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ABSTRACT In this paper, we study distance measures between interval-valued fuzzy sets and entropies
of interval-valued fuzzy sets. These are well-known and widely used notions in the fuzzy sets theory. The
novelty of our approach is twofold: on one hand, it considers the width of intervals in order to connect
the uncertainty of the output with the uncertainty of the inputs. On the other hand, it makes use of total
orders between intervals, instead of partial ones, so that the usefulness of the notions related with some
kind of monotonicity is fully recovered in the interval-valued setting. The construction of distance measures
and entropies is done by aggregating interval-valued restricted dissimilarity functions and interval-valued
normal EN -functions. For this reason, we first study these functions, both in line with the two above stated
considerations. Finally, we present an illustrative example in image thresholding using an expression of the
proposed interval-valued entropy to show the validity of our approach.

INDEX TERMS Admissible order, interval-valued distance, interval-valued entropy, interval-valued
restricted dissimilarity function.

I. INTRODUCTION
Distance measures and entropies are significant notions in
fuzzy sets theory due to their high applicability [18], [26],
[29], [31], [35], [43], [45]. At the same time, interval-valued
fuzzy sets [12] in many cases improve the results of fuzzy
sets in different applications [1]–[4], [6], [7], [11], [14],
[16], [17], [22], [34], [42], since they allow us to take into
account the uncertainty linked to the construction of a precise
membership function. For this reason, there exists a wide
interest in the literature for extending the notions of distance
measure and entropy to deal with interval-valued fuzzy sets
and entropies [5], [23], [37], [38].

However, it is worth mentioning that in many recent devel-
opments in the field of interval-valued fuzzy sets we have
found the following two problems, which, in our opinion, are
an obstacle for the further development of the theory and the
applications of interval-valued fuzzy sets:

1) In most of the cases, only a partial order between
intervals is considered.

2) The widths of the intervals are not taken into account.
With these ideas in mind, the objective of this paper is to

construct distance measures between interval-valued fuzzy
sets and entropies of interval-valued fuzzy sets in such a way
that:

1) A total order for intervals (not only partial) is used,
since otherwise the usefulness of fundamental notions
in the standard fuzzy set theory (aggregation functions,
implications, inclusions, etc.) is not fully recovered
in the interval-valued setting. The reason is that there
may exist incomparable intervals, which means that
all kinds of monotonicity are considerably weakened
when working with intervals.

2) The widths of intervals are considered. We assume that
the width of the membership interval of an element in
a given set reflects the lack of knowledge of the precise
membership degree of the element to the fuzzy set. So,
if the real-valued membership degree is in fact an ele-
ment inside themembership interval, then two elements
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with the same interval membership degrees need not
have the same real-valued membership degrees. Other-
wise, the output of an interval functionmay display less
uncertainty than its inputs.

To achieve this objective, we first introduce new def-
initions of interval-valued restricted dissimilarity func-
tions and interval-valued normal EN -functions, both in line
with the above stated consideration. Then, interval-valued
restricted dissimilarity functions and interval-valued normal
EN -functions are aggregated to obtain new distance measures
and entropies of interval-valued fuzzy sets.

To show the validity of our developments, we present an
application in image thresholding [8], [9], [25] using one of
the expressions of the proposed interval-valued entropy. The
results reveal that using the total order and taking into account
the width of the intervals provide better results than other
methods that can be found in the literature.

The paper is organized as follows. We start with some
preliminaries. In Section III, we introduce new definitions of
interval-valued restricted dissimilarity functions and interval-
valued normal EN -functions preserving the widths of inter-
vals. In Section IV, the definition of distance measures and
entropies of interval-valued fuzzy sets are introduced and
different construction methods are studied. In Section V,
we present an illustrative example of application of the pro-
posed entropy in image thresholding. We finish with some
conclusions and references.

II. PRELIMINARIES
In this section, we introduce several well known notions and
results which are necessary for our subsequent developments.
We consider closed subintervals of the unit interval [0, 1].
In this sense, we denote:

L([0, 1]) = {[X ,X ] | 0 ≤ X ≤ X ≤ 1}.

Capital letters will denote elements in L([0, 1]) as well
as the bounds of intervals. The width of the interval X ∈
L([0, 1]) will be denoted by w(X ). Clearly w(X ) = X −
X . An interval function f : (L([0, 1]))n → L([0, 1]) is
called w-preserving if w(X1) = . . . = w(Xn) implies
w(f (X1, . . . ,Xn)) = w(X1).
A fuzzy set in an universe U is a mapping A : U → [0, 1].

An interval-valued fuzzy set is a mapping A : U → L([0, 1]).
The class of all fuzzy sets in U is denoted by FS(U ) and the
class of all interval-valued fuzzy sets in U , by IVFS(U ).
Another key notion in this work is that of order relation.

We recall here its definition, adapted for the case of L([0, 1]).

Definition 1: An order relation on L([0, 1]) is a binary
relation≤L on L([0, 1]) such that, for all X ,Y ,Z ∈ L([0, 1]),
(i) X ≤L X, (reflexivity),
(ii) X ≤L Y and Y ≤L X imply X = Y , (antisymmetry),
(iii) X ≤L Y and Y ≤L Z imply X ≤L Z, (transitivity).
An order relation on L([0, 1]) is called total or linear if any
two elements of L([0, 1]) are comparable, i.e., if for every

X ,Y ∈ L([0, 1]), X ≤L Y or Y ≤L X. An order relation
on L([0, 1]) is partial if it is not total.

Wewill denote by-L the partial order relation on L([0, 1])
induced by the usual partial order on R2, that is:

[X ,X ] -L [Y ,Y ] iff X ≤ Y and X ≤ Y . (1)

This is the order relation most widely used in the litera-
ture [15].

We denote by ≤L any order in L([0, 1]) (which can be
partial or total) with 0L = [0, 0] as its minimal element and
1L = [1, 1] as its maximal element. To denote a total order in
L([0, 1]) with these minimal and maximal elements, we use
the notation ≤TL .
Example 2: (i) A total order on L([0, 1]) is, for exam-

ple, Xu and Yager’s order (see [44]). [X ,X ] ≤XY
[Y ,Y ] if{

X + X < Y + Y or
X + X = Y + Y and X − X ≤ Y − Y .

(2)

This definition of Xu and Yager’s order was originally
provided for Atanassov intuitionistic fuzzy pairs [44].

(ii) Another example of total order is provided by the lex-
icographical orders with respect to the first variable,
≤lex1 and with respect to the second variable, ≤lex2,
which are defined, respectively, by:

[X ,X ] ≤lex1 [Y ,Y ] if

{
X < Y or
X = Y and X ≤ Y .

[X ,X ] ≤lex2 [Y ,Y ] if

{
X < Y or
X = Y and X ≤ Y .

Regarding total orders in L([0, 1]), we are going to con-
sider the so-called admissible orders, whose definition we
recall now.
Definition 3 [13]: An admissible order on L([0, 1]) is a

total order ≤TL that refines the partial order -L; that is, for
every X ,Y ∈ L([0, 1]), if X -L Y then X ≤TL Y .

An interesting feature of admissible orders is that they can
be built using aggregation functions, as stated in the following
result. Recall that an aggregation function is a non-decreasing
function M : [0, 1]n → [0, 1] with M (0, . . . , 0) = 0 and
M (1, . . . , 1) = 1, see [28]. An aggregation function is called
idempotent if M (x, . . . , x) = x for all x ∈ [0, 1]; and it is
called symmetric if M (x1, . . . , xn) = M (xσ (1), . . . , xσ (n)) for
all x1, . . . , xn ∈ [0, 1] and all permutations σ on {1, . . . , n}.
Proposition 4 [13]: Let M1,M2 : [0, 1]2 → [0, 1] be two

aggregation functions such that for all X ,Y ∈ L([0, 1]),
the equalities M1(X ,X ) = M1(Y ,Y ) and M2(X ,X ) =
M2(Y ,Y ) can only hold simultaneously if X = Y . The order
≤M1,M2 on L([0, 1]) given by

X ≤M1,M2 Y if


M1(X ,X ) < M1(Y ,Y ) or
M1(X ,X ) = M1(Y ,Y ) and
M2(X ,X ) ≤ M2(Y ,Y )

is an admissible order on L([0, 1]).

VOLUME 7, 2019 14045



Z. Takáč et al.: Width-Based Interval-Valued Distances and Fuzzy Entropies

Example 5: (i) Xu and Yager’s order is an example of
admissible order with M1(x, y) =

x+y
2 and M2(x, y) =

y.
(ii) The lexicographical orders ≤lex1 (≤lex2) are also

examples of admissible orders with M1(x, y) = x
(M1(x, y) = y) and M2(x, y) = y (M2(x, y) = x).

(iii) More generally, if, for α ∈ [0, 1] we define the aggre-
gation function

Kα(x, y) = (1− α)x + αy

then, for α, β ∈ [0, 1] with α 6= β, we can obtain an
admissible order ≤α,β just taking M1(x, y) = Kα(x, y)
and M2(x, y) = Kβ (x, y). See [13] for more details.

Definition 6: Let ≤L be an order relation in L([0, 1]).
A function N : L([0, 1]) → L([0, 1]) is an interval-valued
negation function (IV negation) if it is a decreasing function
with respect to the order ≤L such that N (0L) = 1L and
N (1L) = 0L . A negation N is called a strong negation if
N (N (X )) = X for every X ∈ L([0, 1]). An interval ε ∈
L([0, 1]) is called an equilibrium point of the IV negation if
N (ε) = ε.

A. INTERVAL-VALUED AGGREGATION FUNCTIONS WITH
RESPECT TO A PARTIAL ORDER
The definition of aggregation function has been extended to
the interval-valued setting with respect to the order -L in a
straightforward way [24].
Definition 7: Let n ≥ 2. An (n-dimensional) interval-

valued (IV) aggregation function in L([0, 1]) with respect to
-L is a mapping MIV : (L([0, 1]))n→ L([0, 1]) satisfying:
(i) MIV (0L , · · · , 0L) = 0L .
(ii) MIV (1L , · · · , 1L) = 1L .
(iii) MIV is a non-decreasing function in each variable with

respect to -L .
Remark 8: Note that this definition does not fully recover

the usefulness of the usual definition of aggregation functions
in the real setting since there may exist intervals which are not
comparable by means of the order-L , so the full meaning of
monotonicity is lost.
Example 9 [32]: If A : [0, 1]2 → [0, 1] is an aggregation

function, then the function MA : L([0, 1])2→ L([0, 1]) given
by

MA([X ,X ], [Y ,Y ]) = [A(X ,Y ),A(X ,Y )],

is an IV aggregation function in L([0, 1]) with respect to the
order -L .
Moreover, if A,B : [0, 1]2 → [0, 1] are two aggregation

functions such that A(x, y) ≤ B(x, y) for each x, y ∈ [0, 1],
then

MA,B([X ,X ], [Y ,Y ]) = [A(X ,Y ),B(X ,Y )],

is an IV aggregation function in L([0, 1]) with respect to the
order -L .
Example 10: The following functions are IV aggregation

functions in L([0, 1]) with respect to the order -L .

• MIV ([X ,X ], [Y ,Y ]) = [(X · Y )2, (X · Y )2],
• MIV ([X ,X ], [Y ,Y ]) = [(X · Y )1/2, (X + Y )/2].

B. RESTRICTED DISSIMILARITY AND EN FUNCTIONS IN
THE FUZZY SETTING
We recall here the usual notions of dissimilarity and EN
functions when we are dealing with fuzzy sets.
Definition 11 [8]: A function d : [0, 1]2→ [0, 1] is called

a restricted dissimilarity function if it satisfies:
1) d(x, y) = d(y, x) for all x, y ∈ [0, 1];
2) d(x, x) = 0 for all x ∈ [0, 1];
3) d(x, y) = 1 if and only if {x, y} = {0, 1};
4) If x ≤ y ≤ z, then d(x, z) ≥ d(x, y) and d(x, z) ≥

d(y, z) for all x, y, z ∈ [0, 1].
Remark 12: For any p ∈]0,∞[, the function dp(x, y) =
|x − y|p is a restricted dissimilarity function. Note that dp,
for all p ∈]0,∞[, also satisfies a stronger condition than
the second one in Definition 11:
2′. d(x, y) = 0 if and only if x = y.

However, for our purpose the weaker condition used in our
definition is sufficient.
Definition 13 [8]: Let n : [0, 1] → [0, 1] be a strong

negation with the equilibrium point e (i.e., an involutive
decreasing function such that n(e) = e). A function EN :
[0, 1] → [0, 1] is called a normal EN -function w.r.t. n if it
satisfies the following conditions:

1) EN (e) = 1;
2) EN (x) = 0 if and only if x = 0 or x = 1;
3) If y ≤ x ≤ e or y ≥ x ≥ e, then EN (x) ≥ EN (y).
Remark 14: For any p ∈]0,∞[, the function EpN (x) = 1−
|2x − 1|p is a normal EN -function w.r.t. any strong negation
n with the equilibrium point e = 1/2.

III. FUNCTIONS PRESERVING THE WIDTH OF INTERVALS
In this section we propose new definitions of restricted dis-
similarity functions and normal EN -functions in the interval-
valued setting which take into account the width of the inputs.

A. INTERVAL-VALUED RESTRICTED DISSIMILARITY
FUNCTIONS
Definition 15: A function dIV : (L([0, 1]))2 → L([0, 1])

is called an interval-valued restricted dissimilarity function
w.r.t. an order ≤L if it satisfies the following conditions:

1) dIV (X ,Y ) = dIV (Y ,X ) for all X ,Y ∈ L([0, 1]);
2) dIV (X ,X ) = [0,w(X )] for all X ∈ L([0, 1]);
3) dIV (X ,Y ) = 1L if and only if {X ,Y } = {0L , 1L};
4) If X ≤L Y ≤L Z and w(X ) = w(Y ) = w(Z ), then

dIV (X ,Y ) ≤L dIV (X ,Z ) and dIV (Y ,Z ) ≤L dIV (X ,Z )
for all X ,Y ,Z ∈ L([0, 1]).

Remark 16: The main point in which this definition differs
from the one of restricted dissimilarity functions in the fuzzy
setting is in axiom 2. Note that we can consider that the width
of the membership interval of an element in a given set is a
measure of the lack of knowledge of the precise (real-valued)
membership degree of that element. That is, we can assume
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that it exists a precise membership value in [0, 1], but, due to
uncertainty or lack of knowledge, we are not able to provide
that exact value, but only to say that it is inside the provided
membership interval. This means that the smaller the width
of the membership interval is, the smaller the uncertainty
about the actual membership value is, too. But, with this
interpretation of interval-valuedmembership functions, if two
elements have the same interval memberships, this does not
mean that their corresponding real-valued memberships are
the same. To consider an extremal, if two elements have
as interval-valued membership value the interval [0, 1], this
means that we do not know at all which is their actual real-
valued membership values, which could be 0 for the first one
and 1 for the second one, for instance. Hence it is natural
to expect that this uncertainty is not lost when comparing
them. Observe that for this extremal case, and due to axiom 2,
the result of the IV restricted dissimilarity function is [0, 1],
which can be understood as reflecting that we do not know at
all how similar the two elements actually are.
Example 17: Let X0 ∈ L([0, 1]) where X0 ≥TL [0, 1] and

X0 6= 1L . Then the function dIV : L([0, 1])2 → L([0, 1])
defined by:

dIV (X ,Y ) =


1L , if {X ,Y } = {0L , 1L},
[0,w(X )], if X = Y ,
X0, otherwise,

is a trivial example of IV restricted dissimilarity function w.r.t.
any admissible order ≤TL .
The following result shows that our definition is monotone

with respect to the width of the intervals.
Proposition 18: Let X ,Y ∈ L([0, 1]). If w(X ) < w(Y ),

then, for any admissible order ≤TL , it follows that

dIV (X ,X ) ≤TL dIV (Y ,Y ).
Proof: It follows straightforwardly from Definition 15.

�
Now we give a construction method for IV restricted dis-

similarity functions which preserves the width of the input
intervals. We start with a lemma which shows how intervals
of the same length behave with respect to admissible orders.
Lemma 19: Let X ,Y ∈ L([0, 1]) be intervals such that

w(X ) = w(Y ). Then

X -L Y ⇔ X ≤TL Y

for any admissible order ≤TL .
Proof: The proof follows from the observations: 1.

intervals with the same width are always comparable by the
partial order -L ; 2. an admissible order refines the partial
order -L . �
Proposition 20: Let α ∈]0, 1[, let M : [0, 1]2 → [0, 1]

be an idempotent symmetric aggregation function and let d :
[0, 1]2 → [0, 1] be a restricted dissimilarity function. Then,
the function dIV : L([0, 1])2→ L([0, 1]) given by

dIV (X ,Y )

=
[
min

(
d (Kα(X ),Kα(Y )) , 1−M (w(X ),w(Y ))

)
,

min
(
1, d (Kα(X ),Kα(Y ))+M (w(X ),w(Y ))

)]
(3)

is an IV restricted dissimilarity function w.r.t. any admissible
order ≤TL . Moreover, dIV is w-preserving.

Proof: For simplicity we write D instead of
d (Kα(X ),Kα(Y )), and M instead of M (w(X ),w(Y )).
Then (3) can be simplified:

dIV (X ,Y ) =
[
min

(
1−M,D

)
,min

(
1,D +M

)]
=

{
[D,D +M], if D +M ≤ 1,
[1−M, 1], otherwise,

(4)

By (4) it is clear that dIV is well-defined.
Symmetry of dIV directly follows from the symmetry of d

and M .
The second condition in Definition 15 follows from the

observations: d (Kα(X ),Kα(X )) = 0 and M (w(X ),w(X )) =
w(X ).
Observe that dIV (X ,Y ) = 1L if and only if D = 1 and

M = 0. The former holds if and only if {Kα(X ),Kα(Y )} =
{0, 1}, which may happen if and only if {X ,Y } = {0L , 1L}.
So it follows that w(X ) = w(Y ) = 0 and we get the third
condition in Definition 15.
Monotonicity w.r.t. any admissible order is obvious due

to the monotonicity of d , Lemma 19 and the observation:
if X ≤TL Y ≤TL Z and w(X ) = w(Y ) = w(Z ), then
Kα(X ) ≤ Kα(Y ) ≤ Kα(Z ).
Finally, the fact that dIV is w-preserving directly follows

from Equation (4) and idempotency of M . �
To construct an IV restricted dissimilarity function, any

restricted dissimilarity function d and any idempotent sym-
metric aggregation functionM can be applied in Equation (3).
However, using some additional assumptions on M and d ,
the construction given by Proposition (20) can be simplified.
Corollary 21: Let α ∈]0, 1[, let M : [0, 1]2 → [0, 1]

be an idempotent symmetric aggregation function such that
M (x, y) ≤ min

(
(1 − α)x + αy, αx + (1 − α)y

)
for all

x, y ∈ [0, 1] and let d : [0, 1]2 → [0, 1] be a restricted
dissimilarity function such that d(x, y) ≤ |x − y| for all
x ∈ [0, 1]. Then, the function dIV : L([0, 1])2 → L([0, 1])
given by

dIV (X ,Y ) = [d (Kα(X ),Kα(Y )) , d (Kα(X ),Kα(Y ))

+ M (w(X ),w(Y ))] (5)

is an IV restricted dissimilarity function w.r.t. any admissible
order ≤TL . Moreover, dIV is w-preserving.

Proof: We only need to prove that M (w(X ),w(Y )) ≤
1 − d (Kα(X ),Kα(Y )) for all X ,Y ∈ L([0, 1]), since in that
case Equation (5) is a special case of Equation (3). Assume
that Kα(X ) ≥ Kα(Y ). Then, due to the assumptions onM and
d , we have

1− d (Kα(X ),Kα(Y )) ≥ 1− |Kα(X )− Kα(Y )|

= 1− (1− α)X − αX + (1− α)Y + αY

≥ (1− α)w(X )+ αw(Y )

≥ min
(
(1− α)w(X )+ αw(Y ), αw(X )
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+ (1− α)w(Y )
)
≥ M (w(X ),w(Y )) .

Now, let Kα(X ) ≥ Kα(Y ). Then

1− d (Kα(X ),Kα(Y ))

≥ 1+ (1− α)X + αX − (1− α)Y − αY

≥ αw(X )+ (1− α)w(Y ) ≥ min
(
(1− α)w(X )

+ αw(Y ), αw(X )+ (1− α)w(Y )
)
≥ M (w(X ),w(Y )) .

�
Corollary 22: Consider the interval-valued restricted dis-

similarity function dIV constructed in Corollary 21. Then, for
all X ,Y ∈ L([0, 1]) it holds that

min(w(X ),w(Y )) ≤ w(dIV (X ,Y ))

≤ min
(
(1− α)w(X )+ αw(Y ), αw(X )+ (1− α)w(Y )

)
.

Proof: The first inequality follows from the fact
that an idempotent aggregation function is always greater
than or equal to the minimum, and the second inequality
follows from the property of M assumed in Corollary 21. �
Example 23: Consider the construction of IV restricted

dissimilarity function given by Corollary 21. It is easy to
see that the restricted dissimilarity dp defined in Remark 12
satisfies the assumptions in Proposition III.6: dp(x, y) ≤
d1 = |x − y| for all x ∈ [0, 1] if and only if p ∈ [1,∞[.
(i) For α = 1

2 and M (x, y) = x+y
2 we get a class of IV

restricted dissimilarity functions w.r.t. any admissible order:

dpIV (X ,Y ) =

[
dp
(
X + X

2
,
Y + Y

2

)
,

dp
(
X + X

2
,
Y + Y

2

)
+
w(X )+ w(Y )

2

]
for p ∈ [1,∞[.
(ii) For M (x, y) = min(x, y), a class of IV restricted

dissimilarity functions w.r.t. any admissible order arises:

dp,αIV (X ,Y ) =
[
dp (Kα(X ),Kα(Y )) , dp (Kα(X ),Kα(Y ))

+ min(w(X ),w(Y ))] .

for α ∈]0, 1[ and p ∈ [1,∞[.
(iii) Finally, we get a more general class of IV restricted

dissimilarity functions w.r.t. any admissible order, if we take
α ∈]0, 1[ and

M (x, y) = min
(
(1− β)x + βy, βx + (1− β)y

)
for β ∈ [max(α, 1 − α), 1] (or equivalently for β ∈
[0,min(α, 1− α)]) and p ∈ [1,∞[:

dp,α,βIV (X ,Y ) =
[
dp (Kα(X ),Kα(Y )) , dp (Kα(X ),Kα(Y ))

+ min
(
(1− β)w(X )+ βw(Y ), βw(X )

+ (1− β)w(Y )
)]
.

It is easy to see that for β = 1 (or equivalently for β = 0) we
get the class described in item (ii).

B. INTERVAL-VALUED NORMAL EN -FUNCTIONS
Definition 24: Let N : L([0, 1]) → L([0, 1]) be an

interval-valued strong negation w.r.t. a total order ≤TL with
the equilibrium point ε (i.e., a decreasing involutive function
such that N (ε) = ε). A function ENIV : L([0, 1])→ L([0, 1])
is called an interval-valued normal EN -function w.r.t. N if it
satisfies the following conditions:

1) ENIV (ε) = [1− w(ε), 1];
2) ENIV (X ) = 0L if and only if X = 0L or X = 1L;
3) If Y ≤TL X ≤TL ε or Y ≥TL X ≥TL ε, where w(X ) =

w(Y ), then ENIV (X ) ≥TL ENIV (Y ).
Example 25: Let X0 ∈ L([0, 1]) where X0 ≤TL [0, 1] and

X0 6= 0L . Then the function ENIV : L([0, 1]) → L([0, 1])
defined by:

ENIV (X ) =


0L , if X = 0L or X = 1L ,
[1− w(X ), 1], if X = ε,
X0, otherwise,

is a trivial example of IV normal EN -function w.r.t. any IV
strong negation and any admissible order.

The task is now to find a construction method for IV EN -
functions which preserve the width of input intervals.
Proposition 26: Let n : [0, 1] → [0, 1] be a strong

negation with equilibrium point e. Let α, β ∈]0, 1[, β 6= α

and N : L([0, 1]) → L([0, 1]) be a strong IV negation w.r.t.
≤α,β with equilibrium point ε and such that Kα(ε) = e. Let
EN : [0, 1]2→ [0, 1] be a normal EN -function w.r.t. n. Then,
the function ENIV : L([0, 1])→ L([0, 1]) given by

ENIV (X ) =
[
max

(
0,EN (Kα(X ))− w(X )

)
,

max
(
EN (Kα(X )) ,w(X )

)]
(6)

is an IV normal EN -function w.r.t. N . Moreover, ENIV is w-
preserving.

Proof: Equation (6) can be simplified:

ENIV (X ) =


[EN (Kα(X ))− w(X ),EN (Kα(X ))] ,
if EN (Kα(X )) ≥ w(X ),

[0,w(X )], otherwise.

(7)

Clearly, ENIV is well-defined andw-preserving, so it remains
to prove the three conditions in Definition 24:

1. Since EN (Kα(ε)) = EN (e) = 1 ≥ w(ε), we have

ENIV (ε) = [EN (Kα(ε))−w(ε),EN (Kα(ε))] = [1−w(ε), 1] .

2. ENIV (X ) = 0L if and only if EN (Kα(X )) = 0 and
w(X ) = 0 if and only if X ∈ {0L , 1L}.

3. Let w(X ) = w(Y ) and Y ≤α,β X ≤α,β ε. Then Kα(Y ) ≤
Kα(X ) ≤ Kα(ε) = e, hence EN (Kα(Y )) ≤ EN (Kα(X )) and
consequently ENIV (Y ) ≤α,β ENIV (X ). The same conclusion
can be drawn for Y ≥α,β X ≥α,β ε. �
Corollary 27: Let ≤XY be the Xu and Yager order and

N : L([0, 1]) → L([0, 1]) be an IV strong negation w.r.t.
≤XY with the equilibrium point ε such that ε + ε = 1. Let
EN : [0, 1]2→ [0, 1] be a normal EN -function w.r.t. a strong
negation n with the equilibrium point e = 1/2 such that
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EN (x) ≥ 1 − |2x − 1| for all x ∈ [0, 1]. Then, the function
ENIV : L([0, 1])→ L([0, 1]) given by

ENIV (X ) =

[
EN

(
X + X

2

)
− w(X ),EN

(
X + X

2

)]
(8)

is an IV normal EN -function w.r.t. N . Moreover, ENIV is w-
preserving.

Proof: Since (8) is a special case of (6), we only need
to show that EN

(
X+X
2

)
− w(X ) ≥ 0. Let X+X2 ≥ 0.5. Then

EN

(
X + X

2

)
− w(X ) ≥ 1− |X + X − 1| − w(X )

= 1− X − X + 1− X + X

= 2− 2X ≥ 0.

Similarly, EN
(
X+X
2

)
− w(X ) ≥ 2X ≥ 0 for X+X

2 < 0.5,
hence the the proof is completed. �
Remark 28: (i) It is worth pointing out that the assumption

ε+ε = 1 imposed on IV negation N and its equilibrium point
ε in Corollary 27 is not particularly restrictive. Almost all
strong negations defined in paper [1] (in which a deep study
of IV strong negations can be found) satisfy the condition.
(ii) Similarly, although the condition, Kα(ε) = e, imposed

on IV negation N in Proposition 26, looks too restrictive,
in [1] a wide class of IV negations satisfying this condition
was defined, see the following Proposition.

From now on, dα(c) denotes the maximal possible length
of an interval X ∈ L([0, 1]) such that Kα(X ) = c where c ∈
[0, 1] and α ∈]0, 1[. Then (see [1, Proposition 7]):

dα(Kα(X )) = ∧
(
Kα(X )
α

,
1− Kα(X )
1− α

)
.

Proposition 29: Let α ∈]0, 1[. For any X ∈ L([0, 1]) let

λα(X ) =
X − X

dα(Kα(X ))
=


(X − X )

α

Kα(X )
if Kα(X ) ≤ α,

(X−X )
1− α

1−Kα(X )
if Kα(X )≥α.

(9)

If n : [0, 1] → [0, 1] is a strong negation, then the mapping
Nα,n : L([0, 1])→ L([0, 1]) given by

Nα,n(0L) = 1L ,
Nα,n(1L) = 0L ,
Nα,n(X ) = Y , if X ∈ L([0, 1])\{0L , 1L},

(10)

where {
Kα(Y ) = n(Kα(X )),
λα(Y ) = ns(λα(X )) = 1− λα(X ),

is a strong IV negation on L([0, 1]) with respect to the order
≤α,β for any β 6= α.
Moreover, Nα,n has a unique equilibrium point ε, given by

Kα(ε) = e and λα(ε) = 1
2 , where e is the equilibrium point

of the strong negation n.

Proof: See [1, Theorem 4 and Proposition 8]. �
Example 30: (i) Let us consider the construction of IV

normal EN -functions given by Corollary 27. Consider the
normal EN -function E

p
N (x) = 1−|2x−1|p where p ∈ [1,∞[.

Let≤XY be the Xu and Yager order. Then (see [1, Theorem 2])
N (X ) = [c′ − r ′, c′ + r ′] where c = X+X

2 , r = X−X
2 ,

a = min(c, 1 − c), c′ = 1 − c and r ′ = a − r, is a
strong IV negation w.r.t. ≤XY with the unique equilibrium
point [1/4, 3/4]. Then

EN p
IV (X ) =

[
EpN

(
X + X

2

)
− w(X ),EpN

(
X + X

2

)]
is a class of IV normal EN -functions w.r.t. N .
(ii) Now let us consider the construction of IV normal EN -

functions given by Proposition 26. Consider the normal EN -
function EpN (x) = 1 − |2x − 1|p where p ∈]0,∞[. Let Nα,n
be the strong IV negation given in Proposition 29. Then

EN p,α
IV (X ) =

[
max

(
0,EpN (Kα(X ))− w(X )

)
,

max
(
EpN (Kα(X )) ,w(X )

)]
,

for α ∈]0, 1[, is a class of IV normal EN -functions w.r.t. Nα,n.

IV. AGGREGATION OF IV RESTRICTED DISSIMILARITY
FUNCTIONS AND IV NORMAL EN -FUNCTIONS
In this section, we propose a definition of dissimilarity mea-
sure and entropy for interval-valued fuzzy sets. We also
discuss a construction method based on the aggregation
of IV restricted dissimilarity functions and IV normal
EN -functions, respectively.

A. w-PRESERVING IV AGGREGATION FUNCTIONS
First we summarize the main results in [27] about w-
preserving IV aggregation functions which are going to be
useful in this section.
Definition 31: Let n ≥ 2. An (n-dimensional) interval-

valued (IV) aggregation function in L([0, 1]) with respect to
≤L is a mapping MIV : (L([0, 1]))n → L([0, 1]) which
verifies:
(i) MIV (0L , · · · , 0L) = 0L .
(ii) MIV (1L , · · · , 1L) = 1L .
(iii) MIV is a non-decreasing function with respect to ≤L .
We say that MIV : (L([0, 1]))n → L([0, 1]) is a decom-

posable n-dimensional IV aggregation function associated
with ML and MU , if there exist n-dimensional aggregation
functions ML ,MU : [0, 1]n → [0, 1] such that ML ≤ MU
and

MIV (X1, . . . ,Xn) =
[
ML

(
X1, . . . ,Xn

)
,MU

(
X1, . . . ,Xn

)]
(11)

for all X1, . . . ,Xn ∈ L([0, 1]).
We propose now a construction method of IV aggregation

functions w.r.t. ≤α,β .
Theorem 32: Let α, β ∈ [0, 1], β 6= α. Let M1,M2 :

[0, 1]n→ [0, 1] be aggregation functions whereM1 is strictly
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increasing. Then MIV : (L([0, 1]))n→ L([0, 1]) defined by:

MIV (X1, . . . ,Xn) = Y ,

where {
Kα(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)),
λα(Y ) = M2 (λα(X1), . . . , λα(X2)),

for all X1, . . . ,Xn ∈ L([0, 1]), is an IV aggregation function
with respect to ≤α,β .
Now we give a construction method of IV aggregation

functions w.r.t. ≤α,β which preserve the width of the input
intervals. To do so, we take into account the following two
properties.

(P1) M (cx1, . . . , cxn) ≥ cM (x1, . . . , xn) for all c ∈
[0, 1], x1, . . . , xn ∈ [0, 1].

(P2) M (x1, . . . , xn) ≤ 1−M (1− x1, . . . , 1− xn) for all
x1, . . . , xn ∈ [0, 1].

Theorem 33: Let α, β ∈ [0, 1], β 6= α. Let M1,M2 :

[0, 1]n → [0, 1] be aggregation functions such that M1 is
strictly increasing, M1(x1, . . . , xn) ≥ M2(x1, . . . , xn) for all
x1, . . . , xn ∈ [0, 1], M1 or M2 satisfy property (P1) and
M1 or M2 satisfy property (P2). Then MIV : (L([0, 1]))n →
L([0, 1]) defined by:

MIV (X1, . . . ,Xn) = Y ,

where {
Kα(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)),
w(Y ) = M2 (w(X1), . . . ,w(Xn)),

for all X1, . . . ,Xn ∈ L([0, 1]), is an IV aggregation function
with respect to ≤α,β .
Moreover, if M2 is idempotent, then MIV is w-preserving.
Lemma 34: Let MIV : (L([0, 1]))n → L([0, 1]) be defined

as in Theorem 33.

(i) If

• M1(x1, . . . , xn) = 0 if and only if x1 = . . . = xn =
0, and

• M2(x1, . . . , xn) = 0 if and only if x1 = . . . = xn =
0,

then MIV (X1, . . . ,Xn) = 0L if and only if X1 = . . . =
Xn = 0L . Moreover, if α 6= 0, then the restriction on
M2 can be skipped.

(ii) If

• M1(x1, . . . , xn) = 1 if and only if x1 = . . . = xn =
1 and

• M2(x1, . . . , xn) = 0 if and only if x1 = . . . = xn =
0,

then MIV (X1, . . . ,Xn) = 1L if and only if X1 = . . . =
Xn = 1L . Moreover, if α 6= 1, then the restriction on
M2 can be skipped.

(iii) MIV is idempotent if and only if M1 and M2 are
idempotent.

B. WIDTH-BASED IV DISTANCE MEASURES
In [26], Liu introduced a distance measure for fuzzy sets.
We adapt the definition to the interval-valued setting. How-
ever, we change the second axiom in line with Remark 16,
and we relax the fourth axiom in a similar way as the fourth
axiom in Definition 15.
Definition 35: Let≤L be an order in L([0, 1]). An interval-

valued distance measure on IVFS(U ) w.r.t. ≤L is a mapping
D : IVFS(U ) × IVFS(U ) → L([0, 1]) such that, for every
A,B,A′,B′ ∈ IVFS(U ),
(D1) D(A,B) = D(B,A);
(D2) D(A,B) = 0L if and only if A = B and A,B ∈ FS(U );
(D3) D(A,B) = 1L if and only if {A(u),B(u)} = {0L , 1L}

for all u ∈ U;
(D4) If A ⊆ A′ ⊆ B′ ⊆ B w.r.t. ≤L and w(A(u)) =

w(A′(u)) = w(B′(u)) = w(B(u)) for all u ∈ U, then
D(A,B) ≥L D(A′,B′).

In the following proposition, we propose a construction
method of IV distance measures by aggregating IV restricted
dissimilarity functions.
Proposition 36: Let U = {u1, . . . , un}. Let MIV :

(L([0, 1]))n → L([0, 1]) be an IV aggregation function w.r.t.
≤L such that MIV (X1, . . . ,Xn) = 1L if and only if X1 =
. . . = Xn = 1L , and MIV (X1, . . . ,Xn) = 0L if and only if
X1 = . . . = Xn = 0L . Let dIV : L([0, 1])2 → L([0, 1])
be a function satisfying axioms 1, 3, 4 from Definition 15
and such that dIV (X ,Y ) = 0L if and only if X = Y and
w(X ) = 0 for all X ,Y ∈ L([0, 1]). Then the function D :
IVFS(U )× IVFS(U )→ L([0, 1]), defined by:

D(A,B) = MIV
(
dIV (A(u1),B(u1)) , . . . , dIV (A(un),B(un))

)
for all A,B ∈ IVFS(U ), is an IV distance measure on
IVFS(U ) w.r.t. ≤L .

Proof: The proof is straightforward. �
In the following corollary, we show under which conditions

the function dIV given by Equation (3) can be used in the
previous proposition to obtain an IV distance measure.
Corollary 37: Let U = {u1, . . . , un} and α, β ∈]0, 1[

where β 6= α. Let MIV : (L([0, 1]))n → L([0, 1]) be
an IV aggregation function w.r.t. ≤α,β , defined in terms of
two aggregation functions M1,M2, as in Proposition 33. Let
dIV : L([0, 1])2 → L([0, 1]) be an IV restricted dissimilarity
function constructed by means of an idempotent symmetric
aggregation function M and a restricted dissimilarity func-
tion d, as in Proposition 20. Let D : IVFS(U )× IVFS(U )→
L([0, 1]) be a function defined by:

D(A,B) = MIV
(
dIV (A(u1),B(u1)) , . . . , dIV (A(un),B(un))

)
for all A,B ∈ IVFS(U ). Then
(i) D satisfies axiom (D1).
(ii) D satisfies axiom (D2), if

• M1(x1, . . . , xn) = 0 if and only if x1 = . . . = xn =
0;

• d(x, y) = 0 if and only if x = y;
• M (x, y) = 0 if and only if x = 0 and y = 0.
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(iii) D satisfies axiom (D3), if
• M1(x1, . . . , xn) = 1 if and only if x1 = . . . = xn =
1.

(iv) D satisfies axiom (D4) w.r.t. ≤α,β .
(v) Let M2 be idempotent. Then, for all A,B ∈ IVFS(U ),

w(A(u1)) = w(B(u1)) = . . . = w(A(un)) = w(B(un))
implies w(D(A,B)) = w(A(u1)).
Proof: Items (i), (iv) and (v) are straightforward.

(ii) By Lemma 34 (i), MIV
(
dIV (A(u1),B(u1)) , . . . ,

dIV (A(un),B(un))
)
= 0L if and only if dIV (A(ui),B(ui)) =

0L for all i = 1, . . . , n, which holds if and only ifKα(A(ui)) =
Kα(B(ui)) and w(A(ui)) = w(B(ui)) = 0 for all i = 1, . . . , n,
that is, A = B and A,B ∈ FS(U ).
(iii) By Lemma 34 (ii), MIV

(
dIV (A(u1),B(u1)) , . . . ,

dIV (A(un),B(un))
)
= 1L if and only if dIV (A(ui),B(ui)) =

1L for all i = 1, . . . , n, which holds if and only
if {Kα(A(ui)),Kα(B(ui))} = {0, 1} and M (w(Kα(A(ui))),
w(Kα(B(ui)))) = 0 for all i = 1, . . . , n; that is,
{A(ui),B(ui)} = {0L , 1L} for all i = 1, . . . , n. �
Example 38: Let α, β ∈]0, 1[ with β 6= α. A function

D : IVFS(U ) × IVFS(U ) → L([0, 1]), defined as in
Corollary 37, is an IV distance measure w.r.t. ≤α,β , if, for
instance, M1(x1, . . . , xn) = M2(x1, . . . , xn) =

x1+...+xn
n for

all x1, . . . , xn ∈ [0, 1]; d(x, y) = |x − y| and M (x, y) =
max{x, y} for all x, y ∈ [0, 1].
To see more clearly how our IV distance functions differ

from those already considered in the literature, consider the
function Di1 : IVFS(U )× IVFS(U )→ [0, 1] given by:

Di1(A,B) =
1
2n

n∑
i=1

|A(ui)− B(ui)| + |A(ui)− B(ui)|

which is one of the most commonly used expression of
distance for interval-valued fuzzy sets, see [20] and can be
considered as a representative of distances for interval-valued
fuzzy sets which provide a number in [0, 1] as result. If we
consider the interval-valued fuzzy set A1 where, for each
u ∈ U it holds that A1(u) = [0, 1], it holds that:

Di1(A1,A1) = 0

so the uncertainty linked to the membership values [0, 1] is
completely lost in the output. However, with the distance D
in Example 38, it comes out that:

D(A1,A1) = [0, 1].

so uncertainty in the inputs is preserved in the output. In fact,
note that, for any of the distances we have defined, as they
preserve the width, we would have obtained this same result.
Besides, there are not in the literature distances between
interval-valued fuzzy sets which are interval-valued andmake
use of admissible orders, as it is the case of our definition.

C. WIDTH-BASED IV ENTROPIES
From now on, given X ∈ L([0, 1]), we denote by X̃ the IVFS
A in U such that A(u) = X for all u ∈ U .

Definition 39 [8]: Let ≤TL be a total order in L([0, 1]).
Let N be a strong IV negation with respect to ≤TL with an
equilibrium point ε ∈ L([0, 1]). A function E : IVFS(U ) →
L([0, 1]) is an IV entropy on IVFS(U ) with respect to the
strong IV negation N if for all A,B ∈ IVFS(U ):
(E1) E(A) = 0L if and only if A is crisp;
(E2) E (̃ε) = [1− w(ε), 1];
(E3) E(A) ≤TL E(B), if w(A(u)) = w(B(u)) and A(u) ≤TL

B(u) ≤TL ε or A(u) ≥TL B(u) ≥TL ε for all u ∈ U.
The definition is taken from [8]. However, the third axiom

is relaxed in a similar way as the fourth axiom in Defini-
tion 15 and the second axiom is adjusted in accordance with
Remark 16.

Now we give a construction method of IV entropies in
terms of normal EN -functions.
Proposition 40: Let U = {u1, . . . , un} and let N :

L([0, 1]) → L([0, 1]) be a strong IV negation w.r.t. a
total order ≤TL . Let MIV : (L([0, 1]))n → L([0, 1]) be
an idempotent IV aggregation function w.r.t. ≤TL satisfying
MIV (X1, . . . ,Xn) = 0L if and only if X1 = . . . = Xn = 0L .
Let ENIV : L([0, 1]) → L([0, 1]) be an IV normal EN -
function w.r.t. N (given by Definition 24). Then, the function
E : IVFS(U )→ L([0, 1]), defined by:

E(A) = MIV
(
ENIV (A(u1)) , . . . ,ENIV (A(un))

)
for all A ∈ IVFS(U ), is an IV entropy on IVFS(U ) with
respect to the strong IV negation N .

Proof: The proof is straightforward. �
We study now under which conditions the function ENIV

given by Equation (6) can be used in the previous proposition
to obtain an IV entropy.
Corollary 41: Let U = {u1, . . . , un} and α, β ∈]0, 1[

with β 6= α. Let MIV : (L([0, 1]))n → L([0, 1]) be an
IV aggregation function w.r.t. ≤α,β defined by two aggre-
gation functions M1,M2, as in Proposition 33. Let ENIV :
L([0, 1]) → L([0, 1]) be an IV normal EN -function given in
terms of a normal EN -function EN , as in Proposition 26, with
N a strong IV negation w.r.t. ≤α,β with an equilibrium point
ε. Let E : IVFS(U )→ L([0, 1]) be a function defined by:

E(A) = MIV
(
ENIV (A(u1)) , . . . ,ENIV (A(un))

)
for all A ∈ IVFS(U ). Then
(i) E satisfies axiom (E1), if

M1(x1, . . . , xn) = 0 if and only if x1 = . . . = xn =
0.

(ii) E satisfies axiom (E2), if M1 and M2 are idempotent.
(iii) E satisfies axiom (E3) w.r.t. ≤α,β .
(iv) Let M2 be idempotent. Then, for all A ∈ IVFS(U ),

w(A(u1)) = . . . = w(A(un)) implies w(E(A)) =
w(A(u1)).
Proof: The proof of (i) follows from Lemma 34 (i). The

proof of (ii) is a consequence of Lemma 34 (iii), and the proof
of (iii) and (iv) is straightforward. �
Example 42: Let α, β ∈]0, 1[ where β 6= α. A func-

tion E : IVFS(U ) → L([0, 1]) defined as in Corol-
lary 41, is an entropy for IVFSs w.r.t. ≤α,β , if, for instance,
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M1(x1, . . . , xn) = M2(x1, . . . , xn) =
x1+...+xn

n for all
x1, . . . , xn ∈ [0, 1]; and EN is any EN -normal function.
In order to see the difference between the notion of IV

entropy that we have introduced and other that can be found
in the literature, let us consider the expression of entropy
proposed by Szmidt and Kacpryzk [37], given, for every
A ∈ IVFS(U ), by:

EK (A) =
1
n

n∑
i=1

(A(ui)− A(ui)).

Observe that the output of this entropy function is a real num-
ber. If we consider the entropy E obtained from Example 42
with the family of EN functions in Example 30, and if we take
A(u) = [1/4, 3/4] for every u ∈ U , we see that:

E(A) = [1/2, 1]

whereas

EK (A) = 1/2.

That is, again, as we are getting interval-valued outputs,
we are recovering the uncertainty reflected in the inputs.With
respect to interval-valued entropies in the literature, again this
is the first proposal using admissible orders, so no comparison
is possible to other methods.

V. IV-ENTROPY FOR IMAGE THRESHOLDING
Image segmentation is a process where an image is par-
titioned into regions that represent the objects in it [19].
In order to segment an image, all the pixels are assigned a
label representing the object to whom they belong. Pixels
with the same properties share the same label. The number
of labels assigned to an image depend on the level of detail
we want.

One of the most commonly used technique, known as
thresholding [36], assigns only two labels, based on the analy-
sis of the grey levels of the image. The image is analysed as if
there were only two regions, the object and the background.
The process consists in obtaining the best value of the grey
level intensity; that is, the value that best separates the two
regions of the image.

We present an illustrative example for image thresholding
where the best threshold to segment the image is selected as
the result of applying our IV-entropy. In our work, an image
is represented as a matrix with dimensions D = X × Y =
{1, ...,w} × {1, ..., h}, where w represents the width, i.e.,
the number of the columns of the image; and h, the height,
i.e., the number of rows of the image. Every element (pixel) of
the matrix can take values in a set of values L = {0, ..., 255}.

For the sake of the experiment, we use an adapted ver-
sion of the algorithm (Algorithm 1) presented by Huang and
Wang [21], where we build a series of fuzzy sets from differ-
ent membership functions to represent the image and obtain
the corresponding set of entropies. The algorithm consists
in building an IVFS for each grey level and calculate the
corresponding IV entropies in order to choose as threshold
the graylevel associated to the lowest value of the IV entropy.

Algorithm 1 Algorithm for Thresholding an Image Using
Entropy
Input: Image I with L intensity values.
Output: Image threshold t .
1: for each level of intensity t , (t = 0, t = 1, . . . ,L − 1)

do
2: Build k fuzzy sets Q1

t . . .Q
k
t ;

3: Build an IVFS Q̃t from the fuzzy sets Q1
t . . .Q

k
t ;

4: for each q ∈ {0, . . . ,L − 1} do
5: µQ̃t

(q) =

[
T
(
µQ1

t
(q), . . . ,

µQkt
(q)
)
, S
(
µQ1

t
(q), . . . , µQkt (q)

)]
,

with T a t-norm and S a t-conorm.
6: end for
7: Compute the entropy of each of the L interval valued

fuzzy sets Q̃t ;
8: end for
9: Select the threshold t with the smallest entropy.;

In this algorithm we can select a variety of fuzzy sets to
represent the background and the object of the image for
generating the sets Q1

t . . .Q
k
t representing the image.

In order to construct the fuzzy sets, we consider different
membership functions for which two maxima exist, in order
to be able to represent both the background and the object of
the image. The following expressions are used to build the
membership functions:

• REF-base membership Functions: if we use restricted
equivalence functions (REF, see [10]) to build the mem-
bership functions, the output will be greater when the
difference between the value of the intensity of a pixel
and themean of the intensities of the pixels which belong
to the object or the background is smaller. In addition,
we take a function F : [0, 1] → [0.5, 1] to scale
the membership function to ensure that the minimum
entropy is obtained when the membership degree is 1.
Then, given an image I and a threshold value t , we build
the membership function of each set Qt as follows:

µQt (q) =

{
F(REF(q,mb(t))), if q ≤ t.
F(REF(q,mo(t))), if q > t.

(12)

where mb(t) and mo(t) are the mean of the intensities
of the pixels which are assumed to belong to the back-
ground and the mean of the intensities of the pixels
which are assumed to belong to the object, respectively:

mo(t) =

∑t
q=0 q · h(q)∑t
q=0 h(q)

, mb(t) =

∑L−1
q=t+1 q · h(q)∑L−1
q=t+1 h(q)

(13)

with h(q) representing the number of pixels with inten-
sity q of the image.
The different REF used for the construction of the mem-
bership functions are given in Table 1.
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FIGURE 1. Comparison of the resulting images obtained with the thresholds from the EB, EK , EV ,
EIV entropy expressions with the ideal groundtruth provided by the dataset and those images
applying thresholds obtained with the Otsu, Area-based and Tizhoosh methods. Thresholded images
with our method are obtained from the REF membership construction (C1).

TABLE 1. Membership functions generated from different REF and F
functions used in Eq.(12).

• SZ-Function: as in [31], we use the S and Z functions
to represent the brightness and darkness of the image,
respectively. The S function is defined with the follow-
ing expression:

S(q, a, b, c) =



0, q ≤ a

2
(
q− a
c− a

)2

, a ≤ q ≤ b

1− 2
(
q− c
c− a

)2

, b ≤ q ≤ c

1, q ≥ c.

(14)

where a = t , b = a+ 60
2 and c = a+ 60.

Then the Z function is given by the negation of the
S function. As in [39] the union of the two functions
represents both the background and the object having
the following membership function:

µQt (q) =

{
S(q, a, b, c), if q < t.
1− S(q, a, b, c), if q ≥ t.

(15)

• Triangular-based membership function: we build a
membership function joining two triangular functions
centered on the mean of the intensities of the pixels
of the object (mo(t)) and the mean of the pixels of
the background of the object (mb(t)). To define these
functions, we take as width of the base of the triangle
the value 100.

In order to choose the IVFS that represents the best thresh-
old for the image we take the one with the lowest IV entropy.
In this step, we use the expression from Proposition 40. In
addition, and for comparison purposes, we obtain the thresh-
old for an image using the following entropy expressions:
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• Sambuc’s indetermination index [33]:

EB(Q̃) =
1
N

∑
(µQ̃(u)− µQ̃(u)) (16)

• Kacpryzk and Smidzt’s expression [37]:

EK (Q̃) =
1
N

∑ 1−∨
(
1− µQ̃(u), µQ̃(u)

)
1−∧

(
1− µQ̃(u), µQ̃(u)

) (17)

• Vlachos and Sergiadis’ expression [41]:

EV (Q̃)

=
1
N

∑ 2µ
Q̃
(u)(1− µQ̃(u))+ (µQ̃(u)− µQ̃(u))

2

µ
Q̃
(u)2 + (1− µQ̃(u))

2 + (µQ̃(u)−µQ̃(u))
2

(18)

Our experiments consist in constructing different fuzzy
sets with combinations of the considered membership func-
tions and comparing the results obtained with the new expres-
sion of IV entropy proposed in this work with the results
obtained with the ones in the literature. We perform three
experiments: the first one, considering only REF member-
ship functions (C1); the second one, combining REF and
triangular- based membership functions (C2); and the third
one, combining the three types of membership functions,
REF , triangular and S − Z -based (C3).
Moreover, we compare our method with some of the well-

known algorithms from the literature. To show the perfor-
mance of our method we take our best results for each image
and compare them to the results obtained with the following
methods:
• Otsu [30];
• Area [9] with ϕ1(x) = x2 and ϕ2(x) = x;
• Tizhoosh [40] with ϕ(x) = x and α = 2.
As we can see in Figure 1, the result of applying the

different entropy expressions is quite similar. When using the
EK expression, the threshold obtained for some of the images
is not acceptable, and removes some important parts of the
image, like in Im 1, where two of the dices disappear in the
background, or in Im 7, where part of the mask is removed.
In the case of the last two images, this expression is capable
of removing completely the shade that remains in the rest of
the cases.With the literature methods, we can also see that the
results are similar except in the case of Otsu’s method, where
in image Im1 an important part of a dice disappear, but, e.g.,
Im 10, it is one of the best.

A deeper analysis is done in Tables 2-4, where we show the
obtained threshold value for each image with each entropy
expression along with the percentage of pixels correctly
thresholded according to the ideal images provided by the
dataset. In Table 5 we also show the thresholds and results
obtained with our best performers compared to the literature
methods.

In Table 2 we can see how our new entropy expression is
comparable to the other expression, obtaining better results
in four of the images. It is worth mentioning that, as seen

TABLE 2. Results using different entropy expressions with REF only
membership function (C1).

TABLE 3. Results using different entropy expressions with REF and
triangular membership function (C2).

TABLE 4. Results using different entropy expressions with REF , triangular
and S − Z membership function (C3).

in Figure 1, the last two images are not correctly thresholded
and offer poor quantitative results, except in the case of the
EK expression.
In the case of Table 3, when adding triangular-based mem-

bership functions to the combination of membership func-
tions, the results obtained with our IV entropy expression are
comparable to the ones from the other expressions, in par-
ticular to EB, but remaining just under it, except for the last
two images, where the results are improved. In this second
approach, the last two images remain better thresholded with
the EK expression,
In the third round of experiments, when combining REF ,

triangular, and S − Z membership functions, the results
obtained by our new expression are the best ones, remaining
in some cases the same as with EB. In this particular exper-
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FIGURE 2. Comparison of the resulting images Im 9 and Im 10 obtained with the thresholds from the EB, EK , EV , EIV entropy expressions, with
the three combinations of membership functions (C1, C2, C3).

FIGURE 3. Comparison of the resulting entropy for Im9 and Im 10 on each of the three experiment combination (C1, C2, C3).

iment, our expression obtains good results for the last two
images, getting the best results in the case of Im 10
If we analyse in a more detailed way the particular cases

of Im 9 and Im 10 (Figure 2), we can see how the results
obtained with C1 and C2 are visually similar and quite bad,
not removing the shade on Im 9, except when using EK ,
but loosing some of the letters in the lower-right part of the
image. In Im 10, almost the same happens, but the best result
is obtained with EV . When using the C3 combination, all
the entropy expressions obtain similar results, and all the
shadows are removed in the case of Im 9. Concerning Im10,
the shadow is removed, but the bottom part of the text is
almost removed, too, losing important information of the
image.

The behaviour of the entropy in the case of the last two
images can bee seen in Figure 3, where we show the entropy
values along the different grey levels of the image for each
expression and with each membership function combination.
We can clearly see that when using the S − Z function (C3),
the entropy draws a peak, easing the threshold selection, and
therefore obtaining better results in the segmentation. In the
case of C1 and C3, the entropy does not present any abrupt
peak and is smoother, being more difficult to find the suitable
threshold as seen in the visual example (Figure 2).

As it can be deduced from the results shown in the experi-
ments, the new entropy expression is suitable for finding the
best threshold to segment images, when using REF only and
REF , triangular and S − Z -based functions combined.
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TABLE 5. Results using classical methods in the literature as Otsu, Area
and Tizhoosh methods.

Moreover, as shown in Table 5 our method outperforms the
classical ones in the majority of the images. Only one image,
Im 5, obtains better results with Otsu’s method and similar
performance is obtained with Tizhoosh’s method for Im 2 and
with Tizhoosh’s and Otsu’s ones in the case of Im 4. With
these results in mind and the ones comparing the different
entropies, we can state that our method is better than the
ones in the literature, since the use of interval-valued fuzzy
sets and our notion of IV entropy enables us to get a better
representation of the uncertainty linked to the representation
of the image.

VI. CONCLUSIONS
We have defined and studied interval-valued restricted dis-
similarity functions and interval-valued normalEN -functions.
For the first time in the literature, both concepts have been
defined with respect to a total order between intervals and
considering the width of the inputs. This has allowed us to
construct distance measures between interval-valued fuzzy
sets and entropies for interval-valued fuzzy sets. The utility
of these constructions is illustrated by an example in image
thresholding using an expression of the proposed entropy of
interval-valued fuzzy sets.

In future works we intend to consider the use of these new
functions in different image processing, decision making and
classification problems where fuzzy sets and interval-valued
fuzzy sets have shown themselves useful (see [12]).
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