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ABSTRACT The rotatingmachinery plays a vital role in industrial systems, in which unexpected mechanical
faults during operation can lead to severe consequences. For fault prevention, many fault diagnostic methods
based on vibration signals are available in the literature. However, the vibration signals are obtained
by using different types of sensors, which can cause sensor installation issues and damage the rotating
machinery. In addition, this kind of data acquisition through vibration signal induces a large amount
of signal noise during machine operation, which will challenge the later fault diagnosis. A recent fault
detectionmethod based on infrared thermography (IRT) for rotatingmachinery avoids these issues. However,
the corresponding literature is limited by the fact that the characteristics of the manual design cannot
characterize the fault completely so that the diagnostic accuracy cannot exceed the diagnostic method based
on the vibration signals. This paper introduces a popular image feature extraction method into the fault
diagnosis of rotating machinery based on IRT for the first time. First, capturing the IRT images of the rotating
machinery in different states, and then two popular feature extraction methods for IRT images, bag-of-visual-
word, and convolutional neural network, are tested in turn. Finally, the extracted features are classified to
implement the automatic fault diagnosis. The developed method is applied to analyze the experimental IRT
images collected from bearings, and the results demonstrate that the developed method is more effective than
the traditional methods based on vibration signals.

INDEX TERMS Fault diagnosis, infrared thermography, convolutional neural network, bag-of-visual-words,
feature recognition.

I. INTRODUCTION
Modern industrial applications including automobiles and
generators, use rotating machinery, whose failure can cause
different levels of damage [1]. In most cases, these failures
refer to the discrepancy or residual of a mechanical compo-
nent that goes above a certain threshold. For example, in rotor
systems, the most common malfunction is unbalance whose
primary symptom is abnormal vibration. Unbalance leads to
fatigue of machine components. Worst of all, the wear on the
bearing will further damage the seal, resulting in a decline in
the performance of the machine [2].

Material fatigue is the major cause of rotating machin-
ery failure. Other causalities, such as improper operation
and installation, abnormally heavy load, and insufficient
lubricant, can lead to failure or even damage of rotat-
ing machinery. Diagnosis and repair of rotating machinery
is time-consuming, and its sudden suspension of opera-
tion or damage usually incurs a huge economic loss [3].
Due to its importance, numerous prognostics and health
management (PHM) techniques have been developed for
rotating machinery [4], such as acoustic emission [5], [6],
vibration analysis [7]–[9], and eddy-current [10], [11].
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The PHM technology for mechanical fault diagnosis in
the existing literature is mostly based on the vibration signal
of rotating machinery [12]–[15]. A significant disadvantage
of vibration signal-based diagnosis is the noise issue. It is
well known that a large amount of noise is induced within
the captured vibration signals due to many environmental
factors such as temperature and electromagnetic inference,
duringmachine operation. Althoughmanymethods [16], [17]
have been proposed to denoise the vibration signals, these
methods are destructive to the fault information implied in
the vibration signal, and hence can result in degradation of the
fault diagnosis performance. Noise in images is represented
by isolated pixels or blocks that cause strong visual effects.
Nowadays, noise on IRT images used to detect the health
status of equipment is very small, so it is not necessary
to consider the issue of denoising. In order to solve the
problem of denoising, infrared thermography (IRT) has been
applied to the fault diagnosis of rotating machinery [18], [19].
IRT has been extensively used in areas such as maintenance
of electrical installations. Its use in electrical machines has
been mainly circumscribed to the detection of faults in static
machines, such as power transformers [20]. The principle of
IRT detection is to analyze whether the electrical equipment
has a fault and determine the fault location by detecting the
IRT image photographed by infrared camera during opera-
tion. By now, IRT has become a matured and widely accepted
condition monitoring tool that can effectively judge the tem-
perature rise and operating state of the equipment, where the
temperature is measured in real time in a non-contact manner.

Applying IRT to the fault diagnosis of rotating machin-
ery can not only avoid the noise problem in the traditional
vibration signal-based fault diagnosis methods as mentioned
above, IRT images have many other significant advan-
tages such as non-contact, easy setup, non-invasiveness,
high sensitivity and resolution. Therefore, IRT has gradually
appeared in the field of mechanical fault diagnosis in recent
years [21]–[25]. In [22], IRT is first used for classification
of different machine conditions, where two-dimensional dis-
crete wavelet transform is used to decompose the thermal
image, and then Mahalanobis distance and relief algorithm
are employed for feature selection, and finally support vector
machine (SVM) is used as classifiers. Similar to the diagnos-
tic procedure in [22], the fault detection method based on
IRT includes three stages, i) thermal images are acquired;
ii) features are extracted; and iii) feature classification is
conducted to realize fault diagnosis. In addition, [23] and [24]
using thermal imaging-based methods to diagnose rotating
machinery failures is also in accordance with this diagnostic
process.

The above studies all adopt the traditional pattern recogni-
tion method. Their difference lies in the feature determination
step. It can be said that the researchers manually designed
the features to be extracted. However, the diagnostic accu-
racy of rotating machinery is highly dependent on feature
selection, and improper selection of features cannot guar-
antee high diagnostic accuracy. Existing applications using

traditional feature extraction methods (Mahalanobis distance,
relief algorithms, etc.) have proven that IRT can achieve
mechanical fault diagnosis, but in comparative experiments,
the accuracy of the IRT-based diagnostic method does not
exceed the accuracy based on vibration signals, which is
limited by the fact that the characteristics of the manual
design cannot fully characterize the fault. Different from the
feature extraction methods in the literature, in this work, two
popular image feature extraction methods, namely, bag-of-
visual-word (BoVW) [26] and convolutional neural network
(CNN) [27] are tested. Firstly, the IRT image features are
extracted by BoVW or CNN, and then the extracted features
are classified by SVM for fault diagnosis. Experiments show
that the developed method can realize high-precision diagno-
sis of rotating machinery by infrared diagnostic technology,
and the diagnostic accuracy is higher than the traditional
method based on vibration signals.
Contributions: Our approach is made possible by the

following technical contributions:
1) Unlike the existing fault diagnosis methods for rotating

machinery, which are almost based on vibration signals, this
paper presents a fault diagnosis method based on IRT images.
IRT images have many significant advantages such as non-
contact, easy setup, non-invasive, high sensitivity and res-
olution. In addition, image-based fault diagnosis avoids the
important problem of denoising the vibration signal.

2) An image-based fault diagnosis scheme for rotating
machinery is developed, which can automatically detect
mechanical faults with high accuracy. In this study, an exper-
imental platform is established to obtain IRT images of dif-
ferent fault states, which verifies the effectiveness of this
method.

Section II describes the procedures and techniques of
the two feature extraction methods used in this paper and
briefly introduces the steps of fault detection and isolation.
Section III first introduces the experimental platform, and
then presents two sets of comparative experiments, and gives
performance analysis of the two comparative experiments.
Finally, conclusions are drawn in Section V.

II. IRT IMAGE-BASED FAULT DIAGNOSIS
Image-based diagnosis is a kind of data-driven diagnostic
method where the data is a set of IRT images other than
vibration signals, and the IRT images are taken by infrared
camera. Inspired by themature image recognition techniques,
two popular feature extraction methods are employed in this
work: BoVW [28] and CNN, which is a kind of deep learning
method [29].

Image-based diagnostics have several advantages: i) image
identification refers to processing image data and then clas-
sifying images. The thermal image-based rotating machinery
fault diagnosis method used in this paper also achieves the
final fault diagnosis target by directly processing the thermal
images. Therefore, no expert knowledge on the application
is required, such as material properties, structures, or failure
mechanisms, because the knowledge can be learned directly
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FIGURE 1. Flowchart of the developed IRT image-based fault diagnosis.

from the images; ii) IRT images do not possess troublesome
noise induced by environmental factors and machine oper-
ation as in vibration signals; iii) IRT images are captured
in a non-contact and non-intrusive way that avoids rubbing
damage to the machinery or malfunctioning of the contacting
sensors. Based on this idea, a framework of image-based
fault diagnosis is proposed as shown in Fig. 1. The two diag-
nostic methods are composed of two parts, namely, offline
and online [30]. Among them, the offline part corresponds
to the training process, and the online part corresponds to
the testing process. The IRT images taken of the entire test
rig contains faulty components and other devices (motors,
photoelectric counters, etc.). The difference in IRT images
under different fault conditions is mainly reflected in the
faulty component part. Therefore, in order to make the image
processing process more efficient, the method developed in
this paper includes a preprocessing step of cutting off the
redundant part of the complete IRT image of the test rig as
shown in Fig. 1, leaving only the range of interest, that is,
the part containing the faulty component. The rules between
features and faults are learned after the training process,
while the testing process is used to observe the effect of
fault diagnosis methods. In this figure, the process of fault
diagnosis and isolation is introduced through the example of
the outer race fault.

Both BoVW and CNN have been conducted and compared
in the experiments. For BoVW, the diagnosis framework is
conducted as follows: i) capturing and preprocessing the IRT
images of the region of interest, followed by scale-invariant
feature transform (SIFT) algorithm [31] to extract visual

features from the IRT images; ii) from the extracted visual
features, a visual vocabulary is generated bywhich the BoVW
of each image is computed for fault diagnosis; and iii) the
extracted BoVW features are used as input of the classifi-
cation algorithms such as SVM. For CNN, the framework
is conducted as follows: i) capturing and preprocessing the
IRT images of the region of interest, followed by resizing the
image resolution to fit input of the network; ii) constructing
the network structure and learning the CNN feature of each
image for fault classification; and iii) the extracted CNN
features are used for input to the SVM classifier. The output
of the SVM classifier indicates the fault state of the rotating
machinery including which component is faulty. The follow-
ing sections describe these steps in details.

A. BAG-OF-VISUAL-WORD
BoW (bag of words) gains great success in text retrieval,
leading to its extension for image processing called BoVW.
Similar to BoW, BoVW represents an image as a histogram
(i.e., frequencies of occurrences) of visual features (i.e.,
words) in the image, which is an unordered set of non-
distinctive discrete words with certain level of invariance to
the spatial location of objects in the image. This histogram
of visual words can be regarded as the effective features for
image classification.

1) SIFT FEATURE EXTRACTION
Practically, fault diagnosis at the component level cannot be
achieved by analyzing the whole IRT image but only a few
‘‘interested’’ regions in the IRT image. The reason is obvious
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that most IRT images are very similar under different fault
states. Therefore, the analysis is focused on the characteristics
of the ‘‘interest points’’ of these few regions, such as corners
and blobs.

In [32], Lindeberg has shown that stable locations of the
interest points in scale space can be efficiently detected
through scale-space extrema in the difference-of-Gaussian
function [33]. By convolving the scale-space extrema with
the image D(p, σ ), where p = (x, y) is a point in the image,
the difference of two nearby scales separated by a constant
multiplicative factor κ can be computed:

D(p, σ ) = (G(p, κσ )− G(p, σ )) ∗ I (p)

= L(p, κσ )− L(p, κσ ) (1)

where ∗ is the convolution operation in p. The scale space of
an image is defined as follows,

L(p, σ ) = G(p, σ ) ∗ I (p) (2)

which is the convolution of a variable-scale Gaussian,G(p, σ )
with an input image, I (p).

G(p, σ ) =
1

2πσ 2 exp−(x
2
+ y2)/2σ 2 (3)

The local extrema of the function D can be detected
through accurate localization of interest points. Following
the method in the literature [34], the Taylor expansion of
the scale-space function D(p, σ ) is computed up to quadratic
term only:

D(p, σ ) = D+
∂DT

∂p
p+

1
2
pT
∂2D
∂p2

p (4)

By taking the partial derative of Eq. (4) with respect
to p and setting to zero, the location of the extremum p̂ is
found. Subsequently, these local extrema, i.e., interest points,
constitute an abstraction of the image. At each of these
local extrema, a consistent orientation is assigned so that
the local information of the image (represented as a vector
of gradients) can be obtained as the SIFT descriptor. This
process has been implemented in the Open Source Computer
Vision Library (OpenCV) environment. Default parameters
are employed in the visual feature extraction while the fea-
ture vectors are 128-dimensional. After this step, each image
is a collection of vectors of the same dimension (128 for
SIFT), where the order of different vectors is unimportant.
Since the IRT images are acquired under slightly different
(up/down/left/right) angles (± 5 degrees) and the image
brightness taken from different angles is varying, the SIFT
descriptor must be robust to noise and illumination changes
of images, which is an expectant property for some com-
pensations on slightly different angles when we acquire the
IRT images. Experimentally, the number of SIFT features is
adjusted from 20 to 80 due to the different fault states. Finally,
the presentation of a fault state (of 100 images) is constituted
from about 2000 to 8000 SIFT features.

2) BoVW FEATURE GENERATION
Before feature encoding, a representative of several similar
interest points called vocabulary is produced using k-means
clustering [35]. First, a set of k clusters is learned by cluster-
ing the features extracted from each fault state into a specified
vocabulary size. Then, the centers of the learned clusters
are defined as the vocabulary. In current application, a set
of 128-dimensional vectors of SIFT features (x1, x2, ..., xn)
is given. Through k-means clustering, the n SIFT vectors are
partitioned into k different sets such that S = {S1, S2, ..., Sk}
with minimized intra-cluster squared summed error (SSE).
Equivalently, it aims to find

S = argmin
S

k∑
i=1

∑
x∈Si

||x − µi||2 (5)

where µi is the mean vector in Si. In the experiments,
the vocabulary size k is set to 1000 for better discrimination
capability. With this constructed vocabulary S, the extracted
SIFT features are then quantized as the label of the clos-
est cluster [36]. Finally, an image is abstracted as the fre-
quency counts or histogram of the quantized SIFT features
[f1, f2, ...fi, ..., fk ] where fi is the frequency of ith visual word
in the image. This encoding from SIFT features to visual
words according to the idea of nearest neighbor in the vocab-
ulary can generate an effective BoVW histogram with spatial
invariance.

B. CONVOLUTIONAL NEURAL NETWORK
CNN is a deep learning method that has achieved great suc-
cess in image classification. The application of CNN in fault
diagnosis tasks is essentially an image classification problem.
CNN provides a powerful framework to learn hierarchical
features of images as a feature extractor based on deep learn-
ing. Furthermore, an advantage of this network is that it is
highly variable for translation, scaling, tilting or other defor-
mations, thanks to the fact that the convolution operation is
close to the mechanism of the human eye capturing features.
In this paper, CNN is employed to learn IRT image features,
and Fig. 2 shows its structure and working principle by taking
the network of this paper as an example.

FIGURE 2. The principle of feature learning for the CNN model.

1) CONVOLUTIONAL NEURAL NETWORK
The CNN model employs multiple layers, including convo-
lutional layer, pooling layer, and connection layer, to process
the input image. CNN is trained with multiple stages, and
the input and output sets of arrays of each stage are called
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feature maps. In this study, the IRT images were used as input
to the network. The output feature map of the current stage
is considered the input feature map for the next stage. Each
stage consists of three steps: convolutional operation, non-
linearity transformation, and feature pooling. Several such
three-part stages form the complete structure of the CNN
model, followed by SVM to perform the classification. The
details of CNN are described as follows.

The L-layer CNN model can be described as a series
of linear transformations, nonlinear symmetric squashing
operations (such as sigmoid function or tanh function) and
pooling/subsampling operations. The network treats the input
image as three-dimensional arrays, including the number of
feature maps, the height and width of the maps. For layer l,
Fl is defined as the output of the l-th stage and is given by:

Fl = pool(tanh(Wl ∗ Fl−1 + bl)) (6)

where l ∈ 1, ...,L, Wl is the convolutional kernel, bl is the
bias parameter of the l-th layer. The input image is the initial
feature map, i.e., F0 = I . The whole network is made up of
all layers stacked one after another.

In the CNN model, the tanh function is the point-wise
hyperbolic tangent function that is applied to the output of
every convolutional and pooling layer. The pool operation
is a function considering a neighborhood of activations and
generating one activation in each neighborhood. The fully
connected layer is the last layer of the network. This layer can
be regarded as a feature descriptor, which is the final feature
representation of the input image by the CNN network. Its
output is fed to the SVM classifier.

As depicted in Fig. 2, the CNN model constructed in
this paper contains five layers with weights; the first and
third ones are convolutional, the second and fourth ones are
pooling, and the last layer is fully connected. All layers are
connected to one another in turn. The first convolutional layer
filters the 200× 200× 3 input image with 40 kernels of size
12 × 12 × 3 with a stride of 4 pixels. The second pooling
layer uses a 40 kernels of size 2 × 2 × 40 with a stride of 2
pixels. The third convolutional layer takes as input the output
of the second pooling layer and filters it with 60 kernels of
size 6 × 6 × 40. The fourth pooling layer uses 60 kernels
of size 2 × 2 × 60 with a stride of 2 pixels. The fifth fully
connected layers is connected to the fourth pooling layers.
Then the output of the fifth layer is used as the input to the
SVM classifier.

C. FAULT DETECTION AND ISOLATION
In this paper, the problem of fault detection and isolation
is considered as a multi-class classification. Given a set of
training data, features are extracted from different fault states
for rotating machinery. Under these extracted features with
the corresponding fault states, a fault dictionary is pro-
duced containing different classes of fault states. Notewor-
thy, the no-fault state is considered as a class in the fault
dictionary. SVM is employed to learn a classifier from the
extracted features along with their corresponding fault states.

For diagnosis, the extracted features of a new image are
diagnosed using the trained SVM classifier. Note that a no-
fault state is considered one of the classes in SVM.

There are many SVM classification models [37],
e.g., c-support vector classification, ν-support vector clas-
sification, and distribution estimation. Each classification
model contains a kernel function, i.e., linear, polynomial,
RBF, or sigmoid kernels, which are evaluated and formulated
as shown in Table 1. Here, γ , r , and d are kernel parameters.
In the study, after testing the combination of different kinds
of SVM classifiers and kernel functions, it is found that
the combination of c-support vector classification and linear
kernel achieves the best classification accuracy.

TABLE 1. Commonly used kernel functions.

III. EXPERIMENTAL SETUP
In order to test the developed image-based diagnosis on
rotating machinery, the IRT images were chosen as the tar-
get signals for analysis, and two popular classes of feature
extraction methods were employed in this work: BoVW, and
CNN. Finally the SVM classification performed the task of
fault detection and isolation.

A fault simulator (WS-ZHT1 type multifunctional rotor
test rig) as shown in Fig. 3 was employed to provide different
kinds of faults of driving motors, bearings, flywheels, shafts
and rotors. A long shaft of 10 mm diameter was supported
by two ball bearings. One end of the shaft was attached to
the motor spindle through a flexible coupling. In this paper,
9 fault states of the bearing were collected (note that the nor-
mal state was also considered a fault state), including various

FIGURE 3. Experimental setup for demonstrating the developed
approach.
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single fault types and compound fault types. Compound faults
refer to the simultaneous occurrence of multiple types of
faults, that is, multiple faults are coupled together. In addition
to roller fault state, outer race fault state and normal state,
the unbalance state was simulated by attaching weights on
a flywheel with threaded holes. As for the rub impact fault,
a copper blade was fixed by the threaded holes on the stand
in order to connect the copper blade and adjust the gap
between the copper blade and the shaft. When the copper and
the shaft come into contact with each other, the rub impact
fault happens. The motor was driven by a variable speed
direct current (DC) motor with speed up to 2000 rpm. The
specifications of the fault simulator and the thermal camera
(Fluke Ti32) are shown in Table 2.

TABLE 2. Specifications of IRT camera and fault simulator.

The thermal camera is the key device for data acquisition
whose parameters must be carefully set for accurate IRT
images. The parameters of the thermal camera are automati-
cally configured by the camera itself. Among all parameters,
the most important one is emissivity. The emissivity of a
object refers to the ratio of the radiated power of the object to
the radiating power of a black body at the same temperature.
It is related to the surface state of the object (including the sur-
face temperature of the object, the surface roughness, and the
presence of surface oxides, surface impurities, or coatings).
The diagnostic object of this paper is the rolling bearing,
and the material of the rolling bearing is steel. For metallic
materials, surface roughness and surface temperature will
have a greater impact on emissivity. In general, the greater the
surface roughness of the metal, the greater the emissivity of
the metal. The emissivity of the metal increases as the surface
temperature increases. As shown in Table 2, the thermal
imager used in the experiments herein is suitable for mate-
rials with an emissivity of 0.1 to 0.95. The other parameters
such as relative humidity, scale temperature, focal length of
camera, and distance are configured as in Table 2. All of these
parameters were chosen according to experiment condition.
In this study, all fault states (such as normal, unbalance,
roller, outer race, rub impact, unbalance and rub impact,
unbalance and roller, outer race and rub impact, unbalance
and roller and rub impact) are measured under the same
parameters setting of the Fluke Ti32 for the experiment. Data

from the Fluke Ti32 were saved directly to the computer.
In order to verify the robustness of our developed image-
based diagnosis, the images were acquired under slightly
different (up/down/left/right) angles (±5 degrees).

For the machine configuration, the speed of the motor
was gradually raised up to 2000 rpm for data acquisition.
We collected two sets of data (Group 1 and Group 2), each of
which contains 100 images. Group 1 is the set of 100 images
captured during the transient state of the machine (from the
beginning to 5 minutes of machine operation). The speed
of 2000 rpm was held for 15 minutes until the machine
reached its steady state. Then, another set of 100 images
was captured as Group 2 (from 15 minutes to the end of
the experiment). It is well known that the images captured
under transient state may significantly vary even though they
belong to the same fault. On the other hand, such variation
is significantly reduced for those images captured under an
operational state.

Fig. 4 shows the IRT image of the machine state, with a
black rectangle encircling the interesting part of the experi-
ment, the bearing. The black rectangle is a predefined bound-
ing box whose resolution is 480 × 200 in order to realize
the automatic cutting of an IRT image (whose resolution
is 640 × 480). The final experimental IRT images con-
sist of 9 machine conditions as listed in Table 3. Actually,
segmentation is performed to the portion (specified by the
black rectangle) of the original IRT image in order to exclude
non-defective parts, such as driving motor and some other
parts, and reduce the scope of image processing. In this way,
it will be beneficial to the next step of feature extraction
by deleting non-defective portions, because the extracted
features about the black rectangle contain more fault informa-
tion and are more representative than the extracted features
of the whole image. After segmentation, the IRT images
of all faults under transient and steady states are presented
in Figs. 5 and 6.

FIGURE 4. An IRT image and the region of interest.

In order to verify the effectiveness of the two feature
extraction methods (i.e., BoVW and CNN), we intention-
ally captured the IRT images under both transient state and
steady state. There are 9 fault states corresponding to labels
F1 to F9. Each fault state has been captured for 100 samples
in the experiment. Each sample is a collected IRT image with
480 × 200 pixels. For every fault state, the 100 captured
IRT images are halved for training and testing, respectively.

VOLUME 7, 2019 12353



Z. Jia et al.: Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images

FIGURE 5. IRT images under transient state.

FIGURE 6. IRT images under steady state.

This ensures a relatively adequate training set and a fully
tested diagnostic algorithm. Therefore, under both transient
and steady states, there are 100 no-fault and 800 faulty cases
for the purposes of training and testing, respectively. The
setup details of the experimental data are shown in Table 3.

Therefore, the total number of training samples and test sam-
ples is both 450 (each sample is a 480×200 pixel image). It is
very hard to effectively distinguish the 9 operation conditions
from the collected IRT images according to Figs. 5 and 6.
After SVM training, the trained classifier was applied to the
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TABLE 3. Details of captured IRT images under transient state.

testing cases to evaluate the discriminability of the extracted
features. The procedure to handle IRT images under steady
state was similarly conducted.

IV. RESULTS AND ANALYSIS
In order to assess the performance of the developed IRT
image-based fault diagnosis method, two types of analyses
were carried out in the fault feature extraction step. In the first
analysis, the classification results are compared based on fea-
tures, respectively, of the two popular feature learning meth-
ods, BoVW and CNN [38]. In the second analysis, the results
of fault diagnosis based on IRT maps and traditionally used
vibration signals are compared. Finally, the diagnostic per-
formance was verified under different metrics to evaluate the
performance of the above several fault diagnosis methods.

A. BOVW VERSUS CNN
Two different feature learning methods based on BoVW and
CNN were used to produce diagnostic decisions. The classi-
fication accuracy of the SVM classifier was evaluated under
features learned by BoVW and CNN, respectively. The aver-
age classification accuracy was considered as the evaluation
measure throughout the first experiment. The different fault
condition settings are shown in Table 3, which contains a total
of 9 types of faults. The IRT images were acquired under
these fault conditions, and then divided into training sets and
test sets, and fault features were collected for classification.
Under these fault conditions, IRT images of the test elements
were collected and then divided into training and testing
sets, on which fault features were captured for classification.
Subsequently, the SVM was selected for classification.

During the training phase, the SVM classifier was trained
by features and corresponding fault labels. The training and
testing datasets consisted of faulty IRT images of the bearings
captured under different fault conditions. Then, through the
fault feature extractionmethod, BoVWandCNN, the training
and testing features were captured from training and testing
datasets, respectively. After training the classifiers, the fault
labels for testing features were predicted. The classification
results for fault class diagnosis produced by SVM classifier
are shown in Tables 4, 5, and 7, respectively.

TABLE 4. Fault diagnostic results based on IRT images with BoVW
features under transient state.

TABLE 5. Fault diagnostic results based on IRT images with BoVW
features under steady state.

The distributions of BoVW features under transient state
and steady state are shown in Figs. 7 and 8, respectively
(Remark: The X-axis and Y-axis in Figs. 7 and 8 are meaning-
less, which are merely scale representation. The 9 different
colors represent the 9 different faults.). It is well known
that if the intra-class distance is smaller and the inter-class
distance is bigger, the classification result is better. The visu-
alization of BoVW features under transient state in Fig. 7 is
more disordered than the BoVW features under steady state
in Fig. 8. Compared to Fig. 8, in Fig. 7, different faults are
not completely distributed at different regions because some
regions are overlapping. For example, the regions of classes
F3 and F6 are overlapping (specified by the black rectangle),
which is consistent with the diagnostic performance contrast
under two states shown in Tables 4 and 5. After the feature
extraction is completed, the SVM is used for classification to
implement fault diagnosis, that is, fault type classification.
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FIGURE 7. Visualization of BoVW features under transient state.

FIGURE 8. Visualization of BoVW features under steady state.

Tables 4 and 5 show the fault diagnosis for the bearing
under transient state and steady state using the BoVW feature
extraction method, respectively. As can be seen from Table 4,
under the transient state, there are four types of faults (F3,
F6, F7, and F8) that are incorrectly classified. However,
from Table 5, it can be seen that only one misclassification
case occurred in the steady state. It is obvious that the fault
diagnosis effect under the steady state is better than that under
the transient state. In addition, the BoVW feature extraction
method based on IRT image has excellent overall diagnostic
performance, indicating that BoVW can effectively capture
highly discriminative semantic features. The four assessment
types are shown in Table 6. It can be seen that the diagnostic
performance of both the two states based on BoVW feature
learning method achieved a high score, which implies that
BoVW works effectively in capturing features for diagnosis
of rotating machinery. Furthermore, the SVM classifier can
identify and isolate faulty types with a nearly 100% accuracy
in both states (see Precision in Table 6 for details), which can
be concluded as fault isolation in addition to fault diagnosis.

In order to evaluate the diagnosability of the developed
IRT image-based fault diagnosis method, four evaluation

TABLE 6. Metrics evaluation of fault diagnostic performance based on
IRT images with BoVW features.

measures are employed: 1) false positives: the number of
cases that the classifier indicated a fault in the bearing while
there is no fault actually; 2) false negatives: the number
of cases that the classifier declares a no-fault situation in
the circuit while there is a fault actually; 3) accuracy: the
proportion of cases whose label is correctly predicted in the
total cases; 4) precision: the proportion of cases correctly
predicted as faulty in all cases predicted to be faulty.

CNN is another popular feature extraction method for
images based on deep learning, which can be an alterna-
tive tool to BoVW feature learning. For a fair comparison,
CNN uses the same training and testing data as BoVW.
The structure of the CNN determined in this experiment,
as described in Sec. II B, consists of five layers, first two
sets of convolutional and pooling layers, followed by a fully
connected layer. As shown in Table 7, the use of CNN features
based on IRT images achieves perfect fault diagnosis results
in both transient and steady state, and 450 test samples are
correctly classified into corresponding fault states, achieving
100% diagnostic accuracy. As feature extraction methods,
the features extracted by the CNN and BoVW from the IRT
images are classified by the same classifier, and the accuracy
based on CNN is higher than that of BoVW. From the results
shown in Tables 4, 5, and 7, it may be explained that in CNN,

TABLE 7. Fault diagnostic results based on IRT images with CNN features
under both transient and steady state.
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the feature extraction process is performed layer by layer, and
the ability to express features becomes stronger as the layer
deepens, which enables the final output features to accurately
reflect the characteristics of the input information, whereas
BoVWfirst captures the ‘‘interest points’’, on which learning
and classification are carried out.

B. IRT IMAGE-BASED METHOD VERSUS VIBRATION
SIGNAL-BASED METHOD
A comparative experiment was also set up to compare the
accuracy of fault diagnosis based on IRT images and tra-
ditional vibration signals. In this comparative experiment,
the IRT image-based method used CNN for feature extrac-
tion (because the performance of CNN is overall better than
BOVW), and the vibration signal-based method used shift
invariant sparse coding (SISC) [9] for feature extraction.
In this paper, an adaptive feature extraction scheme based on
sparse coding is developed. The sparse representation of the
signal can represent the diagnostic information in an efficient
way. The bearing fault diagnosis is carried out in the vibration
signal experiment, and the scheme has good diagnostic per-
formance. The experimental results of better diagnostic accu-
racy prove that the proposed features can effectively represent
fault information. Subsequently, the features extracted by the
two methods are classified using SVM.

The same fault simulator (WS-ZHT1) was used again as
the vibration signal generator and the speed of the motor
was still set to 2000 rpm. An accelerometer was installed on
the bearing of the drive end side. A 16-channel digital audio
tape (DAT) recorder was used to collect vibration signals
under a sampling frequency of 12 kHz when it reached steady
state. Only three single fault types were diagnosed in [9],
and the composite fault state was not considered. Therefore,
in this paper, only the diagnostic accuracies of these three
fault states are compared. In this comparative experiment,
the diagnostic results of three common fault classes including
outer race (F8), roller (F9) and normal (F4) were compared.
Sparse feature extraction was also performed on the time
domain vibration signal. The extracted feature was divided
into two equal halves for training and testing. Experimen-
tal parameters were as follows, each vibration data set had
100 samples truncating into time-series with a 1024-point
window block, and 10 atoms, each with a length of 128-point,
which were learned from one state of the bearing data.
The fault diagnostic results based on vibration signals under
steady state are presented in Table 8. It can be seen from
the classification accuracies comparison results of the two
diagnosticmethods given in Table 9 that the vibration features
perform slightly worse diagnosis of themechanical condition.

From the results, we can consider the reason why the
image-based method is better than the signal-based method.
On the one hand, the vibration signal is doped with noise
from the operating environment of the machine, such as tem-
perature and electromagnetic interference. On the other hand,
the signal-based method needs to utilize accelerometers and
eddy-current sensors. Because these sensors must be installed

TABLE 8. Fault diagnostic results based on vibration signals under steady
state.

TABLE 9. Classification accuracies comparison based on vibration signals
and IRT images.

inside the machinery, the problem of improper sensor
installation can affect the measurement accuracy. However,
IRT images are non-contact, non-intrusive, easy to set up,
and have high sensitivity and resolution, which avoids the
above two problems existing in the vibration signal-based
method. Therefore, the developed IRT image-based method
using CNN is superior to the traditional vibration signal-
based method.

C. ANALYSIS OF THE IMPACT OF ENVIRONMENT ON
EXPERIMENTAL PERFORMANCE
For a particular device, the ambient temperature at which it
is located is generally stable. The IRT camera used in this
paper has an operating temperature range of−10◦C to+50◦C
and a measurement temperature range of −20◦C to +600◦C.
Taking the CNN with outstanding performance in this paper
as an example, the image feature extraction method based
on CNN includes two parts, namely, the offline training
part and the online test part. The high-precision fault diag-
nosis performance in this paper has proven that CNN has
strong feature learning ability. Therefore, the diagnostic accu-
racy can be guaranteed as long as the IRT camera operates
within the allowable operating temperature range of −10◦C
to +50◦C. In addition, as shown in Table 2, the IRT camera
used in this paper is suitable for materials with an emissivity
of 0.1 to 0.95, which ensures that the emissivity is still
within the applicable range when the ambient temperature
varies or the lighting intensity changes.

V. CONCLUSION
There are many advantages to fault diagnosis based on
infrared thermography (IRT) images, such as non-contact,
ease-of-setup, and high sensitivity and resolution, which
avoids expensive equipment such as accelerometers and
eddy-current sensors those are regarded to be installed inside

VOLUME 7, 2019 12357



Z. Jia et al.: Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images

the machinery. Moreover, image-based fault diagnosis avoids
the significant issue of denoising on the vibration signal.
However, the existing IRT image-based methods for diag-
nosing rotational machinery faults involve two steps: feature
extraction using signal processing techniques and fault clas-
sification using the shallow learning models (e.g., the most
frequently used support vector machine (SVM) classifiers),
which inevitably leads to the diagnostic performance that
relies heavily on feature extraction. This is why the IRT
image-based diagnostic performance cannot go beyond
the traditional vibration signal-based diagnostic methods.
In recent years, the successful application of bag-of-visual-
word (BoVW) and convolutional neural network (CNN) in
computer vision proved that these two models are more
powerful in describing image features. Therefore, these two
methods are introduced to analyze IRT images in this paper.

In this study, an IRT image-based diagnosis scheme was
developed to classify key rotating machinery conditions.
Instead of the existing IRT-based method for diagnosis using
traditional pattern recognition, our approach used BoVW and
CNN. The approach consists of IRT image data acquisition,
feature extraction, and condition identification. The two pat-
tern recognition methods, BoVW and CNN, were both used
as the classifier to mine the features of the IRT images, and
it was found that CNN can give better results than BoVW.
By setting a variety of fault states for the rotating machinery,
the traditional vibration signal-based diagnostic methods and
the developed IRT image-based method using CNN are used
for diagnostic comparison experiments. Experimental results
show that the classification accuracy based on IRT images
using CNN is superior to that based on vibration signal, which
breaks the previous situation based on traditional vibration
signals to rule the field of rotating machinery fault diagnosis.
The results also show that the diagnostic method based on
IRT images for rotating machinery deserves more in-depth
research.
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