
Received December 12, 2018, accepted December 31, 2018, date of publication January 17, 2019, date of current version February 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2892508

Profiling Performance of Application Partitioning
for Wearable Devices in Mobile Cloud
and Fog Computing
CLAUDIO FIANDRINO 1, (Member, IEEE), NICHOLAS ALLIO2,
DZMITRY KLIAZOVICH3, (Senior Member, IEEE),
PAOLO GIACCONE 2, (Senior Member, IEEE), AND
PASCAL BOUVRY4, (Member, IEEE)
1IMDEA Networks Institute, 28918 Madrid, Spain
2Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
3ExaMotive, 4362 Esch-sur-Alzette, Luxembourg
4Faculty of Science, Technology and Communication-Computer Science and Communications Research Unit and Interdisciplinary Centre for Security, Reliability
and Trust, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg

Corresponding author: Claudio Fiandrino (claudio.fiandrino@imdea.org)

ABSTRACT Wearable devices have become essential in our daily activities. Due to battery constraints,
the use of computing, communication, and storage resources is limited. Mobile cloud computing (MCC)
and the recently emerged fog computing (FC) paradigms unleash unprecedented opportunities to augment
the capabilities of wearable devices. Partitioning mobile applications and offloading computationally heavy
tasks for execution to the cloud or edge of the network is the key. Offloading prolongs the lifetime of the
batteries and allows wearable devices to gain access to the rich and powerful set of computing and storage
resources of the cloud/edge. In this paper, we experimentally evaluate and discuss the rationale of application
partitioning for MCC and FC. To experiment, we develop an Android-based application and benchmark
energy and execution time performance of multiple partitioning scenarios. The results unveil architectural
tradeoffs that exist between the paradigms and devise guidelines for proper powermanagement of the service-
centric Internet-of-Things applications.

INDEX TERMS Mobile cloud computing, fog computing, energy efficiency, IoT, wearable devices.

I. INTRODUCTION
Mobile devices have become essential for our daily activities
such as business, health-care, social networking and enter-
tainment [2]. Multiple types of devices, including watches,
glasses, helmets, gloves and rings has contributed to raise, are
available on the market, which has witnessed an increase of
16.7% in millions units (Mu) sold from 2016 to 2017 (from
265.88 Mu units to 310.37 Mu with a projection of 504.65
Mu in 2021) [3].Wearable devices allow to perform advanced
tasks such as monitoring and tracking of physiological func-
tions or biofeedback being incorporated in clothing or worn
on the body. Unlike generic Internet of Things (IoT) devices,
wearable devices have several unique features, such as
mobility.

Modern mobile devices have at disposal computing, com-
munication, storage resources and sensing capabilities. How-
ever, being constrained by capacities of their batteries,

the use of such resources is limited. Distributed computing
paradigms, including MCC, FC and mobile edge comput-
ing (MEC), have emerged to overcome such limitations [4],
[5]. MCC and FC provide the developers with the possi-
bility to exploit the rich set of resources of the cloud and
of the edge of the network in terms of computing capabil-
ities and storage for their applications. To this end, MCC
and FC outsource part of the computing tasks from weak
mobile devices to the powerful cloud or fog. This process
reduces battery consumption of the mobile devices, and
enhances and augments performance of the mobile applica-
tions. Additionally, MCC and FC paradigms enable applica-
tion execution in constrained environments, e.g., with limited
connectivity.

For outsourcing, applications need to be first partitioned
into a number of computing, communication or storage tasks
of independent nature. Then, those tasks that are not tight

12156
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-4323-4355
https://orcid.org/0000-0003-4283-7936


C. Fiandrino et al.: Profiling Performance of Application Partitioning for Wearable Devices

to the mobile device specifically and do not require spe-
cific hardware for execution can be offloaded to the cloud.
Offloading involves either traffic or computing tasks. The
former case involves steering traffic from cellular network
towards wireless local area networks [6]. The mobile network
operators are highly interested in traffic offloading to relieve
the burden of the cellular core network. Instead, in this paper,
we focus on offloading of computing tasks. In this case,
network awareness, i.e., the capability of assessing whether
is more convenient to offload tasks using costly cellular
interface or intermittently-available WiFi interface [7], pro-
vides higher levels of effectiveness and better copes with
mobility issues such as roaming, rate and channel quality
variations [8]. The problem of computation offloading with
multiple-users has been proven to be NP-hard [9]. The ben-
efit of computation offloading can be quantified by ana-
lyzing the trade-off between the amount of energy saved
by avoiding local processing at the wearable device and
the increase of energy spent for communications with the
edge/cloud. Analysis of energy consumption in distributed
clouds shows that access networks and not datacenter net-
works are the most energy hungry components of the cloud
ecosystem [10].

In this paper, we experimentally study performance of
application partitioning for wearable devices in both MCC
and FC environments. Most of the currently existing tech-
niques for modeling application partitioning do not capture
the characteristics of MCC/FC entirely. Location or entity
where each task is executed (e.g., local device, fog or cloud)
and technology employed for data transfer between the enti-
ties (e.g., WiFi, Bluetooth) are two essential parameters.
To run the experiments, we developed an Android-based
application for Google Glass, called TreeGlass, which per-
forms recognition of images of tree leaves and by them
identifies the name of the trees. TreeGlass is designed so
that its tasks can be flexibly partitioned between the Google
Glass, the smartphone, and the cloud. Each configuration
evaluates the execution time and energy consumption of
mobile devices. Note that TreeGlass exemplifies the general
class of object detection and recognition applications, where
the task graph is simple and sequential. Other applications
such as those of online gaming, remote control or multimedia
streaming have more complex task graph with cycles and task
interdependence [11]. In some scenarios, these task graphs
can be unfolded and become sequential as in our case. To
maintain full control over the partitioning mechanism, we do
not rely specifically on optimization mechanisms for offload-
ing such as in [12]. The evaluation methodology permits to
derive design considerations and implementation trade-offs,
as well as to provide guidelines for improving efficiency of
power management.

The rest of the paper is organized as follows. Section II
overviews the concepts of MCC and FC and presents related
works. Section III details TreeGlass’s architecture and parti-
tioning scenarios. Section IV provides performance evalua-
tion highlighting experimental results. Section V discusses

trade-offs and provides guidelines for power management
of service-centric IoT applications and, finally, Section VI
concludes the work.

II. A PRIMER ON MOBILE CLOUD AND FOG COMPUTING
MCC extends the traditional cloud computing paradigm to
the mobile environment: processing and data storage still
occur outside the mobile devices. When referring to MCC,
in this paper we assume that the wearable devices offload task
execution to the cloud solely.

Multi-Access Edge Computing (MEC) was standardized
by the European Telecommunications Standards Institute
(ETSI) [13]. Formerly known as Mobile Edge Computing,
MEC aims at providing computing service closer to the end
user and is primarily a key enabler for the 5th generation
mobile networks [14]. FC, that similarly to MEC brings com-
puting services to the edge of the network, was proposed by
Cisco [15] to support service-centric IoT characteristics like
location awareness, low latency and geo-distribution. Typical
examples of such IoT services are in the areas of health-care
because the fog can process medical data with lower latency
than the cloud, thus enabling real-time alerts or anomaly
detection [16], and indoor localization [17], where devices in
the vicinity collaborate to minimize the energy expenditure
of performing computing tasks related to the fingerprinting
process. With FC, in this paper we intend a scenario where a
wearable device can offload task execution to both (i) nearby
devices (e.g., smartphone), and (ii) to the cloud. This scenario
is realistic as the majority of the applications for wearable
devices is designed to work in pair with smartphones [18].
Resourcemanagement in FC is amajor concern. According to
Deng et al. [19], FC-based resource allocation strategies need
to take into account the trade-off between power consumption
and communication delays.

In the literature, several studies analyze task offloading
experimentally.Miettinen andNurminen [20] study the trade-
off between local computation and offloading performing
energy measurements on smartphones from various vendors
running different applications. The authors conclude that the
characteristics of the application workload, the technologies
employed for communications affect the performance of
the offloading process. Segata et al. [21] study the trade-
off between the energy consumed for communications with
2G, 3G and WiFi versus local computation. The experimen-
tal results show that WiFi outperforms cellular technolo-
gies from an energy standpoint and that uploading is more
demanding than downloading. Altamimi et al. [22] study a
similar problem, but focus on energy models for WLAN, 3G
and 4G technologies. Themodels assess the energy costs con-
sidering all the stack, from the application layer all the way
down to the physical layer. Unlike previous studies, in our
paper we profile performance of application partitioning for
different MCC and FC scenarios. Similarly to the state-of-
the-art, we also consider different communication technolo-
gies such as Bluetooth and WiFi as they uniquely define the
implementation scenario and impact on energy consumption.

VOLUME 7, 2019 12157



C. Fiandrino et al.: Profiling Performance of Application Partitioning for Wearable Devices

FIGURE 1. Execution of TreeGlass at Google Glass: (a) image acquisition and (b) display of the result.

III. PRACTICAL CASE: THE TreeGlass APPLICATION
The TreeGlass application performs recognition of images
with tree leaves and identifies the corresponding tree. Its
ultimate goal is to test the performance of different partition-
ing configurations under realistic scenarios when applied to
wearable devices in MCC and FC. Thus, the application runs
either in MCC or FC mode by distributing the computation
of tasks among the system components, i.e., the wearable
device, the smartphone and the cloud.

In a nutshell, TreeGlass operates similarly to the workflow
of object recognition applications [23]–[25]. Specifically,
unique features are first extracted from a picture (detection)
and are successively compared against a database (recogni-
tion). TreeGlass resorts on Google Glass to acquire pictures
of leaves, while the edge and/or the cloud perform detection
and recognition. Fig. 1 illustrates the workflow of TreeGlass.
In more details, Fig. 1(a) shows the image acquisition phase
and Fig. 1(b) displays the result from the perspective of the
user wearing the Google Glass.

At a glance, TreeGlass’ workflow is as follows. After
image acquisition, the application detects the leaf from the
image and extracts key features such as its color and contour.
The latter is a closed curve shape and can be analyzed with
similarity metrics [26]. Such features are then sent to the
cloud for recognition, which practically translates into find-
ing a match in a database. An answer to the user is then sent
and displayed regardless of the outcome of the recognition
phase. Fig. 1(b) exemplifies a positive match: the Google
Glass highlights the contour of the leaf in bright green and
displays the name of the tree in the bottom right part of the
screen.

A. THE ARCHITECTURE
In essence, TreeGlass runs over any Android-based wearable
device featuring a camera, a smartphone as the fog/edge, and
the cloud. Fig. 2 illustrates TreeGlass architecture with the
three components. In the experiments, the reference wearable
device are the Google Glass. The application is designed
in such a way that its tasks can run simultaneously on
both Google Glass and smartphone. This enables flexible

FIGURE 2. The components of the TreeGlass architecture.

and easy-to-customize partitioning. Fig. 2 also highlights
the technologies that allow each of the application parts to
communicate one with each other, and the programming
languages employed for implementation.

The minimum operating system supporting TreeGlass is
Android KitKat 4.4.4 (API Level 19). It is the native version
running on the Google Glass and that was employed for all
the experiments. Themobile application is written in Java and
employs the standard APIs provided by Android SDK.

The recognition phase is always executed in the cloud,
as it is not practicable to store large database in a distributed
fashion on fog platforms. Each entry of the database contains
a master picture of the leaf and its features like the color
and the shape of the contour. Additionally, the cloud is also
designed to run image processing tasks. This design choice
enables high flexibility in application partitioning and allows
to obtain an exhaustive comparison between the possible
offloading scenarios. The component of TreeGlass that runs
in the cloud is written in Python. An Android version of such
component would run on the cloud only with an emulator.
This is not an effective solution as it introduces overheads
that would undermine the validity of the results.

The core of the application performing detection is
based on the OpenCV1 library. OpenCV features high level

1Available at: http://opencv.org/

12158 VOLUME 7, 2019



C. Fiandrino et al.: Profiling Performance of Application Partitioning for Wearable Devices

functions that make easy to manipulate and extract fea-
tures from images. In addition, the library provides methods
to compare features of different images by returning met-
rics usable for searching matches. Custom Java and Python
libraries operate on top to aggregate OpenCV methods and
divide the application into tasks. These tasks will be executed
in different configurations to verify the performance of MCC
and FC offloading scenarios. The Java and Python libraries
form a unique library called TreeRecLib. The version of
TreeRecLib written in Java is exploited by Google Glass and
the smartphone, while the Python version is employed in the
cloud. They both contain the same function calls and perform
the very same operations.

B. APPLICATION PARTITIONING IN TreeGlass
TreeGlass operates in real-time and is modeled with a set of
tasks that have specific precedence constraints. The appli-
cation is partitioned into computing tasks and communica-
tion tasks, which depend on the offloading scenario (see
Section III-C for the details). The computing tasks include
the following:

• Image acquisition (Ia): The Google Glass acquires the
images. This task is always executed locally at the wear-
able device and does not contribute to the analysis of
energy consumption for the following two reasons. First,
the task cannot be logically and physically offloaded to
any other entity. Second, users spend arbitrary time to
capture images and often perform this operationmultiple
times before obtaining an acceptable image.

• Image processing (Ip): The OpenCV methods prepare
the picture for detection and recognition.

• Feature Extraction (Fe): The image is further elaborated
for key features extraction. This task performs detection
of the leaf.

• Finding match (Fm): With the help of the features
extracted, this task searches for a match in the database
and returns the outcome of the process (positive or neg-
ative).

• Building and showing (Bs): Once the wearable device
receives the feedback, it presents the outcome to the user.
The result is ‘‘built and displayed’’ according to the user
interface guidelines of the Google Glass. Similar to Ia,
the task is always performed by the Google Glass for
obvious reasons.

To improve readability and understanding of the offloading
scenarios and the results, a color uniquely defines a comput-
ing task. Table 1 details task description and its associated
color.

In TreeGlass, communication tasks transfer information
from one task to another among different entities. Internal
communications, i.e., those happening within the same entity
are not profiled. Within the application workflow, both Blue-
tooth and WiFi technologies can be employed for individ-
ual data transfer among tasks. These technologies impact
on throughput and energy consumption differently [27].

TABLE 1. Task description and color association.

Bluetooth was designed for personal area communications.
Hence, it features short communication ranges and low bit
rates (up to 3 Mbit/s). In comparison, WiFi technology pro-
vides higher data rates (up to 54 Mbit/s with the standard
802.11g) and a longer operating range. To graphically differ-
entiate the technologies, Section III-C uses a dot-dashed and
a double line for WiFi and Bluetooth respectively.

C. OFFLOADING SCENARIOS
TreeGlass always involves the wearable device and the cloud
in all scenarios. When the smartphone is present, then Tree-
Glass operates over a fog platform. Overall, four represen-
tative scenarios for both MCC and FC are identified. The
rationale and the specifics of the design implementation are
illustrated in the following paragraphs.

1) SCENARIO Gg-Cl LOCAL
Fig. 3(a) is a MCC scenario where main computation is per-
formed locally at the Google Glass (Gg). The communication
between the cloud (Cl) and the wearable device is done via
WiFi. Specifically, the wearable device performs tasks Ia, Ip
and Fe locally and sends the resulting data to the cloud. Such
data is a JSON string which contains the features extracted
from the acquired image. Once the cloud receives such input,
it looks for potential matches in the database and returns the
result to the Google Glass again in form of a JSON string
(task Fm). Finally, the wearable device builds and displays
the received result (task Bs).

2) SCENARIO Gg-Cl REMOTE
Fig. 3(b) shows a MCC scenario. Unlike the previous Gg-
C Local case, the computation of core tasks is completely
offloaded to the cloud while wearable device performs sim-
ple input/output operations represented by the tasks Ia and
Bs. After having acquired the image at the Google Glass,
the whole picture is sent via WiFi to the cloud for execution
of tasks Ip, Fe and Fm. The result, in form of JSON string,
is returned to the Google Glass using WiFi again.

3) SCENARIO Gg-Sm-Cl FOG
Unlike Gg-Cl Local and Gg-Cl Remote, this FC scenario (see
Fig. 3(c)) offloads computing tasks not to the cloud located
in wide-area network, but to the nearby smartphone (Sm) in
the edge/fog. Similarly to Gg-Cl Remote, the Google Glass
is in charge of the input/output operations (tasks Ia and Bs),
while the rest of the computation is completely offloaded.
The motivations are as follows: (i) WiFi is less energy

VOLUME 7, 2019 12159



C. Fiandrino et al.: Profiling Performance of Application Partitioning for Wearable Devices

FIGURE 3. Offloading scenarios.

efficient than Bluetooth that is specifically designed for com-
munications in small operative range [27]; (ii) Bluetooth
is the most widely adopted technology by the majority of
mobile OSs to pair smartphones and IoT devices. Once the
information reaches the smartphone, it performs preliminary
computation on the received image executing tasks Ip and
Fe. Then the extracted features are sent to the cloud using
WiFi. The cloud executes task Fm and returns the result to
the smartphone usingWiFi again. Then the smartphone relays
back to the Google Glass the result with Bluetooth and finally
performs task Bs.

4) SCENARIO Gg-Sm-Cl RELAY
Fig. 3(d) shows FC-based scenario whose setup is similar to
Gg-Sm-Cl Fog. However, in Gg-Sm-Cl Relay the smartphone
is exclusively used to relay communications between the
wearable device and the cloud. The computation is instead
completely offloaded to the cloud similarly to Gg-Cl Remote.
Thus, while the Gg-Sm-Cl Fog scenario takes advantage
from the computing capabilities of the edge/fog, the Gg-
Sm-Cl Relay exploits its communication potential. Similar
to the previous configuration, the Google Glass executes
input/output related tasks (Ia and Bs). Then, it sends the
raw image to the smartphone via Bluetooth (output of task
Ia). After having received the data from the Google Glass,
the smartphone immediately forwards the raw image to the
cloud employingWiFi. In this phase, no additional operations
take place, with the exception of internal stream manipu-
lation from Bluetooth communication stack to WiFi’s one.
The same operation will take place in the reverse direction
when the smartphone relays the result back to the Google
Glass. Upon reception of the image, the cloud performs the
tasks Ip, Fe and Fm. After having successfully executed Fm,
the cloud returns the result to the Google Glass, using again
the smartphone as a relay.

IV. PERFORMANCE EVALUATION
To assess performance of the various partitioning scenarios
illustrated in Section III-C, we utilized a PowerMonitor sim-
ilarly to previous research [28], [29]. Fig. 4 shows the setup
for the measurements.

FIGURE 4. Setup for power management study.

A. EVALUATION SETTINGS
The smartphone employed for experimentation is the Sam-
sung Galaxy Note 4 and runs Android OS. In principle,
the Google Glass can also be paired with an iOS device.
However, the use of anAndroid-based phone guaranteesmore
control during implementation and course of the experiments.
Indeed, different operating systems would introduce an over-
head due to translation of the application code to the language
necessary for its execution. In the experiments, the smart-
phone runs Android Lollipop version 5.1.1 (API Level 23).
It is equipped with a quad-core 2.7GHz Krait 450 processor
and has 3GB of RAM. It also features a 16MP camera
and 32GB of flash storage. The smartphone provides WiFi
and Bluetooth connectivity, supporting 802.11 a/b/g/n/ac and
Bluetooth v4.1 standards respectively. The smartphone is
powered by a 3220mA, 4.4V battery.

The Google Glass operating system is based on Android
(release KitKat 4.4.4, API Level 19). The device is equipped
with a dual-core OMAP 4430 system-on-a-chip processor
and features 2GB of RAM. The display is a Prism pro-
jector supporting 640 × 360 pixels that is the equivalent
of a 25 in/64 cm screen from 8 ft/2.4m away. Additionally,
the Google Glass are equipped with a 5MP camera and have
16GB of flash storage. The Google Glass support WiFi con-
nectivity (802.11 b/g at 2.4GHz) and Bluetooth connectivity.
Finally, the wearable device is powered by a 570mA, 3.7V
battery.

The cloud is emulated with a personal laptop. As the
computing capabilities of the laptop are significantly superior
of those of both mobile devices, the hypothesis is consistent.

12160 VOLUME 7, 2019



C. Fiandrino et al.: Profiling Performance of Application Partitioning for Wearable Devices

The laptop is a MacBook Pro (Retina, 13-inch of 2014).
At the time of the experiments, the laptop run OS X El Cap-
itan version 10.11. The laptop features a dual-core 3.0GHz
Intel Core i7 and 16GB of RAM; it has a 256GB Apple
SSD as storage and an AirPort Extreme card for WiFi
802.11 a/b/g/n/ac connectivity.

The Power Monitor hardware by Monsoon2 is employed
for power measurements. Previous research collected power
consumption measurements via software by means of sys-
tem calls [30], [31]. Although such methodology is valid,
the power monitor directly acquires voltage, current and
power measures, thus providing higher level of accuracy.
For data retrieval, the power monitor needs to power the
wearable/mobile device directly, hence in the equivalent cir-
cuit it substitutes the internal battery. The measurements are
recorded in real time with a sampling rate of 5000 samples/s.
A specific software displays a real time chart of the measures
and provides the user with the capability to export at the end
of the measurement campaign the readings of the session in
csv format.

B. EXPERIMENTAL RESULTS
This section illustrates the results obtained from profiling
performance of the MCC and FC partitioning scenarios illus-
trated in Section III-C. First, execution time results are com-
mented, then those pertaining to energy consumption.

1) EXECUTION TIME
The execution time of applications depends on many fac-
tors such as current level of the battery and eventual active
energy-saving mechanisms that limit computing and trans-
mission power, the environmental conditions such as net-
work load or contention in accessing the network. Other
environmental aspects like fading and shadowing influence
channel conditions and negatively affect performance of com-
munications. Such issues do not impact on performance of
computing tasks as much as communication tasks. To obtain
insightful measurements, we limit the influence of external
factors, i.e., TreeGlass is the only application running on
Google Glass and the smartphone in static position. For WiFi
we resort on eduroam network, which is a public network,
to emulate a realistic scenario.

a: EXECUTION TIME OF COMPUTING TASKS
Only the scenarios Gg-Cl Local and Gg-Sm-Cl Fog are con-
sidered here because all the computing tasks but task Fm,
are executed by the mobile devices (see Table 2). Task Fm
corresponds to the database search. As the cloud always
performs this task, its duration is negligible with respect to
those of the other tasks. Task Ia is also not considered as it
corresponds to the image acquisition and its duration is highly
user dependent. Table 2 presents the results for the execution
of the remaining tasks. Task Bs is always executed locally

2Available at: http://www.msoon.com/LabEquipment/
PowerMonitor/

TABLE 2. Execution time of computing tasks.

TABLE 3. Execution time of communication technologies.

at the Google Glass and it is the task that takes longer to
complete. In addition to display the name of the leaf, taskBs is
also overlays a green contour around the leaf. Both operations
are time and energy expensive. Tasks Ip and Fe are executed
faster if performed by the smartphone, hence supporting the
claim that offloading to more powerful devices is convenient.

b: EXECUTION TIME OF COMMUNICATION TASKS
Recall that all the devices are connected under the same
WLAN (eduroam), which is not under our control. The set-
ting guarantees that the result presented next are in line with
the performance that an application would obtain in real
scenarios. Table 3 shows the results obtained for the tasks Ip,
Fe and Bs both in Gg-Cl Local and Gg-Sm-Cl Fog scenarios.
These are the two scenarios that make use of all possible
communication technologies. As expected, the smartphone
outperforms the Google Glass as it is equipped with more
recent hardware and supports updated firmware versions.
Upon the scenario under consideration, the Google Glass
transfer different types of data. The MCC scenarios require
the Google Glass to send via WiFi a JSON string for Gg-
Cl Local and a raw image for Gg-Cl Remote. FC scenarios
require the Google Glass to transmit the raw image to the
smartphone via Bluetooth. On the one hande, in Gg-Sm-Cl
Fog the smartphone locally performs tasks Ip and Fe, which
then require to transmit to the cloud only the JSON string via
WiFi. On the other hand, in Gg-Sm-Cl Relay, the smartphone
forwards to the cloud the entire raw image via WiFi. Interest-
ingly, for the scenario Gg-Sm-Cl Fog the smartphone takes
long time in receiving the raw image via Bluetooth. The data
transfer from the wearable device is slow and the smartphone
receives data with low data rates.

2) ENERGY CONSUMPTION
This section presents results obtained with the Monsoon
power monitor and the precise knowledge of the task duration
estimated in Section IV-B.1. Specifically, the power monitor
only provides the power consumption profile of the entire
application duration. To obtain precise estimate of power
consumption in each task, we observe that computing tasks

VOLUME 7, 2019 12161



C. Fiandrino et al.: Profiling Performance of Application Partitioning for Wearable Devices

FIGURE 5. Power consumption profiles of scenarios (a) Gg-Cl Local and (b) Gg-Cl Remote measured by Google Glass.

TABLE 4. Color code definition in charts.

are interleaved by either internal or external (with WiFi
and Bluetooth) communications. We therefore mark the start
and end time of data exchange operations from time execu-
tion experiments and synchronize power measurement traces
accordingly.

Table 4 shows the color code employed to illustrate the
results in the next graph and differentiate between computing
and communication tasks. The color code for computing tasks
is inspired by the one of Table 1 (for task Bs it is the same).
Tasks Ip and Fe are combined with a dotted-pattern and the
background is a combination of the correspondent individual
backgrounds shown in Table 1. The color of the communi-
cation tasks depends on the operation and technology used,
WiFi - Bluetooth and Send - Receive. For each of those,
a different shade of color is employed. The waiting time
indicates the time that a component waits for the result from
a task before starting the execution of the next task.

a: ANALYSIS OF Gg-Cl LOCAL
Fig. 5(a) shows the power consumption profiles of the Google
Glass. Initially, the power profile exhibits increasing con-
sumption with peaks of at most 2500mW. This are attributed
to the start of the application and the acquisition of the image.
We merge tasks Ip and Fe for the sake of easy representation
as their execution is extremely fast. When Fe completes,
the features are extracted and sent via WiFi to the cloud
in form of a JSON string. While a local search would be
faster at the cost of high energy consumption, keeping a
large database on a resource constrained device is unfeasible.
Hence, Google Glass waits that the cloud performs the search

in the database and returns the outcome. During the waiting
time, the device consumes an amount of energy that is similar
to the one spent while transmitting data via theWiFi interface.
The motivation is that the device stays in listening mode
and keeps running all the functionalities of TreeGlass in
the background. The energy cost attributed to the reception
of the result from the cloud is in the range of the waiting
and sending phases (the average instantaneous power con-
sumption is 1300mW). However, and unlike the mentioned
phases, at the end of this phase it is possible to notice an
increase of power consumption. This is due to the processing
of the received data stream from lower layers of the protocol
stack to the application layer. The final sector shows the
power spent by the Google Glass to built and display the
obtained result. The task Bs is the highest energy consuming
tasks because it updates the user interface of the application.
Specifically, the screen consumes energy to be refreshed.
Note that the peeks of power consumption are almost at the
same height of the ones in the initial phase, tasks Ip andFe and
before.

b: ANALYSIS OF Gg-Cl REMOTE
Fig. 5(b) shows the performance of the Gg-Cl Remote sce-
nario from the Google Glass’ perspective. Gg-Cl Remote
offloads all the computing tasks. Thus, the large red part
of the power consumption profile represents the WiFi send
operation where the Google Glass sends to the cloud the raw
image. Unlike the previous Gg-Cl Local case, the entire pic-
ture and not a string is compressed and sent as a data stream.
Consequently, Gg-Cl Remote creates a significant burden to
the communication phase, that takes longer to complete at
the expense of higher energy consumption. The power profile
reaches peeks higher than 2500mW (while for Gg-Cl Local
the highest peak is around 1850mW) and the total amount of
energy spent for this operation is 12.5 J. Upon reception of the
image, the cloud executes extremely fast the tasks Ip, Fe and
Fm (see Fig. 3(b)) and the Google Glass remains only for a
little amount of timewaitingmode. TheWiFi recv operation is
short although the average power consumption is higher than
in Gg-Cl Local. Similarly, also the duration of the Bs task is
faster and reaches higher peak of power consumption.

12162 VOLUME 7, 2019



C. Fiandrino et al.: Profiling Performance of Application Partitioning for Wearable Devices

FIGURE 6. Power consumption profiles of scenarios (a) Gg-Sm-Cl Fog and (b) Gg-Sm-Cl Relay measured by Google Glass.

FIGURE 7. Power consumption profiles of scenarios (a) Gg-Sm-Cl Fog and (b) Gg-Sm-Cl Relay measured by the smartphone.

c: SUMMARY Gg-Cl CASES
To summarize, the comparison of Gg-Cl Local and Gg-Cl
Remote scenarios allows to understand pros and cons of
MCC. The same entities are involved: the difference is in the
type of tasks offloaded and, consequently, the type of data
transmitted in the communication phases. As the captured
image contains the leaf over a white background, it is easy
to perform tasks Ip and Fe locally and transmit to the cloud a
JSON string. Hence, offloading is not convenient as commu-
nication are the bottleneck because the transmission of the
entire raw image is extremely expensive. This observation
is not true anymore if the image captured is more complex,
i.e., it contains realistic backgrounds. As Gg-Cl Local sce-
nario requires the Google Glass to wait longer, this opens the
possibility to further optimization and energy saving.

d: ANALYSIS OF Gg-Sm-Cl FOG
This case is a FC scenario as all three entities are simultane-
ously involved in the execution of computing tasks. Fig. 6(a)
shows the power consumption from the Google Glass stand-
point, while Fig. 7(a) illustrates the power consumption from
the smartphone standpoint. Note that Bluetooth provides
connectivity between the Google Glass and the smartphone
while WiFi is employed to interconnect the smartphone with
the cloud. Similarly to Gg-Cl Remote scenario, the initial
data transmission is the most energy expensive operation
when performed by the wearable device. Altogether, this
corresponds to an instantaneous power consumption values

on average in the range of 1500mW. Then, the wearable
device waits for the completion of the data transmission.
During this time (see yellow sector of Fig. 6(a)), the power
consumption profile varies significantly because the device
maintains active the Bluetooth interface waiting for the reply.
The cyan sector identifies the reception of the result by the
Google Glass. It is a energy expensive operation (overall
5.3 J) because involves decompression of the image. The
green sector denotes the power profile of Bs, the final task.

Fig. 7(a) shows the power profile from the smartphone’s
perspective. The smartphone remains in receiving mode for a
prolonged period of time (see the cyan sector) because the
wearable device takes a long time to send the raw image.
Unlike the Google Glass, the smartphone in this phase con-
sumes a lower amount of energy because features a more per-
forming Bluetooth antenna. Specifically, the power consump-
tion profile remains low and stable around 500mW. Upon
receiving the image, the smartphone performs the tasks Ip and
Fe. The execution of such tasks is clearly identifiable as the
peeks ramp up and are as high as 3500mW (see the brown-
dotted-pattern of Fig. 7(a)). Once the features are extracted,
the smartphone sends them to the cloud in form of a JSON
string (red period) and waits (yellow period) the reception
of the results (pink period). These, are finally returned to
the Google Glass (dark blue period). The device efficiently
stabilizes the power consumption between the data uploading
and downloading performed via WiFi. It is also interesting to
note that Bluetooth send and recv operations lead to similar
energy consumption profiles.

VOLUME 7, 2019 12163



C. Fiandrino et al.: Profiling Performance of Application Partitioning for Wearable Devices

e: ANALYSIS OF Gg-Sm-Cl RELAY
Fig. 6(b) and Fig. 7(b) respectively show the power con-
sumption profile from the Google Glass and smartphone
standpoint. In the former case, the scenario Gg-Sm-Cl Relay
is almost identical to Gg-Sm-Cl Fog. However, from the
smartphone standpoint, there is a significant change. The Gg-
Sm-Cl Relay employs the communication and not computing
resources of the fog. Thus, the smartphone simply acts as
a relay. Specifically, it forwards the raw image to the cloud
without performing Ia, Fe as in Gg-Sm-Cl Fog. Although the
initial reception of the image (performed with Bluetooth) is
similar to the Gg-Sm-Cl Fog scenario from a time duration
and energy consumption perspective, the upload of the image
and the download of the results from the cloud with WiFi
lead to a higher energy cost. Between the two operations,
the smartphone waits for the execution of the tasks Ia, Fe
and Fm (performed by the cloud). This time is highlighted
in yellow: it is short and almost imperceptible as the cloud
performs all the task quick. The final part of the power profile
(in dark blue) denotes the reception of the result by the
Google Glass with Bluetooth.

f: SUMMARY Gg-Sm-Cl CASES
To summarize, both FC cases exhibit similar execution time
and power consumption performance. From the standpoint of
the Google Glass (see Fig. 6), the overall energy consumption
is 36.3 J in Gg-Sm-Cl Fog case and 36.2 J in Gg-Sm-Cl
Relay case. From the smartphone perspective (see Fig. 7),
although the overall executing time performance are similar,
the highest peak of power consumption are due to processing
and communication for Gg-Sm-Cl Fog and Gg-Sm-Cl Relay
respectively. As a result, from an energy perspective, it is
convenient to exploit the smartphone for computing purposes
(8.2 J in Gg-Sm-Cl Fog case and 9.2 J in Gg-Sm-Cl Relay
case).

V. DISCUSSION
A. ENERGY BUDGET AND OFFLOADING
Fig. 8 compares the energy costs of the computing and com-
munications tasks for all the offloading scenarios measured
at the Google Glass. This comparison allows to derive con-
siderations of the convenience of offloading for the resource-
constrained wearable devices. The results are obtained aver-
aging 10 runs. Between each run, we made sure to switch
off and on all the devices for proper initialization of all the
components.

The graph shows clearly that FC offloading scenarios nega-
tively impact the energy consumption of the Google Glasses.
The reason is that the wearable device employs Bluetooth,
a low rate technology if compared withWiFi, to transfer large
size images. In addition, it is worth nothing the considerable
amount of energy that the Google Glass spend during the
waiting phase. In comparison, the smartphone handles in a
muchmore efficient way the waiting times.We conclude that:
i) the Bluetooth technology should be employed to transfer

FIGURE 8. Comparison of power consumption for all the offloading
scenarios measured by Google Glass.

other type of data with lower size such as text to be effective in
offloading scenarios, and ii) the waiting times of the wearable
devices should be reduced as much as possible. For what
concerns the scenarios with local computation versus full
offload, from an energy perspective there is a slight advan-
tage in performing local computation. The reason is that we
capture images with a white background (see Fig. 1), hence
the operations for feature extraction are not so computation-
ally expensive. In the offloading scenario, the more energy
expensive component is the transmission of the raw image.
We remark that we did experiments with a realistic network
environment using a publicly available network (eduroam),
hence this component also includes the energy spent during
contention for the radio access.

B. SERVICE-CENTRIC IoT APPLICATIONS
In TreeGlass, the task graph defining the temporal sequence
of task execution is sequential (see Section III-B and Fig. 3).
TreeGlass is one instance of a more generic class of appli-
cations, i.e., those performing object detection/recognition.
Hence, the considerations given in Subsection V-A hold for
this entire class of applications.

Other real-time applications, such as remote con-
trol or robots online gaming, include loops in the task
graphs [12]. In such a context, communication tasks become
even more important and the critical factor defining the
overall performance of the application is latency and not only
CPU and available data rates. Hence, such component should
be better characterized and fog computing scenarios may
become more appealing than in the case of object detection
and recognition, where latency is not as critical as in real-time
applications.

VI. CONCLUSION
In this paper, we studied performance of application par-
titioning in MCC and FC focusing on the execution time
and energy consumption analysis. For this, we designed an
Android application, called TreeGlass, which can be flexibly
partitioned between Google Glass, smartphone and the cloud.
The methodology demonstrated that different partitioning

12164 VOLUME 7, 2019



C. Fiandrino et al.: Profiling Performance of Application Partitioning for Wearable Devices

scenarios impact on the design of the application and on
the choice of the communication media between the entities.
The results highlight that in FC it is beneficial to employ
nearby devices for computing purposes and to execute some
of the tasks locally if communication overhead is small.
In MCC, where only the wearable device and the cloud are
involved, local computation is beneficial only if the cost
of offloading becomes prohibitive because of the specific
implementation, i.e, the type of data to be transmitted. We
remark that our results have a broader scope than the specific
insights our object recognition application provides. Specif-
ically, the adopted methodology can be extended to other
applications for MCC and FC to evaluate the optimal way
to offload the tasks.

ACKNOWLEDGMENT
This work is based on the doctoral dissertation that
Dr. Claudio Fiandrino developed as a Ph.D. student at the
University of Luxembourg [1].

REFERENCES
[1] C. Fiandrino, ‘‘Energy-efficient communications in cloud, mobile cloud

and fog computing,’’ Ph.D. dissertation, Fac. Sci., Technol. Commun.,
Comput. Sci. Commun. Res. Unit, Esch-sur-Alzette, Luxembourg, 2016.

[2] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
‘‘A first look at traffic on smartphones,’’ in Proc. ACM IMC, 2010,
pp. 281–287.

[3] Gartner. (2017). Worldwide Wearable Device Sales. [Online]. Available:
https://www.gartner.com/newsroom/id/3790965

[4] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, ‘‘Cloud-
based augmentation for mobile devices: Motivation, taxonomies, and open
challenges,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 337–368,
2nd Quart., 2014

[5] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architecture
and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628–1656, 3rd Quart., 2017.

[6] C. Fiandrino, D. Kliazovich, P. Bouvry, and A. Y. Zomaya, ‘‘Network-
assisted offloading for mobile cloud applications,’’ in Proc. IEEE ICC,
Jun. 2015, pp. 5833–5838.

[7] H. Wu and K. Wolter, ‘‘Stochastic analysis of delayed mobile offloading
in heterogeneous networks,’’ IEEE Trans. Mobile Comput., vol. 17, no. 2,
pp. 461–474, Feb. 2018.

[8] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, ‘‘Computation offloading
for service workflow in mobile cloud computing,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 12, pp. 3317–3329, Dec. 2015.

[9] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[10] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, ‘‘Fog computing
may help to save energy in cloud computing,’’ IEEE J. Sel. Areas Commun.,
vol. 34, no. 5, pp. 1728–1739, May 2016.

[11] K. Kanoun, N. Mastronarde, D. Atienza, and M. van der Schaar, ‘‘Online
energy-efficient task-graph scheduling for multicore platforms,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 8,
pp. 1194–1207, Aug. 2014.

[12] T. Zhang, C. F. Chiasserini, and P. Giaccone, ‘‘TAME: An effi-
cient task allocation algorithm for integrated mobile gaming,’’ IEEE
Syst. J., to be published. [Online]. Available: [Online]. Available:
https://ieeexplore.ieee.org/document/8360019

[13] F. Giust et al., ‘‘MEC deployments in 4G and evolution
towards 5G,’’ ETSI White Paper, Feb. 2018. [Online]. Available:
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp24_MEC_
deployment_in_4G_5G_FINAL.pdf

[14] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
‘‘On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[15] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its
role in the Internet of Things,’’ in Proc. ACM MCC, 2012, pp. 13–16.

[16] F. A. Kraemer, A. E. Braten, N. Tamkittikhun, and D. Palma, ‘‘Fog
computing in healthcare—A review and discussion,’’ IEEE Access, vol. 5,
pp. 9206–9222, 2017.

[17] A. Sciarrone, C. Fiandrino, I. Bisio, F. Lavagetto, D. Kliazovich, and
P. Bouvry, ‘‘Smart probabilistic fingerprinting for indoor localization over
fog computing platforms,’’ in Proc. IEEE CloudNet, Oct. 2016, pp. 39–44.

[18] Y. Lee,W.Yang, and T. Kwon, ‘‘Data transfusion: Pairingwearable devices
and its implication on security for Internet of Things,’’ IEEE Access, vol. 6,
pp. 48994–49006, 2018.

[19] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, ‘‘Optimal work-
load allocation in fog-cloud computing toward balanced delay and power
consumption,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016.

[20] A. P. Miettinen and J. K. Nurminen, ‘‘Energy efficiency of mobile clients
in cloud computing,’’ in Proc. USENIX Hot Topics Cloud Comput., 2010,
pp. 4–11.

[21] M. Segata, B. Bloessl, C. Sommer, and F. Dressler, ‘‘Towards energy
efficient smart phone applications: Energy models for offloading tasks into
the cloud,’’ in Proc. IEEE ICC, Jun. 2014, pp. 2394–2399.

[22] M. Altamimi, A. Abdrabou, K. Naik, and A. Nayak, ‘‘Energy cost models
of smartphones for task offloading to the cloud,’’ IEEE Trans. Emerg.
Topics Comput., vol. 3, no. 3, pp. 384–398, Sep. 2015.

[23] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, ‘‘Face recognition:
A literature survey,’’ ACM Comput. Surv., vol. 35, no. 4, pp. 399–458,
2003.

[24] N. Powers et al., ‘‘The cloudlet accelerator: Bringing mobile-cloud
face recognition into real-time,’’ in Proc. IEEE Globecom Workshops,
Dec. 2015, pp. 1–7.

[25] N. H. Motlagh, M. Bagaa, and T. Taleb, ‘‘UAV-based IoT platform:
A crowd surveillance use case,’’ IEEE Commun. Mag., vol. 55, no. 2,
pp. 128–134, Feb. 2017.

[26] G. G. Demisse, D. Aouada, and B. Ottersten, ‘‘Deformation based curved
shape representation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 40,
no. 6, pp. 1338–1351, Jun. 2018.

[27] R. Friedman, A. Kogan, and Y. Krivolapov, ‘‘On power and throughput
tradeoffs of WiFi and Bluetooth in smartphones,’’ IEEE Trans. Mobile
Comput., vol. 12, no. 7, pp. 1363–1376, Jul. 2013.

[28] J.-W. Sung and S.-J. Han, ‘‘Data bundling for energy efficient communi-
cation of wearable devices,’’ in Proc. IEEE LCN, Oct. 2015, pp. 321–328.

[29] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, ‘‘Draining our
glass: An energy and heat characterization of Google glass,’’ in Proc. ACM
APSys, 2014, pp. 1–7.

[30] J. C. V. Bedregal, A. Perú R. E. M. Arisaca, and E. G. C. Gutierrez,
‘‘Optimizing energy consumption per application in mobile devices,’’ in
Proc. Int. Conf. Inf. Soc., Jun. 2013, pp. 106–110.

[31] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, ‘‘Survey on energy con-
sumption entities on the smartphone platform,’’ in Proc. IEEE VTC Spring,
May 2011, pp. 1–6.

CLAUDIO FIANDRINO (S’14–M’17) received
the bachelor’s degree in ingegneria telematica and
the master’s degree in computer and communi-
cation networks engineering from the Politecnico
di Torino in 2010 and 2012, respectively, and
the Ph.D. degree from the University of Luxem-
bourg, in 2016. He joined theWireless Networking
Group, in 2016, after receiving the Ph.D. degree.
He has received the 2016 SmartICT Certificate
on standardization for business innovation through

the joint program from the University of Luxembourg and ILNAS, and the
National Standardization Agency. He is currently a Postdoctoral Researcher
with the IMDEA Networks Institute, Madrid, Spain. His primary research
interests include mobile cloud and fog computing, mobile crowdsensing, and
data center communication systems. He was a TPC member of several IEEE
and ACM conferences, and workshops. He has served as the Publication and
WebChair of the IEEECloudNet 2014 and the Publicity Chair of ACM/IEEE
ANCS. He has received the Spanish Juan de la Cierva Grant and the Best
Paper Award from the IEEE Cloudnet 2016 and ACMWiNTECH 2018.

VOLUME 7, 2019 12165



C. Fiandrino et al.: Profiling Performance of Application Partitioning for Wearable Devices

NICHOLAS ALLIO is currently with Ulmon
GmbH, Vienna. He received the master’s degree
from the Politecnico di Torino, University of Lux-
embourg, in 2016, where he performed the Final
Master Thesis Project as an Intern.

DZMITRY KLIAZOVICH (M’03–SM’12) received
the award winning Ph.D. degree in informa-
tion and telecommunication technologies from the
University of Trento, Italy. He is currently the
Head of innovation with ExaMotive. He was a
Senior Scientist with the Faculty of Science, Tech-
nology, and Communication, University of Lux-
embourg. He has co-ordinated organizations and
chaired a number of highly ranked international
conferences and symposia, including the IEEE

International Conference on Cloud Networking in 2014. His main research
interests include intelligent transportation systems, telecommunications,
cloud computing, and the Internet of Things (IoT). His works on cloud
computing, energy-efficiency, indoor localization, andmobile networks have
received the IEEE/ACM Best Paper Awards. He currently holds several
scientific awards from the IEEE Communications Society and the European
Research Consortium for Informatics and Mathematics. He is currently an
Associate Editor of the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS and
the IEEE TRANSACTIONS OF CLOUD COMPUTING JOURNAL.

PAOLO GIACCONE (M’02–SM’16) received the
Dr.Ing. and Ph.D. degrees in telecommunications
engineering from the Politecnico di Torino, Italy,
in 1998 and 2001, respectively, where he is cur-
rently an Associate Professor with the Department
of Electronics and Telecommunications. During
the summer of 1998, he was with the High Speed
Networks Research Group, Lucent Technology
Bell Labs, Holmdel, NJ, USA. From 2000 to 2001
and in 2002, hewaswith Information SystemsNet-

working Lab, Electrical Engineering Department, Stanford University, CA,
USA. His main areas of interests include the design of network algorithms,
the theory of interconnection networks, and the performance evaluation of
telecommunication networks through simulative and theoretical methods.

PASCAL BOUVRY received the Ph.D. degree in
computer science from the University of Grenoble,
France. He is currently a Full Professor with the
University of Luxembourg and the Head of the
ILIAS Research Unit, DS-CSCE Doctoral School.
He is also a Faculty Member of the Interdisci-
plinary Center for Security, Reliability, and Trust.
His research interests include cloud & parallel
computing, optimization, security, and reliability.
He is also acting as the Communication Vice Chair

of the IEEE STC on Sustainable Computing and the Co-Founder of the IEEE
TC onCybernetics for Cyber-Physical Systems. He is on the Editorial Boards
of the IEEE CLOUD COMPUTING and Swarm and Evolutionary Computation
(Elsevier).

12166 VOLUME 7, 2019


	INTRODUCTION
	A PRIMER ON MOBILE CLOUD AND FOG COMPUTING
	PRACTICAL CASE: THE TreeGlass APPLICATION
	THE ARCHITECTURE
	APPLICATION PARTITIONING IN TreeGlass
	OFFLOADING SCENARIOS
	SCENARIO Gg-Cl LOCAL
	SCENARIO Gg-Cl REMOTE
	SCENARIO Gg-Sm-Cl FOG
	SCENARIO Gg-Sm-Cl RELAY


	PERFORMANCE EVALUATION
	EVALUATION SETTINGS
	EXPERIMENTAL RESULTS
	EXECUTION TIME
	ENERGY CONSUMPTION


	DISCUSSION
	ENERGY BUDGET AND OFFLOADING
	SERVICE-CENTRIC IoT APPLICATIONS

	CONCLUSION
	REFERENCES
	Biographies
	CLAUDIO FIANDRINO
	NICHOLAS ALLIO
	DZMITRY KLIAZOVICH
	PAOLO GIACCONE
	PASCAL BOUVRY


