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ABSTRACT Recent research has witnessed the fostered application of machine learning approaches in
analyzing the single nucleotide polymorphisms (SNP) data, which has been proved to be implicated in
complex human diseases. In the identification of SNPs responsible for complex diseases, most genome-wide
association studies always took single SNP into consideration at one time and ignored diverse interactions
between SNPs. One of the major problems is the higher number of features and the relatively small number
of individuals, which complicates the task and harms the predictive ability of DNA sequences. In this paper,
a novel boosting-based ensemble approach was proposed to study these interactions. An importance scoring
strategy based on Gini impurity was introduced for feature selection. We evaluated its efficacy on the SNP
genotyping data collected by the Southeastern University of China and compared it with naive Bayes, support
vector machine, and random forest. The experimental results have shown its validity and effectiveness on
SNP interaction identification. In addition, our approach had an obvious advantage of computational time
and resources.

INDEX TERMS Single nucleotide polymorphism, data mining, machine learning, interaction detection and

genome-wide association studies.

I. INTRODUCTION
Recent studies have revealed most complex diseases, such
as diabetes [1], myocardial infarction [2] and Crohn’s dis-
ease [3], are mainly caused by the alteration of a single
nucleotide (A, T, C and G) at a specific location in DNA
molecules, or by genes that contains multiple nucleotide
variants. Complex diseases are characterized by the complex
genetic architecture and involve several genes and their inter-
active effects, which makes the task of connecting variants
with phenotypic differences being one of the great chal-
lenges in genetic research. The single nucleotide polymor-
phism (SNP) [4], carrying the genetic information of DNA
molecules, is the most basic unit of genetic variants. SNPs
may pervade the DNA sequence, including regions of coding,
non-coding or between genes. In general, the majority of
SNPs have minimal impact on biological system. However,
rare SNPs or their combinations may cause changes in protein
function, further contribute to genetic disorders.

The SNP interaction is equivalent to statistical epistasis,
which refers to a phenotype influenced by an allele at a locus
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masking the expression of an allele at another locus. The
term epistasis [S] was first coined by Bateson in 1909, whose
definitions were extended by biologist, statisticians, epidemi-
ologists, and geneticists. Due to our limited knowledge of
its various definitions used by different experts and scholars
from different areas, however, it is recommended that the term
epistasis should be constrained to its original sense defined by
Bateson [5] and Fisher [6].

The detection and identification of SNPs and their interac-
tions responsible for complex diseases is playing an increas-
ingly vital role in interpreting the genetic epidemiology of
a disease. Interactions between SNPs are increasingly being
investigated in the context of disease susceptibility. The task,
however, is fundamentally difficult since the quantity of
variables/SNPs (p) is much larger than the quantity of sam-
ples (n), which is also described as the ’small n big p” problem
in statistics. Over 12 million SNPs are unevenly distributed
across the human genome [8]. Computationally, it is almost
infeasible to evaluate candidate combinations of SNPs and
identify an optimal [4]. In general, this problem can be viewed
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as a feature/variable selection problem. A subset of all exist-
ing features is selected to search the possible combinations
of SNPs. However, traditional methods are usually unable to
incorporate so many variables in their analysis because of the
overfitting problem as well as the lack of interpretability.

The diagnosis, prevention and treatment for complex dis-
eases will highly benefit from better understanding the role
of SNPs and their interactions [9]. Plenty of methods are pro-
posed for SNP interaction identification. The simplest way
is by exhaustive search using classic statistics such as exact
likelihood ratio, the Pearson’s x2 test. One popular method
is Multifactor Dimensionality Reduction (MDR) [10]-[12],
in which all possible genotypic combinations were parti-
tioned into n-dimensional subspaces as contingency table
using the constructive induction approach. Tree based epista-
sis association mapping (TEAM) [13] is a model free method,
where the minimum spanning tree is used for alleviating the
heavy computation while updating the contingency tables
without scanning all individuals. Contrary to TEAM, boolean
operation based screening and testing (BOOST) [14] is a
model based two-stage search approach which tries to dis-
cover all pairwise interactions in SNP data. Similar meth-
ods are EpiMiner [16] and CINOEDV [15]. Aforementioned
methods could successfully detect SNP interactions, but it
still suffers from intensive computation and poor scalability
to a large number of SNPs.

Over the past decade, machine learning based methods
such as Bayesian models, SVM, RF, have been widely
used in the genomic prediction of phenotypes. Bayesian
models [19], [20], which typically use maximum likelihood
to estimate probabilities of phenotypes on genotyping SNP
data, have aroused extensive attention due to their simplic-
ity and efficiency. However, the Bayes methods and their
modifications suffer from strong independence assumptions,
which makes them difficult to capture complex SNP signals
and may harm classification performance [22]. Another dom-
inant algorithm for classification problems is the so-called
SVM. In spite of the advantage of accounting multiple fac-
tors, it lacks of interpretability for resulting classifiers when
applied in biological context, especially for which contain
the massive SNPs [23]. In order to achieve better interpre-
tation, the strategies that entail some sort of feature selection
is highly required in issues with large amounts of features
or variables, such as genomic prediction and evaluation.
Ensemble methods like boosting might be a good alternative.
The main idea is to form a ’committee’ with greater poten-
tial of prediction than that of any of individual classifiers
by combining several weak classifiers. Studies using the
original AdaBoost algorithm and its various modifications
have proved the ability in classification problems [24]-[26].
One of the most interesting versions is gradient boosting
algorithm, which has been proved to have advantages of
great robustness to outliers, missing data and numerous rele-
vant or irrelevant variables.

The objectives of this study are: 1) to propose a novel
ensemble approach by extending the basic Gradient Boosting
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algorithm with introducing a new scoring rule-based Gini
impurity for feature selection. and 2) to apply this novel
ensemble approach in genome-assisted genetic evaluations
and show the superiority in classification performance com-
pared with the commonly used methods such as Naive Bayes,
SVM and Random Forest. Thus, a new thought in this study
was provided to analyze SNP genotyping data and predict its
phenotype with respect to disease susceptibility.

The rest of this article is organized as follows: Section II
describes the related work about machine learning methods,
especially boosting algorithm applied in the bioinformatics;
Section III states the problem definition from the mathemat-
ical perspective, and illustrates the framework as a solution
with the demonstration of the main idea of the proposed
SNP-GB algorithm; Section IV provides a theoretical and
experimental analysis to show the capability and efficiency
of the proposed framework in SNP phenotype prediction and
interaction analysis. Moreover, the data processing proce-
dure, the experimental results and performance evaluation of
the proposed framework are reported. Section V presents the
conclusion and future work.

Il. RELATED WORK

Ensemble leaning [17], [18], which consists of a collection of
single classifiers whose predictions are then combined to pro-
duce a final decision, has been proved to yield better perfor-
mance than that of the individual classifiers like Naive Bayes,
SVM, etc. Boosting algorithm is one of ensemble systems
that are widely used in classification, regression or other
tasks. Recent studies have demonstrated the widely appli-
cations of boosting algorithm and its modifications in the
field of bioinformatics, such as genomic selection, interaction
analysis and genetic disease diagnosis.

A. WORK ON FAUNA AND FLORA

The boosting algorithm and its modifications were introduced
to generate stronger learner by combining simple classifiers.
In [25], L2-boosting, a new version with L2 loss function
in a recursive fashion, was used to predict the productive
lifetime of 4702 Holstein sires and the progeny averages of
food conversion rate of 394 broilers. In order to improve
its efficiency and reduce computational time on large scale
datasets, L2-boosting based random boosting [26] was pro-
posed, in which p SNPs were randomly selected in each
iteration for computing loss values. The results on a real
data set containing 39714 SNPs from 1797 bulls displayed
the outstanding potential in the analysis of effective SNPs in
fauna and flora.

A lot of work have been done to compare machine
learning methods in breeding research. In the predic-
tion and estimation of genomic breeding values, Gradi-
ent Boost Machine (GBM) and Extreme Gradient Boost
Method (EGBM) were explored to identify a subset of
SNPs, and then used the subset to construct relationship
matrices [27]. Three machine learning approaches were
examined on a real data set containing 38083 SNPs from
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2093 Branhman cattle. The results demonstrated an effective
role GBM played in potential candidate genes identification
as well as the performance superiority at the expense of
computational time. Similarly, Genomic Best Linear Unbi-
ased Prediction (GBLUP) method was proposed in [28],
where heritability, number of quantitative trait loci (QTL)
and distribution of QTL effects were its vital parameters.
Their different combinations were tried when compared with
RF, Boosting and SVM. The experimental procedures were
conducted on a genome of five chromosomes on which
10000 biallelic SNPs were distributed. The results showed
a serious limitation for this algorithm—heavy computational
consumption.

B. WORK ON GENETIC DISEASES

Human complex diseases, such as diabetes and Crohn’s,
are caused by a number of genetic factors. The boosting
algorithm has been applied in the pathogenesis exploration.
Detecting and identifying the gene interactions responsible
for complex diseases was one of the main aims of genome
wide association studies (GWAS). Gene interaction is also
known as epistasis in a broad sense. Decision tree has the abil-
ity to capture interactions due to its tree structure, but it still
suffered from some unavoidable limitations including data
fragmentation and representation problem, which may harm
the detection performance. In [29], gradient tree boosting
method followed by an adaptive iterative SNP search was pro-
posed to identify groups of interacting SNPs that contribute
the most to the breast cancer risk, which can capture complex
non-linear SNP interactions. In [30], the capability of feature
selection for AdaBoost was carefully examined in the context
of epistasis detection. A novel strategy of ranking candi-
date SNPs using importance score to study gene interactions
between Alzheimer’s and Parkinson. Experimental results
have showed the higher sensitivity of AdaBoost on param-
eter settings of weak learners. In [31], permutation-based
Gradient Boosting Machine (pGBM) was proposed, which
detected pure epistasis and uncovered more complex disease
pathogenesis by estimating the power of a GBM classifier that
was influenced by permuting SNP pairs. The experimental
results demonstrated that this method had high success rate
in balanced and unbalanced simulation and real data. In [32],
multivariate component-wise boosting method, capable of
modeling non-linear associations, was explored under the set-
ting of high dimension and low sample size. It greatly differed
from other two excellent methods—recursive partition [33]
and low rank feature learning [20], but it still got similar
performance. Among those selected genes, five unknown
genes (GFAP, GRB7, ALOX12, MFAP4, and HOXB?2) relat-
ing to breast cancer were found. Various machine learning
approaches have been successfully used to predict individ-
ual risk to polygenic diseases. They greatly differed from a
large degree on performance or suitability. In [34], it paid
more attention to comparative studies between several pre-
dictive models in the task of risk prediction, and on the basis
of well-designed experiments suggested that the boosting
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algorithm may be more suitable for modeling individual pre-
disposition to Type 1 diabetes and rheumatoid arthritis and
should be considered for more in-depth research. In [38],
random forests and gradient boosting machine were used
to explore SNPs responsible for Colorectal cancer (CRC).
Because of the genetic complexity of cancer [39], the non-
additive interaction effects among multiple genetic variants
have gained a superiority in the explanation of the missing
heritability in GWAS.

In [34]-[37], it has been experimentally proved the supe-
riority of the boosting algorithm over other machine learning
algorithms, such as logistic regression, random forest and
support vector machine, especially on the task of epistatic
effect detection. In this article, SNP-GB, a predictive model
based on gradient boosting algorithm, was proposed for SNP
sequences and interaction analysis.

ill. METHOD
A. PROBLEM DESCRIPTION
In general, the pathogenesis is quite complicated for complex
diseases that entail multiple genes, and it is often caused not
only by a single factor but also by a variety of genetic factors
such as SNPs. SNP interactions are quite common in which
the effect of a particular genetic variant was influenced by
a variant at another locus. Therefore, variant of phenotype
with genotype at one locus was only apparent amongst those
with certain genotypes at the second locus. A growing body of
studies have shown that many phenotypic traits in the human
body as well as the susceptibility to drugs and diseases may
be closely associated with certain loci or genes that contain
multiple loci [3]. The problem can be formulated as follows:
Given a set of N individuals X = {X|, X3, --- , Xy} with
the corresponding binary phenotypes ¥ = (y1,y2, -, Yn),
vi € {—1, +1}, and each individual X; with D markers. In gen-
eral, the genotypes of each individual X; are three-valued
categorical data (AA, AB, BB), denoted as a sequence of
{xi1, xi2, - - - , xip}. Supposed that R = (r1, 12, --- , rp) cor-
responds to n SNPs, its goal is to select an optimal subset
Ry = (51,152, -+, sd) (d < D) satisfying the following
conditions:

max pg = f(Ry) (H

The framework of the proposed predictive model is
depicted in Fig (1). T represents the data set, w; is the weight
matrix, 7; represents the subset re-sampled after rearranging
w in the m-th iteration, 8; and y; is the model parameters to be
iteratively optimized, g; is the gradient of loss function, #,, is
the weak learner trained in the m-th iteration. f (x) is the final
classifier.

1) PRE-PROCESSING

Due to some problems such as data deficiency, data dupli-
cation and feature representation, the raw data is difficult
to be used as input to machine learning algorithms. There-
fore, it is extremely necessary to perform data pre-processing
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FIGURE 1. The framework of our proposed predictive model.

procedure prior to data analysis. The data pre-processing
procedure is detailed in Section IV.

2) RANDOM SAMPLING

Individuals are randomly sampled from the data set accord-
ing to their weight matrix W. Initially, each individual is
weighted uniformly, then the weighted data set is trained by
a classifier at each step. Afterward, the weights of individ-
uals are updated based on the performance—decreasing the
weights of incorrectly classified individuals and increasing
the weights of correctly classified individuals. In this way,
the subsequent classifiers focus on the individuals that are
more difficult to be classified.

3) MODEL TRAINING

Given a loss function L that is used to measure the deviation
between the real value y and the predicted value J, the nega-
tive gradient y,,(x) is computed to optimize model parameters
oy, and p,, and further to learn the weak classifier 4, in
the m-th iteration according to the probability distribution.
As a result, the weight matrix W is rearranged according to
whether the individuals are correctly classified or not.

4) MODEL ENSEMBLE

In this stage, the trained weak classifiers are combined to
form a strong classifier f(x) according to the parameter p,,,
and the final unified decision is obtained as a weighted
combination of the predictions of the weak classifiers of the
ensemble.

B. ALGORITHM

1) OUTLINE OF THE APPROACH

Ensemble methods, a special class of machine learning meth-
ods, function on the criterion of the crowding wisdom.
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Instead of creating only one single strong learner, ensemble
methods attempt to build many heterogeneous weak learners.
Actually, a weak learner is defined as a simple model with
slightly better performance than random guessing. A thor-
ough picture of the whole data set is eventually formulated by
combining the decisions made by these weak learners. Here,
the basic Gradient boosting algorithm was slightly modified
by introducing Gini impurity as a strategy to choose candidate
SNPs. Decision tree is chosen as the weak leaner in the light
of the characteristics of genotyping SNP data. In decision
tree, every subsequent split is conditioned on previous splits,
which enables to naturally capture interactions. In the first
part of this subsection, we explained the principle of decision
tree algorithm and then the formulation of Gini impurity
measurement used for feature selection. We implemented
efficient experimental designs using Python programming
language and paid special attention to the memory space
consumption in the process of analyzing SNP genotype data.
In the last part, we outlined the main idea of our SNP-GB
method.

2) DECISION TREE

As one of supervised learning algorithms, decision tree is
commonly used in data mining. The goal of decision tree is
to build a model that can predict the value of a target variable
based on several input variables. Decision tree can be learned
in a top-down manner, where each interior node corresponds
to one of the input variables, each edge to children denotes
one possible value of the input variable and each leaf rep-
resents the value of the target variable that is represented
by the path from the root to the leaf. Here, we described
the implementation details of this algorithm performing on
genotyping SNP data. At every node, decision tree chose
a SNP (feature) and then splitted individuals at this node
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into subgroups in accordance with their genotypic values.
This splitting process is recursively repeated on each desired
subset. The recursion stops when the subset at a node has
all the same value as the target, or when splitting no longer
contributes to the predictions. Given the subset, its label
distribution and an element that was randomly chosen from
it, the gain of Gini impurity (GI) measures how often the
element would be correctly labeled if it is randomly labeled.
Intuitively, the lower impurity score that child nodes can
obtain from a split, the purer classification that each node
would achieve. Formally, GI is formulated in Equation (2),
where p is the tree node, p; is the fraction of items labeled
with class i in the set, J is the total number of classes (there
are two classes in the experiment:case and control).

J
GI(p) = Y _pi(1 —pi)
i=1

J
1= p @
i=1

And the gain of GI is computed according to Equation (3),
where, N and GI represents the quantity of individuals at a
node and its GI, respectively. p is the parent node and d is its
child.

Gain(p) = GI(p) = > _ % x GI(d) 3)

dep P

3) GRADIENT BOOSTING

Gradient boosting is an ensemble learning method, which
iteratively adds basic models in a greedy fashion such that
each additional basic model further reduces the gradient of
the selected loss (error) function. This algorithm is detailed
as follows:

x denotes the feature vector and y denotes the corre-
sponding class label. Given some training samples {x;, y,-}fv: 1
the goal is to find a function F*(x) that can map x to y, such
that the expected value of a specific loss function L(y, F(x))
is minimized over the joint distribution of {x, y} values.

The loss function is used to measure the deviation between
the real value y and the predicted value y.

F*(x) = argminEy (L(y, F(x))
F(x)
= argmin E[E,L(y, F(x))|x] 4)
F(x)

The “additive” expansion is expressed in Equation (5) in
order to approximate the function:

M
F(x; P) =) Buh(x; V) )

m=0

where P = {8, Vm}l,‘n/[:o- The function A(x; y), called ‘base
learner’, is usually simple function of x with parameters
y = {¥1, 2, -, Yu}. The task will become more difficult
if F(x) is non-parametrically estimated. Thus, it is needed to
transform the function optimization problem to the parameter
optimization problem by choosing a model F(x; P) that can
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be parameterized using P. A typical parameter optimiza-
tion method is a “‘greedy-stagewise” approach. {8, ¥} is
optimized after all the {8;,y;} (i = 0,1,---,m — 1) are
optimized. This process can be formulated as follows:

N
(Bons y) = argmin LG, Pt () + Bhxi 7) - (6)
=1

Fo = Fu1(x) + Buh(x; yim) @)

The steepest-descent method proposed by Friedman [40]
that aims to handle the optimization problem is detailed
in Equation (5). Based on the steepest-descent method,
we proposed the SNP-GB methd for prediction and interac-
tion analysis on genotyping SNP data, which is detailed in
Algorithm (1).

Algorithm 1 SNP-Gradient boosting
Input:
The set of all SNPs, x;
The iterative steps, M;
QOutput:
The final classification function F,(x);
initialize Fo(x) = argmin,, Zf]:] L(y;, p);
form =1toM do
Compute the negative gradient

- OLQi, F(x)
" dFy,

Fit a model
N
= arg min ;w — Bh(xi; )]
=

Choose a gradient descent step size as

N
pm = arg min > LG, Fuo1(x0) + phxi: )

i=1
Update the estimation of F(x)
Fiu(x) = Fiu—1(x) + pmh(x; o)

end for
return F(x);

C. OTHER ALGORITHMS

Random forest, a typical ensemble learning method, was
proposed by Breiman [41] in 2001, and has been widely
adopted in classification, regression and other tasks. In ran-
dom forest, a collection of homogeneous decision trees are
employed at the same time to obtain a better understanding
of the data. Each tree in the ensemble is built from a sample
drawn with replacement (i.e. a bootstrap sample) from the
training set. Additionally, RF further introduces a strategy of
random attribute selection in the process of training decision
tree models. When splitting a node during constructing the
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FIGURE 2. The distribution of genotypes in each SNP.

tree, traditional decision trees choose an optimal split from
a set of attributes at current node (totally d attributes), while
random forest firstly picks a subset of k features among all
features and then selects an optimal split among a random
subset of features. The model parameter k controls the degree
of randomness. If k = d, the construction of base decision
trees would be the same as that of traditional ones, and if
k = 1 only one attribute would be randomly chosen as a
split. Generally, k = log,; is recommended [41]. RF slightly
extended the bagging algorithm by introducing the attribute
disturbance derived from the random attribute selection tech-
nique, which led to richer diversity of base learners than
that in bagging, and further improved the generalization by
increasing the differences between these base learners in
the final ensembled model. In particular, trees tend to learn
highly irrelevant patterns if they grow very deep. That is,
they overfit the training sets with low bias but very high
variance. In machine learning, overfitting is not avoidable.
As a result of this randomness (mainly attribute and sample
disturbance), the bias slightly increase, but due to averaging,
the variance also decreases, usually more than compensating
for the increase in bias, hence yielding an overall better
model.

D. MODEL EVALUATION
The performance of our predictive model is evaluated by:

TP
Recall = —— ()
TP + FN
o TP
Precision = —— ©))
TP + FP
2 x Recall x Precision
Fy = — (10)
Recall + Precision
MCC = TP x TN — FP x FN
- /(TP + FP)(IN + FN)(TP + FN)(TN + FP)
(1m)
12652

0120996/
0Zv0L6VS!

where TP is the number of positive individuals that are cor-
rectly classified, FP is the number of negative individuals
that are wrongly classified; TN is the number of negative
individuals that are correctly classified, FN is the number
of positive individuals that are wrongly classified. Among
these four metrics, MCC (Matthews Correlation Coefficient)
is the correlation coefficient between the observed and pre-
dicted individuals as a measure of the quality of binary
classification.

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL SETTING

1) DATA AND PRE-PROCESSING

In order to evaluate the performance of SNP-GB algorithm,
we applied it to the data set containing 1000 individuals
(500 cases and 500 controls) with 9000 SNPs each. The data
set was collected from patients who suffered from a certain
genetic disease by the Southeastern University of China.
The statistics of the data set is shown in Fig (2), where the
red bar represents the number of AA genotype, the green
bar represents the number of BB genotype, the blue bar
represents the number of AB genotype, AA and BB are
the homozygotic genotypes at some location while AB is
heterozygotic. For model training and testing, the data set
was randomly splitted into a training set and a testing set with
650 samples and 350 samples respectively. However, in order
to validate the ability of our model to learn general patterns
from the data set, a subset of the training set was chosen as the
validation set.

Prior to data analysis, preprocessing procedures are greatly
required, which contain data cleansing, encoding, com-
pletion of missing values, removal of duplicate values,
etc. There have been many methods for genotype repre-
sentation. In [31], four-dimensional vector representation
aimed to express different bases (A, C, T, G) with a four
dimensional one-hot vector. However, it made these bases
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TABLE 1. Numerical representation of example SNPs.

Name, genotype and its representation

Phenotype
rs100015 1356341 121132 rs7526311  rs665691  rs294223  rs3131972  rs9729550
1 ITT 1 CA 2 GT 2 AT 1 GC 1 GA 1 CT 2 AA 1
0 TT 1 CC 1 GG 0 AA 0 GC 1 AA 0 CT 2 AA 1
1 TC 2 CC 1 GG 0 AA 0 GG 2 GA 1 TT 0 AC 2
1 TC 2 CA 2 GG 0 TT 2 GG 2 GA 1 CC 1 AA 1
0 cC 0 CcC 1 GG 0 AT 1 cC 0 GA 1 CT 2 AA 1
0 T 1 C€C 1 GG 0 TT 2 cC 0 GG 2 CC 1 CcC 0

mutually independent and irrelevant. Additionally, another
approach was two-dimensional vector representation [21]
(i.e. A =00, T =01, C =10, G = 11), which easily
led to linear relevance and blurred differences in spite of
computational reduction. Generally, each of given SNPs have
three discrete states (AA, AB, BB) indicating the possible
homozygotic and heterozygotic genotypes for this location.
As aresult of this trait, we just need a three-dimensional one-
hot vector to represent each genotype. For example, these
three discrete states AA, AB, BB are encoded into 0, 1,
2 respectively (as shown in Table 1). Compared with those
methods described above, this method has advantages of
simplicity, relatively less computational time and the ability
to ignore specific types of each base, which makes it pay more
attention on SNP compositionality and further extract more
diverse information in order to improve flexibility.

2) IMPLEMENTATION

In this study, the proposed approach was implemented in
Python, a popular high level programming language with
fast prototyping and easy transferability. In addition, numer-
ous useful libraries are accessible in the repository. Numpy,
an effective scientific library, enables Python to access quick
multidimensional array that can be used to store the SNP data
efficiently. In this implementation, we realized our predic-
tive model based on XGBoost [42], an optimized distributed
gradient boosting library designed for high efficiency, flex-
ibility and portability. It supports CUDA accelerated tree
construction algorithm, which is vital for model convergence
acceleration, computational time reduction and efficiency
improvement with the help of the computational power of
GPUs on mathematical calculations. It is enabled by default
in XGBoost. Source code is deployed on a server machine
equipped with two Nvidia GeForce 1080ti GPUs and memory
space of total 140 GB.

3) PARAMETER FINE TUNING

Effective modeling is usually the first step to perform an
exhaustive analytic procedure, but fine tuning parameters
appears to be more important to ensure desirable optimal
results. In addition to basic parameters including sample size
and random state, there are some other parameters to be opti-
mized for Gradient boosting algorithm, such as n_estimators,
eta and early_stopping_rounds. n_estimators is the num-
ber of boosted trees to fit and efa is the step size used
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in update. Intuitively, the larger the values for both param-
eters are, the better the performance will become. Firstly, for
n_estimators, its values range from 50 to 400, and for era,
its values range from 0.0001 to 0.3. The performance under
different values of n_estimators and eta seemed to vary very
much. For example, with n_estimators = 400 and eta = 0.3,
the predictive accuracy decreased by 20%. However, with
n_estimators = 100 and eta = 0.01, the number rose by 36%.
Based on the performance and computational resources,
thus, the parameters n_estimators and eta were set to
100 and 0.01, respectively. When constructing each tree and
splitting, the subsample ratio of columns colsample_bytree
and the subsample ratio of column for each split in each
level colsample_bylevel play an important role. After sev-
eral careful attempts, we chose colsample_bytree = 0.8 and
colsample_bylevel = 1.

B. SNP INTERACTIONS ANALYSIS

Tree, a type of structure that is capable of displaying com-
plex inner relationships between features in a visual way,
plays an important part in exploring interactions or higher-
level effect in genetics. Here we tried to construct a tree
for analyzing SNP interactions. To perform the classification
of features (SNPs) and produce the possible response value,
SNP-GB algorithm constructs a type of hierarchical-structure
tree (as shown in Fig (3)), in which every node represents
a variable and every edge represents different attributes of
the parent node. According to these attributes, every node is
splitted into child nodes. Different paths indicate the diverse
combinations of predictors (features) that imply their interac-
tions. The variable at the top of structured tree represents the
strongest splitting variable and the subsequent nodes are built
on the upper node. It is clearly seen from Fig (3) that the locus
rs1006147 is the strongest splitting feature among features
from a subset of the entire data set, all of the latter child nodes
are built on it. Furthermore, more complex interactions can
be seen from Fig (3). For example, loci that interact with
rs1006147 via rs2253372 are rs12139487 and rs6701316.
The number on the leaf nodes is the gradient of the selected
loss function calculated based on previous base learners. The
goal of gradient boosting algorithm is to further reduce the
gradient value in an iteratively additive way. Fig (4) shows
the gain of Gini impurity of a randomly selected element
being incorrectly labeled. As depicted in previous section,
the lower impurity score that child nodes can obtain from a
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FIGURE 3. Prediction tree produced by SNP-GB algorithm.

split, the purer classification that each node would achieve.
This means that the locus rs/006147 have the lowest gain
of Gini impurity so that it enables the best classification
performance among the data set in m-th iteration.

C. PERFORMANCE

This section aims to compare baseline methods (Naive Bayes,
SVM, Random Forest) with SNP-GB on the predictive per-
formance of SNP sequences. Fig (5) shows ROC curves
by 10-fold cross validation. The predictive model based on
gradient boosting contributes the best, with the AUC up to
0.9519, followed by Random Forest with 0.9028 AUC scores.
The worst is Naive Bayes and SVM is slightly better than it.

TABLE 2. Performance of the predictive models based on different
classification algorithms.

Algorithms AUC 1 MCC Recall  Precision
Naive Bayes 0.8476  0.6222 0.5442  0.6241 0.6243
SVM 0.8815 0.8182 0.6598 0.7761 0.8662
Random forest  0.9028  0.8179  0.7821  0.8218 0.9018
SNP-GB 09519 0.8979 0.8046 0.8693 0.9292

Table 2 shows the classification performance on the inde-
pendent test data set. Among them, all of performance metrics
of SNP-GB and Random Forest is higher than that of Naive
Bayes and SVM. 1t is easily concluded that ensemble meth-
ods generally perform better than non-ensemble methods
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like SVM. Overall, the predictive model based on gradient
boosting achieves the best performance.

D. COMPUTATIONAL TIME AND RESOURCES

We deployed implementations on a cluster of four PowerEdge
R730 servers at the Big Data Laboratory of Shanghai Nor-
mal University. We equipped each machine with Intel Xeon
multi-core CPU and memory space of total 140 GB, and
one with two Nvidia GeForce 1080ti GPU. The two most
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TABLE 3. Statistics of time and resources when training models.

NB SVM RF SNP-GB
Time (min) 1.4 1.8 24 2.3
Memory (MB)  20.2 21.8  38.6 30.3

TABLE 4. Statistics of time and resources when cross validating models.

NB SVM RF SNP-GB
Time (min) 3.2 3.1 5.4 4.1
Memory (MB)  21.1 21.6  40.1 38.2

important features of XGBoost library that are provided to
improve performance is the GPU acceleration strategy and
multithreading support, which allow us to efficiently use all
of computational resources in our system during the training
stage to speed up model convergence. In our implementation,
the parameter predictor indicating which method is used to
predict, CPU or GPU predictor, is set to gpu_predictor so as
to enable faster construction of individual trees. Meanwhile,
statistics of different models when training and cross validat-
ing is shown in Table 3 and Table 4. It is clearly seen that
the proposed predictive model contributes the best perfor-
mance, especially in comparison to RF, with around 2.3min
running time (versus 2.4min by RF) and 30MB memory space
(versus 38MB by RF) during training, and with approxi-
mately 4.1min (versus 5.4min by RF) and 38.2MB (versus
40.1MB by RF) during cross validating. Those models, such
as Naive Bayes, SVM, ran for much less time and used much
less memory space but they generally had worse performance
than ensemble systems. The reason may be that it would take
a long time to construct individual trees for tree structured
models in addition to mathematical calculations.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a novel algorithm, SNP-GB,
for classifying SNPs as well as for identifying potential
SNP interactions. SNP-GB is a version of the famous gra-
dient boosting algorithm, which was slightly modified by
introducing a new rule based on Gini impurity to feature
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scoring and selection. Using decision tree as weak clas-
sifier, we created a strong assembled classifier. We eval-
uated SNP-GB on the genotyping data collected by the
Southeastern University of China. Comparative results with
Naive Bayes, SVM and Random Forest showed that ensem-
ble methods obviously outperformed simple single models,
since ensemble methods operate on the principle of crowd-
ing wisdom. Random Forest didn’t outperform the proposed
SNP-GB algorithm. The reason may be that in SNP-GB, clas-
sification errors of the first single classifier are compensated
as good as possibly by the second, etc., thus selection of the
next classifier is biased in favor of previously misclassified
data points. This trait of SNP-GB algorithm makes it more
suitable for tasks of this kind than Random Forests. When
allele frequencies are low, however, the Gini impurity may
suffer some disadvantage because of inadequate samples of
high effect nodes. Overall, SNP-GB is a very fast and memory
efficient algorithm and can be used as a promising tool for
feature selection, interaction analysis and classification on
SNP data.

In association studies, Linkage Disequilibrium (LD) is
one important factor when investigating interactive effects.
In this work, however, we chose not to consider it for the
following reason: In general, high LD usually exists in those
SNPs around each disease locus, which may negatively influ-
ence the interactive effect and further cause the noise sig-
nal enhancement. Moreover, the situation where any SNPs
will have high LD with the regulatory SNPs is impossible.
A marker could be typed, but the potential rSNPs might not
be. Noises in the model may be increased and the predictive
power may be reduced. We will test it in our future work.

Deep neural networks, like CNNs, RNNs, etc., have
achieved great success in the field of object detection,
machine translation and speech recognition. Also, many
researchers have applied deep learning techniques to suc-
cessfully solve specific genetic problems. However, both a
larger data set and greater computational power are usually
required for deep learning based models. Thus, our approach
still has great applicability due to its competitive advantage
of resource efficiency. In the future, on one hand, the effi-
cacy of deep learning techniques will be tested; on the other
hand, their strengths and weaknesses will be compared and
summarized on larger data set.
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