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ABSTRACT This paper investigates the performance of the block multiple measurement vectors (BMMV)
algorithm in reconstructing block joint sparse matrices. We prove that if 8 obeys block restricted isometry
property with δK+1 < 1

√
K+1

, then BMMV perfectly reconstructs any block K -joint sparse matrix X from
observations Y = 8X in K iterations. We also show that BMMV may not reconstruct block K -joint sparse
matrices in K iterations under the condition δK+1 ≥ 1

√
K+1

. That is to say, the condition δK+1 < 1
√
K+1

is
optimal for the BMMV algorithm.

INDEX TERMS Sparse recovery, block restricted isometry property, block multiple measurement
vectors (BMMV) algorithm.

I. INTRODUCTION
In many application domains, such as multivariate regres-
sion [1], face recognition [2], direction of arrival estimation
of multiple narrowband signals [3], [4], we need to recon-
struct sparse matrix X ∈ RN×P from the model

Y = 8X, (1)

where Y ∈ RM×P is an observation matrix, 8 ∈ RM×N is a
sensing matrix with M � N .

If P = 1, then the model (1) degenerates to

y = 8x. (2)

The model (2) has a close relationship with a lot of appli-
cations, for more details, see [5]–[8] and references therein.
Many effective and efficient greedy algorithms were pro-
posed to reconstruct x in (2), for example, orthogonal
matching pursuit [9], [10], generalized orthogonal match-
ing pursuit [11] and subspace pursuit [13]. Various suffi-
cient conditions were proposed for perfect reconstructing in
model (2) with the above algorithms [12]–[21].

A number of effective and efficient algorithms have also
been proposed to reconstruct X in (1), such as, MMV
orthogonal matching pursuit and MMV order recursive

matching pursuit [22]. There are also some other reconstruct-
ing algorithms and theoretical results, see, e.g., [23]–[25].

In many applications area including reconstructing multi-
band signals [26], face recognition [27], the nonzero rows of
matrix X appear in a few blocks, that is to say, the matrix is
block joint sparse. To define block joint sparsity, we can view
matrix X as concatenation of blocks of rows. Like in [28],
we assume the lengths of all the blocks are d . Thus, we can
rewrite X as:

X = [X[1]T ,X[2]T , . . . ,X[L − 1]T ,X[L]T ]T ,

where, for 1 ≤ i ≤ L,

X[i] = [XT
d(i−1)+1,X

T
d(i−1)+2, . . . ,X

T
di−1,X

T
di]

T

with X j being the j-th row of X . The block joint sparsity of a
matrix X ∈ RN×P is K means that there are at most K blocks
X[i] are different from d × P zero matrix. Clearly, if P = 1,
then X becomes a vector, and a block K -joint sparse matrix
turns to a block K -sparse vector. The sensing matrix 8 can
be rewritten as:

8 = [8[1],8[2], . . . , 8[L − 1],8[L]],
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where, for 1 ≤ i ≤ L,

8[i] = [8d(i−1)+1,8d(i−1)+2, . . . , 8di−1,8di]

with 8j being the j-th column of 8.
To analyze the reconstruction performance of block algo-

rithms, the restricted isometry property (RIP) [5] was
extended to blockRIP in [29]. Specifically,8 is said to satisfy
the block RIP with parameter δBK if

(1− δBK )‖x‖22 ≤ ‖8x‖
2
2 ≤ (1+ δBK )‖x‖22 (3)

for all block K -sparse vectors x. The smallest constant
δBK satisfying (3) is called block restricted isometry con-
stant (RIC) of8 with order K . By abuse of notation, we sim-
ply denote it by δK .

Based on the multiple measurement vectors algorithm [2],
a block multiple measurement vectors algorithm (BMMV)
was proposed in [28], to reconstruct block joint sparse matri-
ces by taking the block joint sparsity into account. For 0 ⊂
{1, 2, . . . ,L}, we denote its cardinality by |0|. Let 8[0] ∈
RM×|0| be the submatrix of 8 that only consist of the blocks
of columns indexed by 0 and X[0] ∈ R|0|×P be the sub-
matrix of X that only consist of the blocks of rows indexed
by 0, respectively. Then formally the BMMV algorithm [28]
can be described as the following Algorithm 1.

Algorithm 1 BMMV [28]
Input: Y , 8, and sparsity K .
Initialize: k = 0,R0

= Y ,30 = ∅.
While k < K do
1: k = k + 1,
2: λk = arg max

1≤i≤L
‖8[i]TRk−1‖F ,

3: 3k = 3k−1
⋃
{λk},

4: X̂[3k ] = arg min
X :supp(X)=3k

‖Y −8[3k ]X‖F ,

5: Rk = Y −8[3k ]X̂[3k ].
End
Output: X̂ = arg min

X :supp(X)=3K
‖Y −8X‖2.

Like other reconstructing algorithms, sufficient conditions
of reconstructing block joint sparse matrices with BMMV are
very useful. It was shown in [28] that if 8 obeys δK+1 <

1
√
K+1

, then BMMV perfectly reconstructs block K -joint
sparse matrices in K iterations. Thus, a natural question
is: whether this condition can be further improved? We will
answer the question in this paper. Specifically, we will firstly
prove that if 8 obeys the condition δK+1 < 1

√
K+1

, then
BMMV perfectly reconstructs block K -joint sparse matrices
in K iterations. Then, we will also show that BMMV may
be failure in reconstructing block K -joint sparse matrices in
K iterations under the condition δK+1 ≥ 1

√
K+1

. Clearly,
our sufficient condition is better than that in [28], which is
δK+1 <

1
√
K+1

. Moreover, our sufficient condition is sharp.
Note that, when P = 1 (matrix X turns to vector x) and
d = 1, the BMMV algorithm reduces to orthogonal matching

pursuit [9], and the above sufficient condition reduces to the
condition in [15].

The rest of this paper is organized as follows. In Section II,
we introduce three useful lemmas which are prepared
for proving our main results which will be presented in
Section III. Finally, we summarize this paper in Section IV.
In the following, we introduce some notations.
Notations: Let ‖x‖2 and ‖8‖F denote the `2 norm of the

vector x and Frobenius norm of the matrix 8, respectively.
Let xi be the i-th entry of vector x. Let I be the identity
matrix, and 0 be zero matrix or zero column vector. Let
3 = supp(X) = {i : XT [i] 6= 0}, then |3| ≤ K for any
block K -joint sparse matrix X , where XT [i] is the transpose
of the i-th row of X . Let 3 \ 0 = {i|i ∈ 3 and i 6∈ 0} for
any set 0 ⊂ {1, 2, . . . ,L}. Let 3c

= {1, 2, . . . ,L} \ 3 and
0c = {1, 2, . . . ,L}\0, where L is the number of blocks ofX .
If8[0] has full column rank, then the pseudoinverse of8[0]
is 8[0]† = (8[0]T8[0])−18[0]T . Therefore, P[0] =
8[0]8[0]† and P⊥[0] = I − P[0] denote the projector
and orthogonal complement projector on the column space
of 8[0], respectively.

II. SOME USEFUL LEMMAS
We recall three lemmas, which are respectively
[30, Lemma 1], [30, Lemma 2] and [4, Lemma 1], for prov-
ing our main results.
Lemma 1: If8 satisfies the block RIP of orders K1 and K2

with K1 < K2, then δK1 ≤ δK2 .

Lemma 2: Let S1 and S2 satisfy |S2 \ S1| ≥ 1. Let 8 obey
|S1 ∪ S2|-order block RIP, then for any vector x ∈ R|S2\S1|,

(1− δ|S1∪S2|)‖x‖
2
2 ≤ ‖P

⊥[S1]8[S2 \ S1]x‖22
≤ (1+ δ|S1∪S2|)‖x‖

2
2.

In the following, we introduce [4, Lemma 1], which is
useful for proving Lemma 4 in Section III.
Lemma 3: Let B ∈ Rm×n and D ∈ Rn×p. Then

‖BD‖2F ≤ ‖D‖F ‖B
TBD‖F . (4)

For the sake of reading, we recall the proof of
[4, Lemma 1] as follows.

Proof: Define vectors u,w ∈ Rp as

ui = ‖Di‖2, wi = ‖BTBDi‖2, 1 ≤ i ≤ p,

where Di is the i-th column of D.
Then, we have

‖D‖F = ‖u‖2, ‖BTBD‖F = ‖w‖2.

Moreover,

‖BD‖2F =
p∑
i=1

‖BDi‖22 =
p∑
i=1

(
Di · BTBDi

)
≤

p∑
i=1

(
‖Di‖2 · ‖BTBDi‖2

)
= uTw

≤ ‖u‖2‖w‖2 = ‖D‖F ‖BTBD‖F ,
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both of the above inequalities are from the Cauchy-Schwarz
inequality. Therefore (4) holds. �

III. MAIN RESULTS
We will firstly prove that if 8 obeys δK+1 < 1

√
K+1

,
then BMMV perfectly reconstructs any block K -joint sparse
matrices inK iterations. Then, we will also show that BMMV
may be failure in reconstructing blockK -joint sparsematrices
in K iterations under the condition δK+1 ≥ 1

√
K+1

.

We start with the following Lemma 4, which provides
a lower bound on BMMV decision-metric for the columns
belonging to 3 \ 0.
Lemma 4: Let 0 ⊆ 3 with |0| < |3| (recall that 3 =

supp(X)), then

max
i∈3\0

‖8T [i]P⊥[0]8[3 \ 0]X[3 \ 0]‖F

≥
‖P⊥[0]8[3 \ 0]X[3 \ 0]‖2F
√
|3 \ 0|‖X[3 \ 0]‖F

. (5)

Proof: Since 0 ⊆ 3 with |0| < |3|, ‖X[3 \0]‖F 6= 0.
Thus,

max
i∈3\0

‖8T [i]P⊥[0]8[3 \ 0]X[3 \ 0]‖F

≥
1

√
|3 \ 0|

‖8T [3 \ 0]P⊥[0]8[3 \ 0]X[3 \ 0]‖F

(a)
=

1
√
|3\0|

‖(P⊥[0]8[3\0])TP⊥[0]8[3\0]X[3\0]‖F

(b)
≥

1
√
|3 \ 0|‖X[3 \ 0]‖F

‖P⊥[0]8[3 \ 0]X[3 \ 0]‖2F ,

where (a) is due to

(P⊥[0])TP⊥[0] = P⊥[0]P⊥[0] = P⊥[0], (6)

and (b) is from (4) with B = P⊥[0]8[3 \ 0] and D = X
[3 \ 0]. Thus, (5) holds. �
The following lemma provides an upper bound on the

BMMV decision-metric for the columns belonging to 3c.
Lemma 5: Let 8 in (1) obey the K + 1 order block RIP

with

δK+1 <
1

√
K + 1

(7)

and 0 ⊆ 3 with |0| < |3|. Then

max
j∈3c
‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F

<
‖P⊥[0]8[3 \ 0]X[3 \ 0]‖2F
√
|3 \ 0|‖X[3 \ 0]‖F

.

For convenience of reading, we postponed the proof of
Lemma 5 to Appendix.

From Lemmas 4 and 5, one can immediately get the fol-
lowing corollary, which shows the robustness of the BMMV
algorithm.

Corollary 1: Let 8 in (1) satisfy (7) and 0 ⊆ 3 with
|0| < |3|, then

max
i∈3\0

‖8T [i]P⊥[0]8[3 \ 0]X[3 \ 0]‖F

> max
j∈3c
‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F (8)

Corollary 1 is one of our main results, and it will play an
important role in proving Theorem 1, which is one of our
main theorems.
Remark 1: If 0 = ∅ in Corollary 1, then (8) becomes to

max
i∈3
‖8T [i]8X‖F > max

j∈3c
‖8T [j]8X‖F . (9)

Moreover, if d = 1, then (9) reduces to

max
i∈3
‖8T

i 8X‖2 > max
j∈3c
‖8T

j 8X‖2,

which is actually the main inequality presented by
[4, Lemma 2]. Thus, Corollary 1 is a generalized version
of [4, Lemma 2].

Then we give the main result of this paper.
Theorem 1: Suppose (7) holds in model (1). The BMMV

algorithm can perfectly reconstruct any block K -joint sparse
matrices in K iterations.

Proof: By Algorithm 1, we only need to prove that
BMMV selects an index in 3 in each iteration. We prove it
by mathematical induction. Suppose that BMMV selects an
index belonging to3 in each of the first k−1 iterations, which
means that 3k−1 ⊆ 3, where 1 ≤ k < |3|. This assumption
obviously holds for k = 1 since 30 = ∅. Then, we have to
show that BMMV selects an index in 3 at the k-th iteration,
by Algorithm 1, to show that λk ∈ 3.

By steps 4 and 5 of Algorithm 1, we can see that

‖8T [3k−1]Rk−1]‖F = 0.

To show λk ∈ 3, by step 2 of Algorithm 1, it suffices to prove

max
i∈3\3k−1

‖8T [i]Rk−1]‖F > max
j∈3c
‖8T [j]Rk−1]‖F . (10)

By step 4 of Algorithm 1,

X̂[3k−1] = (8T [3k−1]8[3k−1])−18T [3k−1]Y . (11)

Further, by step 5 of Algorithm 1 and (11),

Rk−1 = Y −8[3k−1]X̂[3k−1]

=
(
I−8[3k−1](8T [3k−1]8[3k−1])−18T [3k−1]

)
Y

(a)
= P⊥[3k−1]8X
(b)
= P⊥[3k−1]8[3]X[3]
(c)
= P⊥[3k−1]

×(8[3k−1]X[3k−1]+8[3 \3k−1]X[3 \3k−1])
(d)
= P⊥[3k−1]8[3 \3k−1]X[3 \3k−1], (12)

where (a) is due to Y = 8X and the definition of P⊥[3k−1],
(b) is because 3 = supp(X), (c) is because 3k−1 ⊆

3 (induction assumption), (d) is because P⊥[3k−1]8
[3k−1] = 0.
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By (12), for i ∈ 3 \3k−1 and j ∈ 3c, we get

‖8T [i]Rk−1]‖F
= ‖8T [i]P⊥[3k−1]8[3 \3k−1]X[3 \3k−1]‖F ,

‖8T [j]Rk−1]‖F
= ‖8T [j]P⊥[3k−1]8[3 \3k−1]X[3 \3k−1]‖F .

Thus, in order to show (10), we need to show

max
i∈3\3k−1

‖8T [i]P⊥[3k−1]8[3 \3k−1]X[3 \3k−1]‖F

> max
j∈3c
‖8T [j]P⊥[3k−1]8[3 \3k−1]X[3 \3k−1]‖F .

Applying Corollary 1 with 0 = 3k−1, one can see that the
aforementioned inequality holds, and so does (10). Complet-
ing the proof. �
Then, we investigate the necessary condition for perfect

reconstructing of block joint sparse matrices with BMMV.
Theorem 2: Let d,K ≥ 1 be arbitrary positive integers.

We can construct a block K -joint sparse matrix X , and a
matrix 8 obeys

δK+1 =
1

√
K + 1

such that BMMV can not reconstruct X in K iterations.
In order to prove Theorem 2, we firstly introduce Lemma 6,

which is obtained from the proof of [30, Theorem 2].
Lemma 6: Let d,K ≥ 1 be arbitrary positive integers and

9 =


K

K + 1
IdK

F(dK )×d

K + 1
FT(dK )×d

K + 1
K + 2
K + 1

Id

,
where

F(dK )×d = (Id , . . . , Id )T ∈ R(dK )×d . (13)

Then, 9 can be expressed as 9 = 8T8, where 8 ∈

Rd(K+1)×d(K+1) and 8 obeys the condition δK+1 = 1
√
K+1

.
Proof of Theorem 2: Let d,K ≥ 1 be two arbitrary positive

integers. Let 8 be defined in Lemma 6, and

X =
[
E(dK )×P
0d×P

]
∈ Rd(K+1)×P,

where E(dK )×P ∈ RdK×P with all entries being 1. Then,
we will show that BMMV fails to reconstruct X in K iter-
ations from Y = 8X .

Note that 8T8 = 9, we have

‖8T [K + 1]Y‖F = ‖(0d×dK , Id )8T8X‖F

= ‖(0d×dK , Id )9X‖F =
K
√
dP

K + 1
.

For 1 ≤ i ≤ K , it is easy to verify that

‖8T [i]Y‖F = ‖8T [i]8X‖F
= ‖(0d×(i−1)d , Id ,0d×(K+1−i)d )8T8X‖F
= ‖(0d×(i−1)d , Id ,0d×(K+1−i)d )9X‖F

=
K
√
dP

K + 1
.

That is to say,

max
i∈3
‖8T [i]Y‖F = max

j∈3c
‖8T [j]Y‖F .

Therefore, the BMMV algorithm fails in the first iteration,
i.e., BMMV can not exactly reconstruct the matrix X in K
iterations. �

IV. CONCLUSION
In this article, we studied block RIP based sufficient con-
ditions of perfect reconstructing block joint sparse matrices
with BMMV. If 8 satisfies the condition δK+1 < 1

√
K+1

,
then we have shown that BMMV can perfectly reconstruct
all block K -joint sparse matrices in K iterations. Besides,
we have also shown that BMMVmay fail to reconstruct block
K -joint sparse matrices in K iterations under the condition
δK+1 =

1
√
K+1

. This sufficient condition is sharp in the
sense that BMMVmay not reconstruct a block K -joint sparse
matrix in K iterations under the condition δK+1 ≥ 1

√
K+1

.

APPENDIX
PROOF OF LEMMA 5
In the following, we follow the proof of [10, Lemma 1]
and [15, Lemma II.2] to prove Lemma 5.

Proof: To prove the lemma, we show that for each given
j ∈ 3c,

‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F

<
‖P⊥[0]8[3 \ 0]X[3 \ 0]‖2F
√
|3 \ 0|‖X[3 \ 0]‖F

. (14)

Let

ν = −

√
|3 \ 0| + 1− 1
√
|3 \ 0|

, (15)

then it is easy to obtain

2ν
1− ν2

= −
√
|3 \ 0|,

1+ ν2

1− ν2
=
√
|3 \ 0| + 1. (16)

To simplify notation, we introduce a newmatrixZ ∈ Rd×P,
and the p-th column of Z is defined as

Zp =
8T [j]P⊥[0]8[3 \ 0]Xp[3 \ 0]
‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F

, 1 ≤ p ≤ P,

(17)

where Xp[3\0] is the p-th column of X[3\0] ∈ R|3\0|×P.
Then, ‖Z‖F = 1 and

P∑
p=1

ZTp8
T [j]P⊥[0]8[3 \ 0]Zp[3 \ 0]

= ‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F . (18)

Furthermore, we define

U =
[
X[3 \ 0]
0d×P

]
,

W = ν‖X[3 \ 0]‖F

[
0|3\0|d×P

Z

]
.
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For j ∈ 3c, denote

C = P⊥[0]
[
8[3 \ 0] 8[j]

]
. (19)

Then

P⊥[0]8[3 \ 0]X[3 \ 0] = CU (20)

and

‖U +W‖2F = (1+ ν2)‖X[3 \ 0]‖2F , (21)

‖ν2U −W‖2F = ν
2(1+ ν2)‖X[3 \ 0]‖2F . (22)

Moreover,
P∑
p=1

WT
pC

TCUp

(a)
= ν‖X[3 \ 0]‖F

P∑
p=1

ZTp8
T [j]P⊥[0]P⊥[0]

×8[3 \ 0]Xp[3 \ 0]

(b)
= ν‖X[3 \ 0]‖F

P∑
p=1

ZTp8
T [j]P⊥[0]8[3 \ 0]Xp[3 \ 0]

(c)
= ν‖X[3 \ 0]‖F‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F ,

(23)

where (a) follows from (19) and (20); (b) is due to (6) and (c)
is from (18).
Applying (23) yields

‖C(U +W )‖2F

=

P∑
p=1

‖C(Up +Wp)‖22

=

P∑
p=1

(‖CUp‖
2
2 + ‖CWp‖

2
2 +W

T
pC

TCUp)

= ‖CU‖2F + ‖CW‖
2
F + 2

P∑
p=1

WT
pC

TCUp

= ‖CU‖2F + ‖CW‖
2
F

+ 2ν‖X[3 \ 0]‖F‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F .

Similarly, by (23), we obtain

‖C(ν2U −W )‖2F
= ν4‖CU‖2F + ‖CW‖

2
F

− 2ν3‖X[3 \ 0]‖F‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F .

Applying the aforementioned equations yields

‖C(U +W )‖2F − ‖C(ν
2U −W )‖2F

= (1− ν4)‖CU‖2F + 2ν(1+ ν2)

×‖X[3 \ 0]‖F‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F

= (1− ν4)(‖CU‖2F +
2ν

1− ν2

×‖X[3 \ 0]‖F‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F )

= (1− ν4)(‖CU‖2F −
√
|3 \ 0|

×‖X[3 \ 0]‖F‖8T [j]P⊥[0]8[3 \ 0]X[3 \ 0]‖F ),

(24)

where the last equality is because of the first equality in (16).
By (15), one can check that 1− ν4 > 0. Thus, if

‖C(U +W )‖2F > ‖C(ν
2U −W )‖2F , (25)

then by (24), we have

‖CU‖22
√
|3\0|‖X[3\0]‖F

> ‖8T [j]P⊥[0]8[3\0]X[3\0]‖F .

By combing with (20), one can see that (14) holds and which
implies the lemma holds. Therefore, what remains to show
is (25). One can check that

‖C(U +W )‖2F − ‖C(ν
2U −W )‖2F

=

P∑
p=1

(‖C(Up +Wp)‖22 − ‖C(ν
2Up −Wp)‖22)

(a)
≥ (1− δ|3|+1)

P∑
p=1

‖(Up +Wp)‖22

− (1+ δ|3|+1)
P∑
p=1

‖(ν2Up −Wp)‖22

= (1− δ|3|+1)‖(U +W )‖2F − (1+ δ|3|+1)‖(ν2U −W )‖2F
(b)
= (1− δ|3|+1)(1+ ν2)‖X[3 \ 0]‖2F
− (1+ δ|3|+1)ν2(1+ ν2)‖X[3 \ 0]‖2F

= (1+ ν2)‖X[3 \ 0]‖2F
(
(1− δ|3|+1)− (1+ δ|3|+1)ν2

)
= (1+ ν2)‖X[3 \ 0]‖2F

(
(1− ν2)− δ|3|+1(1+ ν2)

)
= (1− ν4)‖X[3 \ 0]‖2F

(
1−

1+ ν2

1− ν2
δ|3|+1

)
(c)
= (1− ν4)‖X[3 \ 0]‖2F

(
1−

√
|3 \ 0| + 1δ|3|+1

) (d)
> 0.

where (a) follows from Lemma 2 and (19), (b) is due to (21)
and (22), (c) follows from the second equality in (16), and (d)
is from (7) and Lemma 1. �
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