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ABSTRACT Data retrieval systems are facing a paradigm shift due to the proliferation of specialized
data storage engines (SQL, NoSQL, Column Stores, MapReduce, Data Stream, and Graph) supported by
varied data models (CSV, JSON, RDB, RDF, and XML). One immediate consequence of this paradigm shift
results into data bottleneck over the web; which means, web applications are unable to retrieve data with the
intensity at which data are being generated from different facilities. Especially in the genomics and healthcare
verticals, data are growing from petascale to exascale, and biomedical stakeholders are expecting seamless
retrieval of these data over the web. In this paper, we argue that the bottleneck over the web can be reduced
by minimizing the costly data conversion process and delegating query performance and processing loads to
the specialized data storage engines over their native data models. We propose a web-based query federation
mechanism—called PolyWeb—that unifies query answering over multiple native data models (CSV, RDB,
and RDF). We emphasize two main challenges of query federation over native data models: 1) devise a
method to select prospective data sources—with different underlying data models—that can satisfy a given
query and 2) query optimization, join, and execution over different data models. We demonstrate PolyWeb
on a cancer genomics use case, where it is often the case that a description of biological and chemical entities
(e.g., gene, disease, drug, and pathways) spans across multiple data models and respective storage engines.
In order to assess the benefits and limitations of evaluating queries over native data models, we evaluate
PolyWeb with the state-of-the-art query federation engines in terms of result completeness, source selection,
and overall query execution time.

INDEX TERMS Databases, world wide web, query federation, query optimization, query planning, linked
data, SPARQL, healthcare, and life sciences.

I. INTRODUCTION
The database experts have predicted the demise of ‘‘One Size
Fits All’’ approach used in the data retrieval and management
solutions [1]. This prediction is now evident, as in the last
couple of years several data models (e.g., text, CSV, Graph,
JSON, RDB, RDF, XML) and storage engines are proliferat-
ing with overlapping requirements, use-cases, and user-bases.
This is particularly true in complex domains like healthcare
and life sciences (HCLS) where the organisations are facing
a major shift in the data retrieval requirements. A simul-
taneous use of different specialized data storage engines,
data models, and supporting querying mechanism is needed

to retrieve data from different interacting facilities (clinical
measurement, medical history, laboratory test, demographics,
etc.) [2]. In the presence of ‘‘toomuch data’’ and the paradigm
shift in data storage and retrieval, it is now impractical to
assume that the variety of high volume data residing in spe-
cialized storage engines will first be converted to a common
data model, stored in a general-purpose data storage engine,
and finally be queried over the Web.

On the same challenge of combining and querying data
from several repositories, the central idea of Linked Data is
to publish and link a wide variety of independent Web data
silos in a manner that is queryable as one connected set of
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data sets supporting advanced Web uses, organisations, and
scientific discoveries. The Linked Open Data (LOD) Cloud,
as well as the enterprise applications of Linked Data, have
shown success in connecting and querying resources across
disparate data platforms [3]. There is wider availability of
open-source and commercial tools that allow curating, pub-
lishing, aggregating, storing, and querying Linked Data. The
typical linked data approach to query independent data silos
is to convert all the underlying native data models into the
RDF data model and devise querying mechanism through
which these independent data silos can be queried in unison.
While this approach can be practical for simpler verticals,
in case of the HCLS domain it is already predicted that
2–40 exabytes of storage capacity will be needed by 2025 just
for the human genomes which will continue to grow approx-
imately 40 petabytes of additional genomic information each
year [4]. Nevertheless, raw storage is not the main concern,
but the amount of variant data (text, relational, stream, graph,
etc.) being queried and analyzed is already seen as a major
hurdle in the meaningful use of this vast amount of data.

The normal federation approaches evaluate a given query
over multiple data stores complying to a single data model.
Recently, an atypical approach of federating queries over
heterogeneous data models has been initiated – called Poly-
store1 [5] – that exploits different data models and stor-
age engines in their native formats, i.e., without converting
them to a common data model. The early demonstrators
of Polystore have shown promising outcomes in federating
queries across disparate data models used in the Multipa-
rameter Intelligent Monitoring in Intensive Care II Databases
(MIMIC II) [6]. It’s important to note that, the concept of
Polystore is an abstract idea of unifying querying over mul-
tiple data models which can be implemented using different
technologies (RDB, Web, or Semantic technologies). In this
paper, we present a semantic approach, called PolyWeb,
to federate query over Web polystores containing cancer and
biomedical data sets. We devise a query federation approach
that focuses on source selection and joins over different data
models (e.g., CSV, RDB, RDF). It is an open research prob-
lem to perform join across different data models. Further,
it is important to understand the gain and loss of querying
over data sources2 in their native data models compared to
the conventional approach of querying curated data sources
– from several heterogeneous sources – using a common
data model. We compare PolyWeb against the state-of-the-art
SPARQL query federation engines.

The rest of the paper starts with the description of a moti-
vation scenario that requires to query over disparate cancer
genomics data sets. In the related work section, query fed-
eration approaches developed using relational database and
semantic web methods are discussed. We then provide a brief
overview of the PolyWeb architecture and discusses in detail

1http://wp.sigmod.org/?p=1629
2A data source encapsulates a data set complying to a particular data

model/format (CSV, JSON, RDB, RDF, etc.)

Listing. 1. Example SPARQL query.

the two algorithms designed to select prospective data sets,
optimize, plan and execute a given query. The correctness
and complexity of the PolyWeb algorithms are also discussed.
We provide an extensive evaluation of PolyWeb by compar-
ing it with the state-of-art query federation engines. Finally,
we conclude our work and provide future directions to further
enhance our work.

II. MOTIVATING SCENARIO - CANCER GENOMICS
The Next Generation Sequencing (NGS) technologies are
producing a massive amount of sequencing data sets. As said,
there will be a top-up of approximately 40 petabytes of
genomic information every year from a wide variety of data
sources (hosting different databases, data formats, etc.) pub-
lished by human genome research centers worldwide. Often,
these data sets are published from isolated and different
sequencing facilities. Consequently, the process of sharing
and aggregating multi-site sequencing data sets are thwarted
by issues, such as the need to discover relevant data from
different sources, built scalable repositories, the automation
of data linkage, the volume of the data and efficient query-
ing mechanism. PolyWeb is motivated by the needs of the
BIOOPENER project3 which is aiming to link cancer and
biomedical data sets providing interlinking and querying
mechanisms to understand cancer progression from normal
to diseased tissue with pathway components, which in turn
helped to map mutations, associated phenotypes, and dis-
eased pathways [7].

In cancer genomics, discoveries of biological and chem-
ical entities (gene, pathway, drug, diseases, etc.) are avail-
able in several overlapping data sources containing complex
genomic features, studies, and associations of such features.
In order to understand the tumorigenesis, it is often the case
that several genetic features, diseases, medical history, etc.
are studied together. Considering the exponential growth and
variety of genomics and biomedical data sets, it is impractical
to assume that all these isolated and disparate data sets will
be available in a single data model. In order to tap the vast
knowledge locked in these data sets, it is now important to
exploit them in native formats.

3http://bioopenerproject.insight-centre.org/

VOLUME 7, 2019 9599



Y. Khan et al.: One Size Does Not Fit All: Querying Web Polystores

FIGURE 1. Unoptimised query plan involving three data sources and three data models
(CSV, RDB, and RDF).

The example SPARQL query shown in Listing 1 retrieves
association of a gene (MYH7) with a primary site (where
tumor progression starts), disease, copy number variation
(CNV), CNV location (start, end), CNV segment mean, and
reported samples of patients. The CNV information gives
insight into the structural variation of a gene which helps
analyses the progression of the cancer tumor, ultimately
impacting on the prognosis and treatment of disease. Fig. 1
shows an unoptimised query plan that includes the type
of databases or models (e.g., CSV, RDB, RDF) that can
satisfy individual triples from three data sources. In our
previous work, we developed a SPARQL federation engine
– called SAFE [8] – that federates queries over genomics
and clinical trial repositories represented in RDF. Similarly,
in our previous work, we evaluated a wide variety of pro-
posals (FedX, LHD, SPLENDID, FedSearch, GRANATUM,
Avalanche, DAW, ANAPSID, ADERIS, DARQ, LDQPS,
SIHJoin, WoDQA and Atlas) on how to execute SPARQL
queries in federated settings [9]. However, we have no work
to compare that federates over different native data models.
Thus the motivation for our research is to investigate how
to enable query federation over native data models in Web
like open-world scenarios. As argued in the introduction,
off-the-shelf federation engines cannot be used since they
are designed to federate over a single data model. Hence
following are the core research questions we address in this
paper:

• How can we devise source selection in a Web like feder-
ated scenario where data sources comply with different
data models?

• How can we implement a web-based query federation
plan that retrieves correct and complete results from
different data models?

• Can we optimize and execute the query federation plan
for different native data models in a manner that allows
us to compete with off-the-shelf RDF query federation
engines?

The benefit of PolyWeb is two-fold: (i) It reduces the
data conversion cost: a given query is executed over the
native data models without converting multiple data models
to a common data model. Therefore, the major advantage of
PolyWeb holds in all the data retrieval scenarios where the
data conversion cost is high. For instance, SPARQL-based
federation engines listed in Table 1 execute a given query
on the requirement (or assumption) that data sources are
available in RDF; and (ii) it delegates data querying load to
specialized data storage engines, instead of loading curated
data from multiple data models to a general-purpose engine.
In this article, we demonstrate that PolyWeb is helpful in
reducing the data conversion cost and still be able to retrieve
complete result sets from different native data models.

III. RELATED WORK
The scenario described in the previous section touches upon
three main areas: source selection, query optimization and
query execution in a federated environment. Both semantic
web and relational database research communities have pro-
posed and developed several federation systems that can unify
query answering across disparate databases. The related work
in these two broad areas is discussed in the following two
sections.
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TABLE 1. Overview of existing SPARQL query federation engines.

A. RELATIONAL DATABASES
The main focus of relational database approaches to query
federation is around the closed-world enterprise settings
which require a predefined number of data sources, schemas,
and data sets to process queries across different business
units within or between organisations. Some early [10] and
more recent query federation approach [11] target the chal-
lenge of distributed query processing, distributed transac-
tions, performance, and replica management. The database
community realized the importance of managing distributed
and heterogeneous databases and proposed ways to address
the heterogeneity found across databases [12]. Several early
data mediators [13] and middleware systems [14] – primarily
based on the Global as View (GAV) and Local as View
(LAV) approaches [15] – developed in the last three decades
had the same motivation, namely, unifying the data retrieval
and query process over different models and sources. The
assumptions behind – such as availability of global schema,
availability of mappings between schemas (local and global),
and revising all the mappings with addition or removal of
data sources – the GAV and/or LAV based approaches are
too restrictive for Web like querying scenarios. Recently the
database community is exploring a new perspective – called
Polystore [5] – to unify queries over multiple data models.
The early demonstrators of Polystore have shown promising
outcomes in federating queries across disparate data models
used in the Multiparameter Intelligent Monitoring in Inten-
sive Care II Databases (MIMIC II) [6], [16], [17]. Similarly,
NoSQL polyglot persistence [18] style solutions [19] are pro-
posed to query over different data models. Domain specific
solutions, such as streaming and sensor data processing [20],
enterprise analytics [21], social media [22] have taken initia-
tives to query over multiple data stores which natively support
different data models.

B. SEMANTIC TECHNOLOGIES
The semantic web community has proposed several query
federation engines for aWeb like scenario using SPARQL [9].

Table 1 shows a list of SPARQL-based federation engines and
various querying features (e.g., source selection, join type,
data model, code, cache, and update) supported by PolyWeb
and other competing engines. Such engines accept an input
query, decompose it into sub-queries, identify relevant data
sources for sub-queries, send the sub-queries to the individual
endpoints accordingly and at the end merge the final results
for the query. The aim of such engines is to find and exe-
cute optimized query plans that minimize initial latency and
total query execution times. This can be achieved by several
factors; (i) using accurate source selection to minimize irrel-
evant messages, (ii) implementing efficient join algorithms,
(iii) and using caching techniques to avoid repeated sub-
queries. Source selection is typically enabled using a local
index/catalogue and/or probing sources with queries at run-
time. The former approach assumes some knowledge of the
content of the underlying endpoints and requires update/syn-
chronization strategies. However, the latter approach incurs
a higher runtime cost, having to send endpoints queries to
determine their relevance for various sub-queries. Thus, many
engines support a hybrid approach of index and query-based
source selection.

Initiatives, such as Ontology-Based Data Access (OBDA)
exploit ontologies specifically for accessing relational
databases (RDB) [34], [35] or semantic data lakes [36]; such
initiatives are complementary to our PolyWeb proposal of
querying different data models. The challenges of federating
a given query over multiple data models are different in a
Web like scenario. Often the data sets are selected from a
large pool of prospective data sources and there is no control
over the availability of complete schemas and data sets –
unlike enterprises where data resources are controlled. It’s
important to note that database research is investigating the
normal federation approach (using single RDB data model)
vs. Polystore-based federation implemented using database
technologies [5], [37]. Similarly, in this paper we are inves-
tigating normal federation (using single RDF data model)
vs. Polystore-based federation implemented using semantic
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technologies. The obvious extension of our work is to inves-
tigate and compare database-style implemented Polystore
vs. semantic technology implemented Polystore federation.
This will help the wider research communities (database,
semantic web, linked data) to understand the challenges of
Polystore based query federation over different data models
in a database-style enterprise like scenario vs. Web-like open
scenario. To the best of our knowledge, no work has tackled
the scenario of processing queries over a federation of dif-
ferent data models and sources; especially focusing on the
source selection, optimization, planning, and execution of a
query in a Web like scenario.

IV. POLYWEB
As discussed above, the query federation – either over
single or multiple data models – is a well-studied prob-
lem over the last three decades. Different combination of
methods (global schema, local schema, query translation,
index-based, index-free, etc.) have been applied to unify
query answering in a federated environment. In spite of
several years of research, unfortunately in the current sce-
nario, there is no off-the-shelf query federation engine
available that functions over multiple data models in a
Web environment. Our main innovation and contribution
are to develop an open-source query federation engine
that unifies query answering over multiple data models.
Our approach is based on three key computational efforts:
(i) creating mapping definitions of federated data sources;
(ii) query translation between input and native queries query
languages; and (iii) translation of query results. Our key aim
is to reduce (or possibly avoid) the cost and effort of massive
data conversion needed in a typical data warehousing and/or
single data model approach for federating queries over dif-
ferent data sources. The PolyWeb architecture is summarized
in Fig. 2, which shows its four main components: (i) Source
Selection: performs source selection based on the capabil-
ities of native data sources; (ii) Query Optimization: per-
forms cost-effective arrangement of a query (triple patterns)
in a manner that reduces query joins and remote requests on
the network; (iii) Query Planning: builds a query plan based
on joins found between query arguments; and (iv) Query
Execution: performs the execution of sub-queries against the
selected native data sources and merges the results returned.
In addition to these components, PolyWeb can deal with the
multiplicity of data models in the data sources by relying on
mapping definitions that allow homogenising the interactions
with databases in their native model. Then, the PolyWeb
query federation method is presented into two algorithms,
viz., Algorithm 2: PolyWeb Source Selection (SS), and Algo-
rithm 3: PolyWeb Query Optimisation, Planning, and Execu-
tion (QOPE).

A. DATA MODELS AND MAPPING DEFINITIONS
The PolyWeb approach is dealing with multiple data models.
In order to provide a generic account of how we can support
many data models, we provide definitions that cover many

FIGURE 2. PolyWeb architecture.

cases. The important aspects are that a data model should
provide a native query language and that it is possible to
translate data sets in a data model to RDF, using a mapping
definition. This section clarifies these notions, starting from
a description of a data model.
Definition 1 (Data Model): A data model dm defines a set

DSdm of data sets that instantiate the data model, and a
query language QLdm. The query language allows one to
pose a query q ∈ QLdm against a data set D ∈ DSdm
to obtain a response in a result format RSdm. A function
Evaldm : QLdm × DSdm → RSdm defines what response
is obtained from issuing a query against a data set.

An example of the data model is the relational model where
data sets are relational databases (sets of relational tables),
the query language corresponds to the relational algebra,
given responses in the form of a relational table. We insist
in particular on the RDF data model, where data sets are
RDF graphs, that is, sets of RDF triples (s, p, o) where s is
a blank node or an IRI, p is an IRI, and o is a blank node,
an IRI, or a literal. The query language for RDF is SPARQL,
which provides responses in the form of SPARQL results as
defined by the SPARQL 1.1 standard [38]. We denote the
RDF data model with rdf, the set of RDF graphs with G,
the set of SPARQL queries sparql, the set of SPARQL results
as RSsparql, and the evaluation of a SPARQL query q against
an RDF graph G with [[q]]G.
In order to be able to deal with many data models in a

seamless way using SPARQL-only queries, we need a way to
express the translation between a data set in native data model
into RDF. This is done with the notion of mapping definition
that serves to define a transformation from a non-RDF data
set to RDF.
Definition 2 (Mapping Definition): A mapping definition

for a data model dm is a function md : DSdm → G.
A mapping definition can be used to query non-RDF data

sets with the SPARQL query language. Indeed, if a SPARQL
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query q is posed on a data set D ∈ DSdm associated with a
mapping definition md, then the response to the query can
be defined as [[q]]md(D). However, this definition suggests
that the data source should be completely translated to RDF
according to the mapping definition, which would not be con-
venient when the data set is huge. Sometimes, it is not even
possible to convert the source data because it is only made
accessible via a query endpoint. Instead, the mapping defini-
tion should be used to define a query translation, defined as
follows:
Definition 3 (Query Translation): A query translation for

a mapping definition md on a data model dm is a pair
〈qtmd, rtmd〉 where:

• qtmd : sparql→ DSdm and
• rtmd : RSdm → RSsparql,

such that for all q ∈ sparql and all D ∈ DSdm, [[q]]md(D) =

rtmd(Evaldm(qtmd(q),D)).
Mapping definitions can be written in dedicated map-

ping languages, such as R2RML [39] (for mapping rela-
tional databases to RDF), RML [40] (extending R2RML
to other data models, such as XML, JSON, CSV, HTML),
XSPARQL [41] (initially for XML), SPARQL-Generate [42]
(CSV, JSON, XML, HTML, CBOR), XSLT [43] (if limited
to transformations that results in RDF/XML), defined as a
JSON-LD [44] @context for JSON, or using the CSVW
vocabulary [45] for CSV.

B. DATA SUMMARIES
PolyWeb’s data-summary is a light-weight index that stores
minimal information about data sources. PolyWeb’s data-
summary generation algorithm is shown in Algorithm 1. The
algorithm takes the set of all data sets as input and generates
a concise data summary that enables source selection, query
optimization, planning, and evaluation. By proposing data-
summary algorithm, we claim that PolyWeb has significantly
improved data-summary generation times when compared to
other index-based approaches, for instance, HiBISCuS [32];
this allows for faster re-computation of summaries when the
underlying sources change (Table 7). The data summaries and
their generation algorithm are described in the following.

We assume a set of data sets D where each data set D ∈
D belongs to different data models (e.g., rdf, rdb, csv).
We denote by preds(D) := {p | ∃s, o : (s, p, o) ∈ D} the
set of all predicates in D. We denote concepts(D) := {o |
∃s, p : p = rdf:type ∧ (s, p, o) ∈ D} as the set of all classes
referenced in D. We assume that each data set is published
as an endpoint at a specific location, where loc(D) denotes
location (endpoint URL) of the data set D.

For each data set D ∈ D, PolyWeb stores the follow-
ing information in data summaries; (i) the endpoint or data
access point URL, denoted by loc(D), which represents the
location of data set D (line 7 of Algorithm 1); (ii) a set of
distinct predicates dpreds(D) in data set D (lines 9 and 16
of Algorithm 1); and finally (iii) a set of unsafe predicates
upreds(D) ⊆ dpreds(D) in each data setD (lines 14 and 19 of

Algorithm 1). PolyWeb’s data-summaries for each data set D
is computed in two steps: (i) first we compute a set of distinct
predicates dpreds(D) ⊆ preds(D) for each data set D. For
RDF data sets, we extract a set of distinct predicates IRIs
found in a given data set D: dpreds(D) by directly querying
the data set and store it locally in data summaries. In the
case of non-RDF data sets, a set of mapping definitions
md(D1, . . . ,Dn) (discussed in the Section IV-C) are used to
associate predicate IRIs to non-RDF data sets. The mapping
definitions provide RDF view of the non-RDF data models
that are stored in data summaries; and (ii) second, we compute
the set of unsafe predicates upreds(D) ⊆ dpreds(D) from
each data set.

PolyWeb proposes a notion of ‘‘unsafe predicate’’ to opti-
mize query execution when two or more triple patterns of a
BGP4 are grouped together for evaluation against federated
data sets (discussed in the Section IV-C). A group of triple
patterns in a BGP are evaluated as a conjunctive query where
all triple patterns must match together against evaluating
data sets. However, in practical scenarios, a regular complete
structures of triples cannot be assumed in all data sets. It is
important in a setting of federated data sets, that a given
query (BGP) retrieves results where triples in a data set
are available, but do not reject (or eliminate) the solution
because some part (or portion) of the query pattern does
not match. Thanks to the SPARQL OPTIONAL construct,
which does not eliminates the solution when the optional part
does not match. But, it is not a straightforward task to know
in advance which triple pattern(s) of a BGP might have an
unmatched solution (triples) in a data set. Also, the unlimited
use of optional parts in a SPARQL query could lead to high
complexity [46]. The purpose of computing a subset of unsafe
predicates upreds(D) ⊆ dpreds(D) is to filter out all those
predicates – before the actual query execution – that may
have an unmatched solution (triples) in a data set. An unsafe
predicate may cause result incompleteness when a triple pat-
tern (holding the unsafe predicate) is grouped together with
one or more triples patterns of a BGP.

For instance, the Listing 2 shows two example data sources
(D1, D2) and their corresponding data summaries computed
by the Algorithm 1 are shown in the Listing 3. The first data
source (D1) describes entities (:cnv-1-E1, :cnv-2-E1,
etc.) of type Copy Number Variation (CNV). The CNV
information gives insight into the structural variation of a
gene. The description of CNV type entities has a regular
triple structure which uses following predicates: [:type,
:gene, :start, :end, :sample, :chr]. How-
ever, the Triple 1.25 in the Listing 2 with object :chr-3
has no label description, which means, grouping together Pat-
tern 1 and Pattern 2 of the example BGP-1 (in the Listing 4)
will result in the elimination of solution Triple 1.25 in the data
source D1.

We mark predicate :label in the data source D1 as
unsafe predicate because there is at least one subject (entity)

4A Basic Graph Pattern (BGP) is a set of Triple Patterns
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Algorithm 1 PolyWeb Data Summaries Generation

1 D = {D1, . . . ,Dn} ; /* Set of all data sources */

2 loc(·) ; /* Mapping to endpoint URLs */

3 md(D1, . . . ,Dn) ; /* Mapping definitions for non-RDF data sets */

4 S ← {} ; /* PolyWeb summaries to be retrieved as output */

5 for each D ∈ D do /* for each data source in D */
6 initialise SD ; /* initialise data summary */

7 SD.setURL(loc(D)) ; /* map data endpoint URLs */

8 if D ∈ DSrdf then /* if data set is RDF */
9 SD.dpreds(D)← {p ∈ preds(D) | @p′ : p′ = p ∧ p′ ∈ preds(D)} ; /* find distinct predicates in D

*/

10 SD.dconcepts(D)← {o ∈ concepts(D) | @o′ : o′ = o ∧ o′ ∈ concepts(D)} ; /* find distinct classes
in D */

11 for each distinct classes C ∈ dconcepts(D) do
12 dpredc[C]← {p ∈ dpreds(C) | domain(p) ∈ C} ; /* find distinct predicates per distinct

class */

13 if any subject s ∈ C exists without a distinct predicate p ∈ dpred[C] then /* */
14 SD.add_upreds(p) ; /* add unsafe predicate */

15 else /* if data set is non-RDF */
16 SD.dpreds(D)← {p ∈ preds(md(D)) | @p′ : p′ = p ∧ p′ ∈ preds(md(D))}

/* scan and add distinct predicates for D from mappings definition md(D) */

17 for each distinct predicates p ∈ dpreds(D) do
18 if corresponding column (p) in table has a NULL value then /* */
19 SD.add_upreds(p) ; /* add unsafe predicate */

20 S ← S ∪ {SD}
21 return S ; /* Data summaries of all sources */

e.g., :chr-3 of the Triple 1.25, for which the predicate
:label is missing and that leads to result incompleteness
for queries like the BGP-1 (Listing 4). We identify such
unsafe predicates early, as part of the data summary, which
is further used during the query optimization process (dis-
cussed in the Section IV-D). It is important to note that the
object :chr-3 of Triple 1.25 is further described in the data
source D2 in Triple 2.20. Therefore, in a federated setting,
it is crucial not to eliminate solution because a matching
solution may exist in other remote data sets. So, both the
triple patterns of the example BGP-1 (Listing 4) should be
evaluated independently without grouping them together to
ensure result completeness. Similarly, :cnv-4-E1 has no
sample description in data source D1 but can be found in
data source D2 (Triple 2.26). Therefore grouping together
Pattern 1 and Pattern 2 of the example BGP-2 will result in
the unevaluated Triple 1.32 of the data source D1. In this
case, :sample is the unsafe predicate. PolyWeb exploits the
unsafe predicates later at the query optimization process to
decide which triple patterns are safe to be grouped together
ensuring completeness of a query result.

The unsafe predicates are computed in a four step pro-
cess by the data summary Algorithm 1: (i) first the algo-
rithm retrieves the type information (e.g., :cnv-1-E1 a

:CNV) available in a data set. The data summary algo-
rithm extracts all the distinct types (i.e., classes) that
exist in a data set. For example, the data source D1 has
three types: :CNV, :Chromosome and :Gene; (ii) sec-
ond, the algorithm extracts a set of distinct predicates that
describes entity of a particular class (type). For exam-
ple, the :CNV type in data source D1 has following dis-
tinct predicates: [:type, :gene, :start, :end,
:sample, :chr]; (iii) third, the algorithm scans to iden-
tify if there exist any entity (subject), where any of its pred-
icates identified in the Step 2, is missing. If there exists a
missing predicate for an entity of a particular type, then it is
marked as unsafe. For example, the predicates (:label and
:sample) are unsafe because they are missing for entities
:chr-3 (Triple 1.25) and :cnv-4-E1 (Triple 1.27) of the
data source D1. The predicates (:type, :gene, :start,
:end, and :chr) that describe the entities of type :CNV are
marked as safe because every entity uses them. The same pro-
cess is repeated for other types : Chromosome and :Gene
in the data source D1. The set of unsafe predicates is empty
for the data source D2, as there exists no such predicate,
which is missing for any entity of its corresponding type;
finally (iv) for entities whose type information ismissing their
corresponding predicates are considered unsafe as we cannot
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Listing. 2. Example data sources.

execute the above four steps if type (class) information is
unavailable. It is not uncommon in the real-life RDF data sets
that schema coreference links (e.g., :cnv-1-E1 a :CNV)

TABLE 2. Example of tabular data (CNV Table).

Listing. 3. Data summaries Example.

Listing. 4. A federated query example.

are missing and therefore, PolyWeb has a limitation that it
can only identify safe (or unsafe) predicates when the type
information is available in a data set.

In case of the non-RDF data sets, unsafe predicates
are identified by using the mapping definitions. The
Table 2 shows RDF triples (data source D1) of the
Listing 2 in the tabular format. In case of the tabular
data set (RDB or CSV), the predicate and type infor-
mation are mapped to the corresponding source (table)
and column. The table or source information is avail-
able from the rr:logicalTable (R2RML mapping
in the Listing 5) or rml:logicalSource values, e.g.,
genome:start, source is cnvd (RML mapping in List-
ing 6). In order to find the unsafe predicates, below three
steps are executed: (i) first, distinct types (classes) and
their corresponding predicates are extracted from map-
ping definitions. For example, genome:CNV found in the
rr:subjectMap of triple map #TriplesMap1 (List-
ing 5) and #TriplesMap2 (Listing 6), is a distinct type;
(ii) second, the corresponding predicates (genome:start)
for this type (genome:CNV) is extracted from the
rr:objectMap found in rr:predicateObjectMap;
(iii) third, the non-RDF data sets are queried to check,
if there exists a single record (row) for which any column
holds a NULL value. If any column with a NULL value is
found, then that particular column (or mapped predicate) is
marked as unsafe. For instance, the Table 2 shows that the
sample column has a NULL value in the last row, there-
fore, it is marked unsafe. Consequently, a triple pattern of a
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Listing. 5. R2RML mapping.

Listing. 6. RML mapping.

BGP containing the sample predicate will not be grouped
together with any other triple pattern for evaluation (see BGP-
2 of the Listing 4).

The indexes (loc(D), upreds(D), and dpreds(D)) that we
compute in data summary will be used in the following
source selection, query optimisation, planning, and execution
algorithms.

C. SOURCE SELECTION
PolyWeb performs a predicate-based source selectionwhere a
set of relevant data sources for a given query are discovered on
the match between predicates used in a basic graph pattern5

(bgp) and input data sources. A single basic graph pattern is
defined as a sequence of triple patterns, with optional filters.
PolyWeb performs the sources selection on top of different
data models and sources, e.g., SPARQL end-points, RDB
and CSV data-access points. PolyWeb relies on mapping
definitions, such as R2RML [39] and RML [40] mappings
to identify relevant data sources. In our work, a mapping
definition provides an RDF view of non-RDF data such that
non-RDF data can be queried with SPARQL. Listings 5 and 6
show example snippets of R2RML and RML mappings of
our motivational scenario. For instance, the R2RMLmapping
shows that an RDF predicate genome : chr is mapped to
a database column Chromosome in table cnv and the RML
definition shows a mapping from RDF predicate genome :
start to a CSV column Start_Position of the cnvd table.

R2RML (RDB to RDFMapping Language) [39] is a W3C
standard for expressing customized mappings from relational
databases to RDF. RML (RDF Mapping Language) [40]

5https://www.w3.org/TR/sparql11-query/#BasicGraphPatterns

extends R2RML applicability to expressing mappings from
CSV, HTML, JSON, and XML to RDF. Mappings defined
using R2RML and RML are itself RDF graphs. PolyWeb
employs a simple data-free6 indexing mechanism where the
index stores minimal information about given data sets. In the
case of RDF data sets, it stores only predicate IRIs obtained
from individual data set; otherwise, it exploits the mapping
definitions to associate predicate IRIs to non-RDF data sets.
We formalise this and present formal notations in the follow-
ing definitions:
Definition 4 (Source Selection): In a federated query envi-

ronment, given a triple pattern t of a bgp in a query Q
executed against data sets D, the set of relevant sources for t
in D is the setRt ⊆ D of data sets that can provide answers
when queried with t. We use the notation RT to denote the
family (Rt )t∈T for a set of triple patterns T , and useR when
the context does not require specifying the triple patterns.

PolyWeb uses an index of the predicates and an index
of the mapping definitions for all data sets. Thanks to the
mapping definitions, it is possible to identify non-RDF data
sources that can return results from a SPARQL query. The
input SPARQL query is broken down into BGPs. Each BGP
is decomposed into triple patterns from which we get either a
bound predicate p (i.e., an IRI), or an unbound predicate (i.e.,
a variable). Algorithm 2 shows the source selection for a bgp.
If the predicate is bound (tested at Line 5), then we make
use of the index to select relevant sources, by querying the
predicates sets of each data set; if the predicate is a variable
(Line 8), we issue an ASK query to verify if the data set is
relevant (Line 11).

The current version of PolyWeb supports only single BGPs
(excluding constructs, such as OPTIONAL, UNION, etc.),
and does not issue an ASK query in case all parts of the triple
are variables. It also only supports the mapping languages
R2RML and RML. We now discuss in detail the operation of
the algorithm. The source selection algorithmwill return a set
of relevant sources for each triple pattern; these will be stored
in Rt . The sources relevant for each t will be kept separate
in the results since different sources may be selected for the
same triple pattern. In the case of Example 1, which contains
one bgp with nine triple patterns. This loop will iterate once,
since we have a single bgp in the example query. Lines 3–5:
the algorithm proceeds by iterating over each triple pattern
t contained in the set of triple patterns T for the current
bgp. The algorithm then extracts predicates p from each triple
pattern and checks whether the predicate is bound or not.
Line 5–Line 7: if the predicate p is bound, then the algorithm
queries whether the predicate is present in the predicates sets
of each data set. In this way, it checks the presence of each
predicate in all the available data sets D.

In our motivating example, the predicates in the first five
triple patterns are covered by all the three data sets, hence
these three data sets are added to the relevance set (Rt ). The
predicate gene in the sixth triple pattern is covered by two data

6index stores only predicate IRIs

9606 VOLUME 7, 2019



Y. Khan et al.: One Size Does Not Fit All: Querying Web Polystores

Algorithm 2 PolyWeb Source Selection (SS)

1 D, md(D1, . . . ,Dn), bgp ; /* data sets, mapping definitions, basic graph pattern */

2 Rt ← {} ; /* set of relevant data sources */

3 for each t ∈ bgp do /* for each triple pattern in bgp */
4 p← p ∈ t ∈ bgp ; /* get predicate from t */

5 if pisbound then /* if predicate is bound */
6 if p ∈ preds(md(D1, . . . ,Dn)) then /* if data sets cover predicate */
7 Rt ← Rt ∪ {D} ∪ {md(D)} ) ; /* store the selected source and mapping definition

for t */

8 else /* if predicate is unbound */
9 for each (s, p, o) ∈ bgp such that p is unbound ∧ (s is bound ∨ o is bound) do
10 for each D ∈ D do /* for each data set */
11 if ASK((s, p, o),D) = true then /* use ASK query to check relevance */
12 Rt ← Rt ∪ ({(s, p, o)} ∪md(D)) ; /* add all graphs and mapping definitions

for D */

sets (CNVD and COSMIC). The predicates in last three triple
patterns (i.e., disease, primary_site and segment_mean) are
covered uniquely by three data sets (CNVD, COSMIC and
TCGA). Therefore, the relevance set for the last three triple
patterns contains one data set per triple pattern (e.g., disease
contained in CNVD, primary_site contained in COSMIC,
and segment_mean contained in TCGA).
In order to increase the selectivity of source selection,

for a triple pattern where a predicate is unbound and sub-
ject or object is bound, the algorithm sends an ASK query
to data set of RDF type to see if it may be relevant or not
(Line 11). In our implementation, we only issue a ASK query
when either the subject or object are bound, which is suf-
ficient if we assume that the data sets are not empty. For
the experiments, we rely on an implementation that do not
yet allow the ASK construct to be applied to non-RDF data
sources. In the future version, we plan to devise a method
using ‘‘SQL EXISTS’’ – similar to the SPARQLASK seman-
tics – that can probe non-RDF data sets when predicates are
unbound.

D. POLYWEB QUERY OPTIMISATION, PLANNING AND
EVALUATION
PolyWeb (Algorithm 3) creates a federated query plan against
the relevant data sources and executes that plan to get results
from multiple data models and merge it into a single result
set. The algorithm takes relevance set Rt obtained from the
source selection algorithm 2 and mappings M (only RML
and R2RML mappings in our implementation at the time of
writing), as an input and returns a merged result set RS for
the input SPARQL query.

1) QUERY OPTIMISATION
We propose a predicate-based join group (PJG) method to
optimize the execution of federated queries. PJG reduces the
cost of federated query processing by minimizing the number
of local joins, a key factor which influences the evaluation of

a given query. The more triple patterns are added to PJG and
sent as a single query, the more local joins are minimized.
FedX [29] proposed the idea of exclusive groups to combine
(or group) triple patterns against a relevant data source that
can satisfy them, which help minimizing the local joins and
the execution cost of the input query. FedX approach is index-
free which exploits the SPARQL UNION construct to aggre-
gate the partial results obtained for each triple patterns in an
exclusive group. This index-free approach of grouping the
triple patterns requires a high amount of remote requests and
data transferred on the network. Similarly, HiBISCuS [32]
depends on FedX for the actual execution of queries, there-
fore, a grouping of triple patterns identified in the input
SPARQL query remains the same as FedX.
Definition 5 (Predicate-Based Join Group): Let T =

{t1, . . . , tn} a set of triple patterns of a BGP and for each
ti ∈ T , Rti be the set of relevant data sets for triple pattern
ti, as computed by Algorithm 2 from D and md. We define
the predicate-based join group (PJG) 6RT = {T | p ∈
{preds(T ) \ upreds(RT )}} as the group of triple patterns T
that can be evaluated against a group of relevant data sets RT .
PJG works on a condition that preds(T ) ∩ upreds(RT ) = ∅,
which means that grouping of triples T is only possible when
none of the predicates in preds(T ) overlap with the unsafe
predicates of relevant data sets upreds(RT ).

In case of FedX [29] an exclusive group can only be
exploited when it contains triple patterns of size ≥ 2, hence,
for our motivating example FedX creates nine (9) join groups
with eight (8) joins, each join group contains only one triple
pattern (see Fig. 1). The proposed predicate-based join group
(PJG) identifies a group of triple patterns against a group
of relevant data sets (unlike FedX that identifies a group
of triple patterns against a single data set), which generates
6 predicate-based join groups (see Table 3) of triple patterns
and 5 joins (see Fig. 3) after executing the PolyWeb’s query
optimisation, planning and execution (QOPE) algorithm 3.
Hence, PolyWeb reduces the number of local joins evaluated
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TABLE 3. PolyWeb: Example of predicate-based join group (66).

FIGURE 3. PolyWeb: Optimized federated query plan of example query.

at the federation engine level. The group of triple patterns
identified in a PJG are evaluated at relevant endpoints and the
results obtained from each relevant endpoint are merged as a
union. For instance,66 is sent as single query to each relevant
endpoint (i.e., COSMIC, TCGA and CNVD) and the results
returned from each endpoint are merged as a union. PJG
is a light-weight index-based (i.e., data summary) approach
to group triple patterns of a BGP in manner that competes
with normal (i.e., single data model) query federation engines
and still retrieves correct and complete results from multiple
native data models. PJG is created to achieve result complete-
ness when two or more triple patterns are grouped together
for evaluation over relevant data sets R. We now discuss in
detail the operation of PolyWeb QOPE algorithm. For our
running example query all the three data sets (namely, TCGA,
COSMIC and CNVD) are identified as relevant by the SS
algorithm 2.

Algorithm 3 creates predicate-based join groups (
∑

i)
n
i=1

for triple patterns of a BGP along with their execution cost
in an ascending order. The function PJG (Line 5) takes a
BGP, relevant sources, distinct predicates, and unsafe pred-
icates as parameters and generate an array of predicate-based
join groups ((

∑
i)
n
i=1) for each distinct set of data sets, and

keeps the data sets associated with them. Costs are stored
in a separate array (Line 7) used for ordering the predicate-
based join groups (Line 8). Fundamentally, there are two
ways cost be calculated [47] for the query optimisation
(i) static: cost calculated based on specific patterns in a BGP
before actually executing a query; and (ii) dynamic: certain
portions of a query (i.e., sub-query) are executed against
the data sources to calculate a more accurate cost of exe-
cuting the query. We opted for the first approach because
it is less expensive computationally, as the second approach
would require query and result transformations. We base
our cost calculation on the variable counting approach [47].
The cost of a predicate-based join group is the sum of the
costs of all triple patterns in that group (Line 7). The more
variables there are in a triple pattern, the higher the cost
is.
Lines 9–15: Once the predicate-based join groups

((
∑

i)
n
i=1) are constructed, the algorithm iterates over them

and create a federated query plan. The federated query plan
is stored in

−→
QP, which is initialised on Line 9. Then the

algorithm starts finding join variables between the predicate-
based join groups.

2) QUERY PLANNING AND EXECUTION
The join variables between two predicate-based join groups,
are denoted by FGvar and is calculated at Line 12 by iden-
tifying the common variables between them. For instance,
predicate-based join groups 61 and 62 have a common vari-
able i.e., ?cnv therefore join is possible between these two
groups. The federated join is created by assigning the left and
right arguments (Line 14) of a query plan. For our running
example, 61 is assigned as a left argument and 62 as a right
argument of the join i.e., 61 FG 62. Similarly, the algorithm
checks for joins between the remaining predicate-based join
groups and the query plan is updated accordingly. For our run-
ning example, all the five joins exist on the variable ?cnv and
the prepared query plan is shown in Fig. 3. Once a query plan
(
−→
QP) is constructed, it starts executing in a bottom-up fashion,
i.e., it starts from the leaf nodes (Line 16) and traverses up the
tree until a root node is reached to generate a combined result
set RS for the input query. The joins are physically imple-
mented in a nested loop bind fashion. Since two predicate-
based join groups do not contain any common triple pattern,
a simple implementation of nested loop bind is achieved by
first materializing the left argument and binding the results of
left argument with the right argument based on a set of identi-
fied join variables. As PolyWeb federates over different data
models, the query execution component uses different trans-
formations between queries and result sets. In our implemen-
tation (Translate.Query(.) in Line 19), we have the following
translations (i) SPARQL to SQL: If an argument of the query
plan needs to execute over RDB data set, then the argument
(sub-query) is translated in the SQL format. For instance,
an example SPARQL query and its translation to SQL and
Apache Drill SQL queries as well as individual result sets are
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Algorithm 3 PolyWeb Query Optimisation, Planning and Execution (QOPE)

1 bgp,Rt , md ; /* basic graph pattern, relevant data sources, mapping definitions */

2 dpreds(D), upreds(D) ; /* distinct predicates in all data sets, unsafe predicates in all
data sets */

3 RS ← {} ; /* initialise query result set */

4 6RT ← {} ; /* initialise predicate-based join group (PJG) */

/* Step 1: Query Optimisation */

5 (
∑

i)
n
i=1← PJG(bgp,Rt , dpreds(D), upreds(D)) ; /* build predicate-based join groups (PJGs) */

6 for each
∑

i ∈ (
∑

i)
n
i=1 do /* for each PJG */

7 Costsi←
n∑
i=1

cost(ti ∈ 6i) ; /* where cost(t) = |var| */

8 (
∑

i)
n
i=1← OrderByCost((

∑
i)
n
i=1, (Costs)

n
i=1)

/* Step 2: Query Planning */

9
−→
QP← {} ; /* query plan sequence */

10 for each
∑

i ∈ (
∑

i)
n
i=1 do /* for each PJG */

11 for each
∑

j ∈ (
∑

i)
n
i=i+1 do /* for each succeeding PJG */

12 FGvar← findJoinVariables(
∑

i,
∑

j) ; /* find join variables */

13 if FGvar 6= ∅ then /* join exists */
14 leftjoin(FGl←

∑
i) AND rightjoin(FGr←

∑
j) ; /* build left and right joins arguments */

15
−→
QP←

−→
QP ∪ {FGl, FGr }

/* Step 3: Query Execution */

16 FGid← getLeafJoin(
−→
QP) ; /* start from leaf joins */

17 while FGid 6= ∅ do
18 FGl,r← getJoin(FGid ) ; /* get join arguments (left and right) */

19 FGql← Translate.Query(FGl,r , md) ; /* translate joins to native query languages */

20 FGrdf← Translate.Result([[FGql]],md) ; /* translate query results to RDF */

21 FGl,r← Join.Result(FGrdf ) ; /* join result set to left and right arguments */

22 RS ← RS ∪ {FGl,r } ; /* update result set */

23 FGid++ ; /* next join */

24 returnRS ; /* return result set */

shown in the Fig. 4. The transformation between SQL and
SPARQL queries is a non-trivial task, due to the difference in
semantics between them. We used the query transformation
method suggested here [48] that exploits R2RML mapping
definitions.

The SQL result set obtained from RDB sources are
transformed back to the standard SPARQL result format;
(ii) SPARQL to Apache Drill SQL: In case of a CSV
data source the SPARQL query is translated to the SQL
format used by Apache Drill.7 The different result sets
obtained are transformed from its native format and aggre-
gated in the RDF format, as shown in Listing 7. In the
Fig. 4, it is important to note that alignment between match-
ing variables/terminologies (‘‘chr’ corresponds to ‘‘Chro-
mosome’’, ‘‘start’’ corresponds to ‘‘Start_Position’’) are
resolved in the R2RML- /RML mappings defining (M),

7https://drill.apache.org/docs/sql-reference/

which is input to the Translate.Query(.) and Join.Result(.)
functions.

E. POLYWEB CORRECTNESS
The goal of Algorithms 2 and 3 is to ensure that all possible
answers for each BGP in the input (i.e., the answers possible
for each BGP over a local merge of all data in D) can be
generated by joining the union of the results of individual
triple patterns evaluated over the sources selected for those
patterns. More formally, let D denote the result of merging
all data sets in D into a single global data set, let bgp =
{t1, . . . , tn} denote a BGP, and let [[D]]bgp denote the result
of evaluating bgp over D [46]. Next let R denote the sources
selected for bgp by Algorithm 2, let R(t) denote a data set
selected for the triple pattern t in R, let RS(ER(t)) denote
data set R and triple pattern t selected by the Algorithm 3
for a predicate-based join group E , and let [[RS(E)]]t denote
the evaluation of triple pattern t over that predicate-based
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FIGURE 4. An example of query translations and results: SPARQL to SQL and Apache Drill SQL.

Listing. 7. Aggregated Query Result in RDF.

join. The correctness condition we wish to satisfy is then as
follows: [[D]]bgp = [[RS(E1)]]t1 FG . . . FG [[RS(En)]]tn .
Let us start with a base case where all predicates are

bound. In this case, the algorithm will select all data sets
with matching predicates. In this case, it is not difficult to
show that [[RS(E)]]t = [[D]]t for all t ∈ bgp, and thus we
have that [[D]]bgp = [[D]]t1 FG . . . FG [[D]]tn , which is the
definition of the evaluation of BGPs [46]. Likewise, if we
consider cases where some predicates are not bound, again
the ASK queries will filter only irrelevant data sets, where it
is again not difficult to show that [[RS(E)]]t = [[D]]t for all

t ∈ bgp in RDF type data sets. However, the source selection
algorithm is unable to probe the non-rdf data sets with ASK
equivalent semantic, which is a limitation that makes both the
algorithms incomplete in case of the unbound predicates. Sec-
ond we must highlight that a known and non-trivial obstacle
to completeness in federated scenarios is presented by blank
nodes [49]; hence, per the motivating example, we assume
that no blank nodes are used in the data.

F. POLYWEB COMPLEXITY
We analyses worst-case asymptotic runtime complexity for
both the algorithms. For the source selection algorithm (Algo-
rithm 2), we will consider q to be the size of the query
encoding the number of triple patterns in the union of BGP;
note that with this factor, we can abstract away the presence
of multiple BGPs, the number of predicate in the query, etc.,
since these are bounded by q. Likewise we will consider d
to be the number of data sets available and by p the num-
ber of unique predicates in all data sets. For each data set,
we must check that a predicate is contained in that data set.
This is feasible by a Merge sort over all predicates in a bgp
with all predicates in the data set, resulting in O(p log(p))
complexity for a given data set; and for all data sets we can
more coarsely (but concisely) represent the complexity as
O(qd((q+ p) log(q+ p))).
Algorithm 2 performs ASK queries – for unbound pred-

icates – to each RDF type data set for each triple pattern
matching the given criteria (bounded by q). In the general
case, resolving ASK queries is NP-complete in combined
complexity (considering both the size of the query and the
data), even in the case that the query only contains a BGP
and no features like optional and filters. However, since we
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only issue ASK queries with one triple pattern, and since the
arity of the triple pattern is bounded, this step is feasible in (at
least) time linear in the size of the data (for example, running
a simple scan over all data), and so for all patterns, we have
a resulting worst-case complexity of O(qt) from this part of
the source selection algorithm, where t is the number of triple
patterns in the BGP. Hence we can merge the above factors
to give a worst-case complexity of O(qd(q+ t) log(q+ p)).
In the case of the QOPE algorithm (Algorithm 3), creating

the predicate-based join groups from relevant data sets R and
associated triple patterns for those groups can be done by first
sorting the sets of data sets, (e.g., first by cardinality then by
lexicographic order of the data set IRI), which is feasible in
O(t log(t)) in the worst-case with, e.g., a Merge sort imple-
mentation, then building the predicate-based joins amounts
to linearly going through the sorted list. Then, finding join
variables between predicate-based join groups (PJGs) can be
achieved in quadratic time O(|E|2) in the size of PJGs. Once a
set of join variables are identified between the PJGs, a query
plan is constructed, which is delegated to the query execution
component.

V. EVALUATION
In our Motivating Scenario section II, we introduced three
core research questions:

• How can we devise source selection in a Web like feder-
ated scenario where data sources comply with different
data models?

• How can we implement a web-based query federation
plan that retrieves correct and complete results from
different data models?

• Can we optimize and execute the query federation plan
for different native data models in a manner that allows
us to compete with off-the-shelf RDF query federation
engines?

In terms of the first question, we have proposed the Poly-
Web engine, which performs source selection based on the
capabilities of native data sources and can deal with the mul-
tiplicity of data models while executing queries against those
data sources; however, we have yet to see how efficient this
new form of source selection performs when executing fed-
erated queries. In terms of the second question, we have pro-
posed a query optimisation, planning and execution (QOPE)
mechanism that retrieves correct query results in the pres-
ence of bound predicates (in a BGP) against different data
models. We have yet to see how this optimisation compares
to existing engines and completeness of the query result.
For the third question, we have applied the PolyWeb engine
in two experimental settings: (i) first, PolyWeb is applied
on the mix of native data models (CSV, RDB, RDF) and
the two RDF query federation (FedX, HiBISCuS) engines
evaluated on the same three sets of data represented in the
RDF format. We selected two approaches for comparison
with PolyWeb, one index free approach, i.e., FedX and one
index based approach, i.e., HiBISCuS, as both are the better

performing engines compared to other SPARQL query fed-
eration engines [50]; (ii) second, PolyWeb (called PolyWeb-
RDF) is applied on the same three RDF data sets to under-
stand the gain or shortcomings compared to when PolyWeb
executes in the PolyStore (CSV, RDB, RDF) environment.

Along these lines, in this section, we present the results
of our evaluation comparing PolyWeb with two existing
SPARQL query federation engines (FedX and HiBISCuS)
and when PolyWeb applied only on RDF data sets (PolyWeb-
RDF) for a variety of queries along a series of metrics and
aspects.

A. EXPERIMENTAL SETUP
This section describes the experimental setup (i.e., data sets,
setting, queries, and metrics) for evaluation of PolyWeb. The
experimental material discussed in the following section and
an implementation of PolyWeb are available online at the
PolyWeb home page.8

a: DATA SETS
A total of three data sets, represented using different data
models, are selected for experimental evaluation of PolyWeb,
i.e. (i) COSMIC-CNV in RDF format; (ii) TCGA-OV-CNV
in RDB format; and (iii) CNVD-CNV in CSV format, pro-
vided by COSMIC,9 TCGA10 and CNVD11 data providers.
These data sets are used in the studies conducted within the
BIOOPENER project. In order to compare PolyWeb with the
single data model query federation approaches (such as FedX
and HiBISCuS), all the three data sets are transformed into
the RDF format. An overview of the experimental datasets
is given in Table 4, for instance, COSMIC-CNV consists
of 37 million triples (6.54 GB size in RDF format); with
equivalent 29 million database records. The ‘‘Raw Type’’
column represents the raw data format and the ‘‘No record’’
column presents the total number of records (rows) in each
raw data type. The last column represents the cost (‘‘RDFi-
sation Time’’) associated with the transformation of raw data
to RDF format. PolyWeb can avoid the data conversion cost
(i.e., total 3 hours for 3.5 GB raw data). One of the main aims
of PolyWeb is to avoid or reduce the data conversion cost in
a federated environment.

b: SETTING
RDF data sets are loaded into different Virtuoso (Open Source
v.7.2.4.2) SPARQL endpoints on separate physical machines.
The relational data set is loaded into a MySQL database
and the CSV dataset into Apache Drill. All experiments
are carried out on a local network, so that network cost
remains negligible. The machines used for experiments have
a 2.60 GHz Core i7 processor, 8 GB of RAM and 500 GB
hard disk running a 64-bit Windows 7 OS. The database con-

8http://polyweb.insight-centre.org/
9http://cancer.sanger.ac.uk/cosmic
10https://cancergenome.nih.gov/
11http://202.97.205.78/CNVD/
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TABLE 4. Overview of experimental data sets.

TABLE 5. Summary of query characteristics.

TABLE 6. Number of results returned for each query.

figuration parameters are described in the PolyWeb GitHub
repository.12

c: QUERIES
We have designed 10 queries to evaluate and compare the
performance of PolyWeb with FedX and HiBISCuS engines.
Table 5 summaries the characteristics of these queries follow-
ing similar dimensions to that used in the Berlin SPARQL
benchmark [51], which shows that the queries have a variety
of characteristics and complexity.

d: METRICS
We havemeasured six metrics for each query type to compare
the performance of PolyWeb with other federation engines;
(i) data summaries generation time and compression ratio;
(ii) the number of sources selected; (iii) the number of
SPARQL ASK requests; (iv) the average source selection
time; (v) the number of results returned to assess result com-
pleteness relatively and (vi) the average query execution time.

B. EXPERIMENTAL RESULTS
In this section, we present the experimental results obtained
for the given data sets, setting, queries and metrics discussed
previously.

12https://github.com/yasarkhangithub/PolyWeb

TABLE 7. Data summaries generation time and compression ratio.

1) DATA SUMMARIES GENERATION TIME AND
COMPRESSION RATIO
The method of generating data summaries for PolyWeb is
compared with various state-of-the-art approaches and the
comparison results are shown in Table 7. The comparison
metrics used are data summaries generation time (time),
data summaries size (size) and the data summaries reduction
(ratio: computed as 1− index size

total dump size ).
The results of Table 7 show that the different sizes of data

summaries for all approaches are much smaller than the rela-
tive size of the RDF data dump. In the case of FedX, no data
summaries are created since relevant sources are determined
on-the-fly at runtime. PolyWeb produces the smallest data
summaries by storing only the meta-data about predicates:
for RDF datasets having a raw dump size of 7 GB, PolyWeb
generates data summaries of size 2 KB, achieving 99.999%
reduction. It should be noted however that although in relative
terms HiBISCuS produces 40 times larger data summaries,
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TABLE 8. Sum of triple-pattern-wise sources selected for each query.

TABLE 9. Number of SPARQL ASK requests used for source selection.

the absolute sizes of the data summaries are relatively small
across both engines, where reduction rates remain above
99.9%.

Considering data summaries generation time, aside from
FedXwhich incurs no data summaries generation costs, Poly-
Web has achieved a significant performance gain over all
the approaches. PolyWeb’s data summaries generation time
is 353 seconds as compared to 936 seconds for HiBISCuS.
FedX incurs no data summaries generation cost but we sup-
pose that PolyWeb’s data summaries will reduce the load on
remote endpoints and ultimately the overall query-execution
time.

2) SELECTED SOURCES
The total number of triple pattern-wise (TP) sources selected
by PolyWeb, PolyWeb-RDF, FedX and HiBISCuS for all the
10 queries are shown in Table 8. The average number of
TP sources selected by each approach across all queries are
depicted by the last column. FedX performs source selection
using ASK queries for each triple pattern to find out which
sources can actually answer an individual triple pattern. How-
ever, these sources might not contribute to the end results
after performing a join between two triple patterns, i.e., after
performing the join, results from some sources might be
excluded. HiBISCuS, on the other hand, is a hybrid source
selection approach, which uses both ASK queries and data
summaries to identify the relevant sources. PolyWeb and
PolyWeb-RDF return the same number of relevant sources.

The results show that, on average, PolyWeb, FedX and
HiBISCuS identify the same number of sources (i.e., 10).
The results in Table 8 show that in some queries PolyWeb
overestimate the set of sources that contribute to the final
query results. This is due to the reason that PolyWeb only
considers the predicate specified in the triple pattern while
FedX and HiBISCuS, along with predicate, also consider
subject and object specified in the triple pattern. There can
be cases where a data set covers the predicate but does not

cover the bound object or subject or both specified in the triple
pattern. These cases are pruned by FedX, e.g., QE-4 query.

3) NUMBER OF SPARQL ASK REQUESTS
The total number of SPARQL ASK requests sent to per-
form source selection for each query are shown in Table 9.
FedX, as an index-free approach, performs SPARQL ASK
requests at runtime during source selection for each triple
pattern in query: hence FedX must run many more ASK
queries than data summaries assisted engines. HiBISCuS is
a hybrid approach that utilizes pre-computed data summaries
as well as SPARQL ASK requests at runtime during source
selection for each triple pattern in a query. Hence HiBISCuS
greatly reduces the number ofASK queries used during source
selection, by exploiting data summaries. On the other hand,
PolyWeb uses data summaries for source selection, reverting
to SPARQL ASK requests only when there is an unbound
predicate in a triple pattern. The index-free approaches are
flexible in scenarios where underlying sources are frequently
updated, but it can incur a large cost in terms of SPARQLASK
requests used for source selection, which can in turn increase
overall query execution time.

4) SOURCE SELECTION TIME
The comparison of source selection time for PolyWeb,
PolyWeb-RDF, FedX and HiBISCuS for each query is shown
in Fig. 5, where the y-axis is presented in log-scale. The
rightmost set of bars compares the average source selection
time over all queries. The indexes of HiBISCuS and Poly-
Web remain quite small relative to total sizes of data and
hence can easily be loaded into memory, where lookups can
be performed in milliseconds. In the case of PolyWeb and
PolyWeb-RDF, source selection is performed in less than a
millisecond for all queries. On the other hand, remote ASK
queries executions are orders of magnitude more costly in
comparison with in-memory lookups. Hence we see that the
source selection time for PolyWeb is much lower due to the
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FIGURE 5. Comparison of source selection time.

FIGURE 6. Comparison of query execution time.

reason that PolyWeb only uses ASK queries infrequently in
general, as previously discussed. HiBISCuS sometimes relies
on ASK queries for source selection along with index lookup.

5) RESULT COMPLETENESS
This indicates the query results retrieved from the federated
data sets. All the three engines returned the same number
of results corresponding to the ten queries (Table 6). FedX
and HiBISCuS are designed to retrieve complete result sets

and therefore, it implies that PolyWeb is capable of retrieving
complete set of query results from the native data models.

6) QUERY EXECUTION TIME
For each query, a mean query execution time was calcu-
lated for PolyWeb, PolyWeb-RDF, FedX, and HiBISCuS
by running each query ten times. Fig. 6 compares the
overall mean query execution times, where the y-axis is log-
scale. A time-out of 30 minutes on query execution; with
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these settings, FedX and HiBISCuS time-out in the case of
three queries. On the other hand, PolyWeb times-out in one
case and PolyWeb-RDF in none. Looking at query response
times, apart from PolyWeb-RDF, FedX outperforms the other
engines in most of the queries but in complex queries where
FedX times-out, i.e., QE-6, QE-7 and QE-10, PolyWeb out-
performs it. The reason behind FedX time-out is the number
of intermediate results to be joined locally. PolyWeb uses
a block size of one while performing nested loop bind join
which results in more remote requests while performing the
join and hence more response time, but still, the results are
comparable considering the additional factors which Poly-
Web has to cope with.

The overall query execution time of a query federation
engine can be influenced by various factors, such as join
type, join order selection, block and buffer size, number of
remote requests, intermediate results etc. PolyWeb focuses
on querying heterogeneous data models in a federated setting
which requires some additional costs apart from the men-
tioned factors. For example, queries are translated between
different query languages (SPARQL, SQL, Apache Drill
SQL) on different data models andmost importantly, the RDF
transformation of heterogeneous query results retrieved from
different sources and data sets. PolyWeb performance is still
comparable, knowing that additional run-time transforma-
tion cost is added. The cost of additional factors can be
seen from the query execution time (Fig. 6) of PolyWeb-
RDF, which is lower than PolyWeb in all the 10 queries.
At the same time, PolyWeb uses optimisation factors as well,
such as the predicate-based join group (PJG) that lessens
the remote requests and local joins, which are the main
culprits in query performance degradation in a federated
setting.

Consider the case of example query (QE-6), where Poly-
Web is way above the mark compared to FedX, making the
additional costs, involved with Polystores, negligible. There
are still many ways of improvements left which will be tar-
geted in the near future to further make it to the mark, such
as using dynamic cost model, parallel execution of joins and
block nested bind joins (increasing block size).

VI. CONCLUSION & FUTURE WORKS
The work presented in this article is motivated in particular
by the needs of the BIOOPENER project which aims at
linking data across the large-scale cancer and biomedical
repositories. PolyWeb’s key approach is to query the vast
data resources from their native data models and delegate
querying load to specialized data storage engines. PolyWeb
aims at reducing the expensive data conversion cost – loading
curated data from multiple data models and sources to a
centralized data warehouse for querying – while still being
able to retrieve complete results from different native models.
PolyWeb contributes on twomajor processes of a query feder-
ation (i) source selection: mechanism to find prospective data
sets that can satisfy a given query; and (ii) query optimisation,
planning, and execution: a mechanism to optimize a given

query and devise an efficient plan to execute over different
native data models.

PolyWeb currently exploits R2RML and RML in the query
federation process but can be extended to allow other map-
ping languages to cover an open set of data models. Our eval-
uation results show that PolyWeb retrieves complete results
set when compared with FedX and HiBISCuS federation
engines. At the same time, PolyWeb can avoid the data con-
version cost (i.e., total 3 hours for 3.5 GB raw data). While
some queries reveal the overhead that the PolyWeb approach
incurs, in some cases, it significantly outperforms the single
data model query federation engines in terms of source and
overall query execution time. This shows that in spite of the
relatively basic optimizations we propose, the approach is
viable already.

In our future work, there are a number of possible
aspects to investigate with respect to enhancing the PolyWeb
engine: (i) in addition to the basic SPARQL constructs (BGP,
OPTIONAL, FILTER), we plan to implement features (e.g.,
support of blank nodes, variables on the predicate position)
and SPARQL constructs (UNION, GROUP BY, ORDER
BY etc.) often encountered in complex querying scenarios;
(ii) we plan to devise a mechanism to probe non-RDF data
sets at run-time in the presence of unbound predicates;
(iii) the transformation between query results (non-RDF and
RDF data sets) is a non-trivial task and we plan to optimize
such transformations in a more declarative fashion, such as
proposed in [42]; and finally (iv) we plan to include a dynamic
cost model that will further optimize the PolyWeb engine.
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