteria value for different types of features
extracted from the cross-correlation sequences for channel 1.

TABLE 2. Class separability criteria value for different types of features
extracted from the cross-correlation sequences for channel 2.

A detailed analysis of the most significant channels, viz.
1 and 2 with different combinations of discriminative features

is given in the subsection IV-A. We also present an extensive
analysis for the ensemble of classifiers trained with comple-
mentary feature sets in the subsection IV-B.

A. RESULTS FOR SIGNIFICANT CHANNELS
The classification accuracy for each channel obtained using
the proposed cross-correlation features is shown in Figure 14.
From Figure 14, it is evident that only the channels 1 and 2
achieved a desirable classification performance compared to
other channels. Therefore, we only utilize the information
from the channels 1 and 2 for classification. The classifica-
tion power of the individual cross-correlation features of the
channels 1 and 2 is depicted in Figures 15 and 16 respectively.
It is evident from Figure 15 that the features, viz. 1 (peak
value), 4 (equivalent width), and 5 (mean square abscissa) of
the channel 1 are most discriminative as they perform well
on the training as well as test samples. Figure 16 depicts
that the fourth feature i.e. ‘equivalent width’ outperformed
all other features of channel 2. The features 2 (centroid)
and 3 (instant at which peak occurs) perform better on the
test samples compared to the fifth feature i.e. ‘mean square
abscissa’. However, their ability to separate the training sam-
ples into two classes is very low compared to the fifth feature.
Therefore, the features 2 and 3 may perform very well on
the test samples, but at the cost of poor training accuracy.
To address this issue, we prefer the fifth feature i.e. ‘mean
square abscissa’ over the features 2 and 3 for channel 2.

Figure 15 for channel 1 suggests that the features 2 (cen-
troid) and 4 (equivalent width) have higher test accuracy,
whereas remaining features have higher training accuracy.
To justify these results, the scatter plots for the channel 1 fea-
tures, viz. 4 (equivalent width) and 5 (mean square abscissa)
are shown in Figures 17 and 18 respectively. It can be seen
that the fourth feature, i.e., equivalent width well separates
the test samples into two classes than the training samples,
whereas the fifth feature, i.e., mean square abscissa has better
class separation for training samples compared to test sam-
ples. From Figures 17 and 18, it is evident that the range of

FIGURE 15. Classification accuracy of the individual cross-correlation
features of channel 1.
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FIGURE 16. Classification accuracy of the individual cross-correlation
features of channel 2.

FIGURE 17. Scatter plot for values of equivalent width (W ) of channel 1.

values of the features, viz. equivalent width and mean square
abscissa in the test samples is close to their corresponding
range of values in the training samples. Thus, if the ranges of
values of a feature in the training and test samples are close
enough and the feature has better class separation for test
samples compared to that for training samples, then the test
accuracy will be better than the training accuracy for a given
feature. Similar behavior was observed for the channel 2
features depicted in Figure 16. In this figure, the test accuracy
is better than the training accuracy for all features except the
feature 1.

We performed experiments with different combinations
of the discriminative cross-correlation features of the chan-
nels 1 and 2. In each experiment, significant cross-correlation
features are combined with the SCP means of the chan-
nels 1 and 2 to form a feature vector for each trial which is
then classified by SVM and KNN classifiers. SVM classifier
with polynomial and RBF kernels are used, where the reg-
ularization parameter ‘C’ and the optimal hyperparameters
‘degree’ and ‘σ ’ are estimated using a grid search method.

FIGURE 18. Scatter plot for values of mean square abscissa (msa) of
channel 1.

The search range for ‘C’ is within [1, 50] with a step size
of 5 and the range for ‘σ ’ is within

[
2−2, 25

]
with a step size

of 21. ForKNNclassifier, the search range for parameter ‘k’ is
[1, 19] with a step size of 2. Separate training and test samples
of the dataset Ia are provided by the BCI competition II [33],
where the test accuracy is estimated using the entire training
set. In this work, the training accuracy has been estimated
using 10-fold stratified cross-validation. Both average accu-
racy and standard deviation for the training set have been
reported in Tables 3, 5, and 7.

From Tables 3 and 4, it can be seen that the training as
well as test accuracies obtained using the channel 1 features,
viz. 1 (peak value), 4 (equivalent width), and 5 (mean square
abscissa) are superior to the other feature combinations. It is
also observed that SVM RBF classifier outperformed other
classifiers in all the cases. When different types of features
such as cross-correlation and SCP means are extracted from
multiple channels, then there is a possibility that data samples
with the same class label are scattered in multiple separate
regions. KNN classifier can handle non-linearly separable
data, but it usually works well when a lot of training samples
are available. Polynomial kernel maps the input data to a
finite dimensional feature space controlled by the degree
parameter. Thus, the classification model learned from the
data may get saturated after a certain point, limiting its per-
formance. RBF kernel, on the other hand, maps the input

TABLE 3. Training accuracy and standard deviation for different
combinations of discriminative features of channel 1.
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TABLE 4. Test accuracies obtained with different combinations of
discriminative features of channel 1.

TABLE 5. Training accuracy and standard deviation for different
combinations of discriminative features of channel 2.

TABLE 6. Test accuracies obtained with different combinations of
discriminative features of channel 2.

data to an infinite dimensional feature space, producing much
complex decision boundaries compared to the polynomial
kernel. Thus, the RBF kernel performs better for the data
scattered in multiple separate regions.

Tables 5 and 6 show the training and test accuracies
respectively, for the different combinations of the discrimi-
native cross-correlation features of channel 2. The features 4
(equivalent width) and 5 (mean square abscissa) outper-
formed all other feature combinations for both training and
test samples. Again, SVM RBF classifier performed better
than SVM polynomial and KNN classifiers in all the cases.

B. RESULTS OF AN ENSEMBLE METHOD
The dataset Ia of BCI competition II contains the EEG signals
from six different channels. In the proposed work, only the
channels 1 and 2 are found to be most significant as they
produced distinctive feature sets. It can be observed from
the results in Tables 4 and 6 that the features, viz. peak
value, equivalent width, mean square abscissa, and the SCP
means are most discriminative for the channel 1, whereas
the features, viz. equivalent width, mean square abscissa,
and the SCP means are discriminative for the channel 2.
It is also evident that SVM RBF classifier achieved the best
results compared to SVM polynomial and KNN classifiers
in all experiments. Based on the following observations,

TABLE 7. Results of ensembling significant channels with multiple
reference signals.

we propose to construct an ensemble of SVM RBF classi-
fiers trained with complementary feature sets obtained from
different significant channels which have multiple suitable
reference signals.
• Training a classifier with different feature sets obtained
from different channels produces the results that cover
diverse aspects of these features.

• Training a classifier with feature sets obtained from
multiple suitable reference signals of a given channel
also boosts the classification performance.

We experimented with different number of models in the
ensemble method. In each experiment, the same number of
models were learned for both the channels to avoid bias
towards a particular channel. We determined the outcome
of an ensemble using two different approaches: 1) majority
voting, and 2) maximum probability where the class label
with maximum posterior probability is predicted. In case of a
tie in majority voting, the class label with maximum posterior
probability becomes the predicted label. In each experiment,
we retain the best result from these two approaches. Table 7
shows the results of an ensemble method where, in each
experiment, a different number of models were learned from
the channels having different suitable reference signals. The
best result of the ensemble method is marked in bold. This
result corresponds to an ensemble designed with feature sets
obtained from two best reference signals for each of the
channels 1 and 2.

The different performance measures for the best result
produced by an ensemble method are presented in Table 8.

TABLE 8. Performance measures for the best result from ensemble
approach.

In Table 9, we present a comparison of the classifica-
tion accuracy obtained by the proposed approach and other
state-of-the-art methods developed for the dataset Ia of BCI
competition II. It is evident that the proposed method sig-
nificantly enhances the classification accuracy compared to
other reported results on dataset Ia. We also outperform the
winner of the BCI competition II on dataset Ia. Moreover,
the proposed approach achieved the performance improve-
ment with reduced feature dimensionality by harnessing only
two channels and at the most five features.
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TABLE 9. Performance comparison with other reported results.

C. STATISTICAL ANALYSIS OF THE RESULTS
Separate training and test samples of the dataset Ia are
provided byBCI competition II. For this dataset, the test accu-
racy is estimated using the entire training set. Therefore, all
previous approaches including the proposed work produced
a single estimate of test accuracy as shown in Table 9. Two
sets of accuracy results are required for conducting statistical
analysis of the performance of classifiers. Thus, training and
test samples are merged to yield a large dataset. We have
implemented the recent approach by Göksu [30] and we are
thankful to authors for guiding us for the implementation.
As the implementations of other approaches are not readily
available, we compare our results only with the recent
approach by Göksu.

We performed 20 times 10-fold cross-validation on
the merged dataset. The proposed approach produced
88.02 ± 0.4 accuracy and the approach by Göksu produced
77.76 ± 1.32 accuracy. The results are also statistically val-
idated using the Mann-Whitney U-test which compares the
two sets of accuracies produced by the proposed approach
and the approach by Göksu. The two-sided p-value of this
test is 6.431 × 10−8 which is smaller than 5% significance
level. Therefore, this test rejects the null hypothesis that the
results of two approaches belong to the same distribution
at 5% significance level. This statistical test shows that the
proposed approach is better than the recent method proposed
by Göksu [30].

V. CONCLUSION
BCI oriented EEG studies have become extremely popular
in the recent years as it assists the disabled or paralyzed
persons to control the computer or neuroprosthetic devices
through their brain EEG signals. The work proposed in this
paper introduced a novel two-phase approach to distinguish
the up and down cursor imagery movements of a healthy
subject. As the brain produces similar signals for the same
mental task and the cross-correlation technique measures
the similarity in shape between two signals, we extracted
the cross-correlation features in the first phase. We further
integrated the most discriminative cross-correlation features
with the SCP means for creating a feature vector. The second
phase classified this vector using SVM RBF classifier whose
performance is shown to be superior to SVM polynomial and
KNN classifiers. It further employed an ensemble of SVM

RBF classifiers trained with complementary feature sets to
boost the classification performance. Extensive analysis of
the dataset Ia of BCI competition II confirms the ascendancy
of the proposed method compared to other reported results.
Our method is also superior to the winner of BCI compe-
tition II dataset Ia. The proposed method is efficient as it
achieved significant performance improvement with reduced
feature dimensionality by employing only two channels and
at the most five features compared with the recent study
which uses all channels and 42 features.

The performance of the proposed approach confirms the
potential of the cross-correlation features and also demon-
strates the importance of using different types of features for
improving the class separation power.

The future study involves working with more complex BCI
oriented EEG signals, where the dependencies among differ-
ent channels are responsible for different mental activities.
One possible solution is to model the EEG signals as com-
plex networks/visibility graphs to capture these dependencies
among channels.
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