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ABSTRACT This paper is devoted to investigating the observer-based fault detection (FD) filters for nonlin-
ear distributed processes described by hyperbolic partial differential equations (PDEs). To this end, the PDE
systems are first approximated by the Takagi–Sugeno fuzzy models with spatiotemporal uncertainties. Then,
the fuzzy FD filter is developed for the hyperbolic PDE systems to guarantee that the residual signal is robust
against process inputs including disturbances. The dynamic threshold is designed to ensure the real-time
detection of potential faults. It is worth mentioning that the distributed weighting factors are used to weigh
the residual signal such that the overall fault detectability can be optimized.

INDEX TERMS Fault detection filter, distributed parameter nonlinear systems, fuzzy dynamic modeling.

I. INTRODUCTION
Over the past decades, observer-based fault detection (FD)
and control for industrial processes has become one signifi-
cant research subject. Numerous approaches have been inves-
tigated for linear systems, see for instance [1]–[5] and the
references therein. Most recently, intensive research efforts
have been made to the nonlinear FD and reliable control
approaches [6]–[11]. However, the main focus of the existing
results is on those systems that can be expressed by linear or
ordinary differential equations (ODEs). Nevertheless, many
industrial processes, such as heat conduction and transport-
reaction processes, are inherently distributed in space and
time, which can be generally described by nonlinear partial
differential equations (PDEs) [12]–[14]. Roughly speaking,
the PDE systems can be classified into elliptic, hyperbolic,
parabolic and mixed type based on the spatial differential
operator properties [15]. Owning to the infinite-dimensional
nature of PDE processes, the fault detection methodologies
for ODE processes can not be applied directly to the fault
detection system design for PDE processes.

Over the past decades, considerable research efforts from
both the application and academic fields have been made
to the analysis and control design schemes for nonlinear

processes based on Takagi-Sugeno fuzzy dynamic model-
ing technique [16]–[19]. As a result, the framework of the
controller and filter design schemes for fuzzy systems have
been very well established [20]–[22]. Moreover, some results
on fuzzy observer-based FD approaches for nonlinear pro-
cesses have been proposed in [23]–[29]. Inspired by these
successful results, significant research efforts have been ded-
icated to the T-S fuzzy control design approaches for non-
linear PDE systems based on the fuzzy dynamic modeling
technique [30]–[36]. Noting that the dominant dynamics
of the parabolic PDE system can be approximated by an
ODE system, the stabilization issues for H∞ fuzzy control
for nonlinear parabolic PDE systems are addressed via the
low-dimensional approximations by applying the Galerkin’s
method [37], [38]. On the other hand, owing to the fact that
the spatial differential operator (SDO) of hyperbolic PDE
systems include eigenmodes of nearly the same amount of
energy, the infinite-dimensional dynamics of the hyperbolic
PDE systems should be taken into consideration in the con-
troller design. To cope with this problem, the systematic
stability/performance analysis for a class of nonlinear hyper-
bolic PDE systems are studied by applying the recursive
linear matrix inequality algorithm [31], [32], [34]. So far,
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very limited attention has been dedicated to develop the
fuzzy fault detection schemes for nonlinear hyperbolic PDE
systems.

This paper is devoted to investigate the distributed
observer-based fault detection filters for nonlinear hyperbolic
PDE systems via fuzzy modeling technique. To be specific,
the T-S fuzzy model of the nonlinear hyperbolic PDE system
is established first. Then the fuzzy fault detection filter is
developed for the PDE systems in terms of spatial differen-
tial linear matrix inequalities to attain the robustness against
uncertainty and process inputs. A recursive algorithm is
applied to solve the obtained spatial differential linear matrix
inequalities. Specifically, the distributed weighting factors
are used to weight the residual signal such that the overall
fault detectability can be optimized. Moreover, a dynamic
threshold which is a function of input variables is proposed.

This paper is organized as follows. In Section II, the pre-
liminaries on hyperbolic PDE systems and the problem for-
mulation is given. The design method of fuzzy distributed
fault detection filter for PDE systems is investigated in
Section III. Examples are given in Section IV to show the
effectiveness of the proposed approaches.
Notation: The notations adopted in this paper is fairly stan-

dard. Sym{M} represents M +MT . ? denotes the symmetric
elements in a symmetric matrix. The space-varying matrix
P(3) is said to be positive definite for each 3 ∈ [k1, k2]
if P(3) > 0,3 ∈ [k1, k2]. Hku = L2([k1, k2];Rku )
represents the Hilbert space of ku-dimensional square inte-
grable vector u(3, t) ∈ Rku ,3 ∈ [k1, k2], t ≥ 0 with
inner product and norm given by < u1(3, t), u2(3, t) >=∫ k2
k1
uT1 (3, t)u2(3, t) d3, where u1(3, t), u2(3, t) ∈ Hku .

II. PROCESS DESCRIPTION AND
PROBLEM FORMULATION
Consider the following class of nonlinear hyperbolic PDE
systems

∂z(3, t)
∂t

= ϕ(3)
∂z(3, t)
∂3

+ f (z(3, t),3)

+ g2(z(3, t),3)w(3, t)+ g1(z(3, t),3)u(3, t)

y(3, t) = h(z(3, t),3)+ m1(z(3, t),3)u(3, t)

+m2(z(3, t), l)w(3, t) (1)

where z(3, t) ∈ Rkz , u(3, t) ∈ Rku , y(3, t) ∈ Rky repre-
sents the vector for the state, the input and the output, respec-
tively; w(3, t) ∈ Rkw indicates the disturbances; t denotes
the time; 3 ∈ [k1, k2] represents the position; f (z(3, t),3),
g1(z(3, t),3), g2(z(3, t),3), h(z(3, t),3), m1(z(3, t),3),
ϕ(3), andm2(z(3, t),3) are continuously differentiable non-
linear functions.

It is assumed that the boundary conditions for the hyper-
bolic PDE system (1) in this paper is given by

M1z(k1, t)+M2z(k2, t) = l(t) (2)

where l(t) is a continuous function of time. M1 and M2 are
given real matrices of appropriate dimensions.

In this paper, the following T-S fuzzy system is adopted to
describe the dynamics of the PDE system (1).
Plant Rule <i: IF θ1(3, t) is Ni

1 and θ2(3, t) is N
i
2 and · · ·

and θd (3, t) is Ni
d , THEN

∂z(3, t)
∂t

= ϕ(3)
∂z(3, t)
∂3

+ (Ai(3)+1Ai(3, t))z(3, t)

+ (Bi(3)+1Bi(3, t))u(3, t)

+ (Ei(3)+1Ei(3, t))w(3, t)

y(3, t) = (Ci(3)+1Ci(3, t))z(3, t)

+ (Di(3)+1Di(3, t))u(3, t)

+ (Fi(3)+1Fi(3, t))w(3, t), i∈{1, 2, · · · , ν}

(3)

where Ai(3),Bi(3),Ci(3),Di(3),Ei(3),Fi(3) represent
system matrices for the ith local model obtained by lin-
earization around operation points; ν represents the number
of the fuzzy rules; Ni

j(i = 1, · · · , ν) represents the fuzzy
sets; θ (3, t) =

[
θ1(3, t) · · · θd (3, t)

]
denotes the premise

variables for the fuzzy systems; <i indicates the ith fuzzy
inference rule; 1Ai(3, t),1Bi(3, t),1Ci(3, t),1Di(3, t),
1Ei(3, t),1Fi(3, t) denote the spatiotemporal uncertainties
of the following form[
1Ai(3, t) 1Bi(3, t) 1Ei(3, t)
1Ci(3, t) 1Di(3, t) 1Fi(3, t)

]
=

[
T1i(3)
T2i(3)

]
1i(3, t)

[
V1i(3) V2i(3) V3i(3)

]
(4)

with 1i(3, t) as the time-varying uncertainties bounded by

1T
i (3, t)1i(3, t) ≤ δ1I. (5)

δ1 > 0 is a constant, T1i(3),T2i(3),V1i(3),V2i(3),V3i(3)
are known matrices of appropriate dimensions.

Let µi(θ (3, t)), i = 1, · · · , ν represent the fuzzy member-

ship function for the inferred fuzzy set Ni
:=

d∏
j=1

Ni
j

µi(θ (3, t))

=

d∏
j=1
υij(θj(3, t))

ν∑
i=1

d∏
j=1
υij(θj(3, t))

≥ 0,
ν∑
i=1

µi(θ (3, t)) = 1 (6)

where υij(θj(3, t)) ≥ 0 is the grade of membership function
of θj(3, t) in Ni

j. Notice that the fuzzy membership function
adopted here is also distributed in space. Throughout of the
paper, we denote µi as µi(θ (3, t)) for ease of presentation.
With the aid of standard fuzzy inference approach, the

fuzzy PDE system can be described in the following form

∂z(3, t)
∂t

= ϕ(3)
∂z(3, t)
∂3

+ (A(µ,3)+1A(µ,3))z(3, t)

+ (B(µ,3)+1B(µ,3))u(3, t)

+ (E(µ,3)+1E(µ,3))u(3, t)
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y(3, t) = (C(µ,3)+1C(µ,3))z(3, t)
+ (D(µ,3)+1D(µ,3))u(3, t)

+ (F(µ,3)+1F(µ,3))w(3, t) (7)

where

A(µ,3) =
ν∑
i=1

µiAi(3), B(µ,3) =
ν∑
i=1

µiBi(3)

E(µ,3) =
ν∑
i=1

µiEi(3), C(µ,3) =
ν∑
i=1

µiCi(3)

D(µ,3) =
ν∑
i=1

µiDi(3), F(µ,3) =
ν∑
i=1

µiFi(3)

1A(µ,3) =
ν∑
i=1

µi1Ai(3), 1B(µ,3) =
ν∑
i=1

µi1Bi(3)

1E(µ,3) =
ν∑
i=1

µi1Ei(3), 1C(µ,3) =
ν∑
i=1

µi1Ci(3)

1D(µ,3)=
ν∑
i=1

µi1Di(3), 1F(µ,3)=
ν∑
i=1

µi1Fi(3).

For fault detection purpose, the following distributed fuzzy
residual generator is adopted.
Residual Generator Rule<i: IF θ1(3, t) isNi

1 and θ2(3, t)
is Ni

2 and · · · and θd (3, t) is N
i
d , THEN

∂ ẑ(3, t)
∂t

= ϕ(3)
∂ ẑ(3, t)
∂3

+ Ai(3)ẑ(3, t)+ Bi(3)u(3, t)

+Li(3)(y(3, t)− ŷ(3, t))

ŷ(3, t) = Ci(3)ẑ(3, t)+ Di(3)u(3, t)

r(3, t) = ωi(3)
(
y(3, t)− ŷ(3, t)

)
, i ∈ {1, 2, · · · , ν}

(8)

where ẑ(3, t) ∈ Rkz denotes the estimate of the state;
ŷ(3, t) ∈ Rky represents the estimate of the output;
ωi(3) represents the weighting factor of each local model;
Li(3) denotes the gain matrix for the fuzzy residual generator
of the ith model; r(3, t) ∈ Rky indicates the residual signal.

Likewise, the global fuzzy residual generator can be
expressed as follows

∂ ẑ(3, t)
∂t

= ϕ(3)
∂ ẑ(3, t)
∂3

+A(µ,3)ẑ(3, t)+ B(µ,3)

× u(3, t)+ L(µ,3)(y(3, t)− ŷ(3, t))
ŷ(3, t) = C(µ,3)ẑ(3, t)+D(µ,3)u(3, t)

r(3, t) = ω(3,µ)
(
y(3, t)− ŷ(3, t)

)
(9)

where

L(µ,3) =
ν∑
i=1

µiLi(3), ω(µ,3) =
ν∑
i=1

µiωi(3).

Remark 1: It is noteworthy that the weighting factors
ω(3,µ) are introduced to circumvent the conservatism of
standard fuzzy approaches which generally handle the overall
fuzzy systems in a uniform manner.

In this paper, we are devoted to investigate the L2 type of
observer-based FD approach for nonlinear hyperbolic PDE
processes (1). For our purpose, the residual generator will be
first designed such that∫ τ

0
ϕ1(‖r(3, t)‖)dt ≤

∫ τ

0
ϕ2(‖u(3, t)‖)dt

+

∫ τ

0
ϕ3(‖w(3, t)‖)dt

+

∫ k2

k1
ρo(z(3, 0), ẑ(3, 0))d3 (10)

where ϕ1 (·) ∈ K, ϕ2 (·) ∈ K∞, ϕ3 (·) ∈ K∞ and ρo(·) ≥ 0
is a positive constant with respect to given z(3, 0), ẑ(3, 0).
Together with the following dynamic (adaptive) threshold

and evaluation function

J (r) =
∫ T

0
ϕ1(‖r(3, t)‖)dt

Jth =
∫ T

0
ϕ2(‖u(3, t)‖)dt +

∫ T

0
ϕ3(‖w(3, t)‖)dt + δ̄0

ρ̄0 = sup
z(3,0),ẑ(3,0)

∫ k2

k1
ρo(z(3, 0), ẑ(3, 0))d3 (11)

the following decision logic will promise reliable fault
detection system{

J (r) > Jth H⇒ faulty
J (r) ≤ Jth H⇒ fault-free.

(12)

Remark 2: It is important to note that
∫ T
0 ϕ1(‖r(3, t)‖)dt

is a general form of the L2-norm of the signal r(3, t) [39].

III. DISTRIBUTED FAULT DETECTION SYSTEM DESIGN
In this section, the distributed fuzzy FD approach will be
investigated via distributed Lyapunov function.

A. DISTRIBUTED FAULT DETECTION FILTER DESIGN
By defining e(3, t) = z(3, t) − ẑ(3, t), η(3, t) =
[ eT (3, t) z(3, t) ]T and ξ (3, t) = [ uT (3, t) wT (3, t) ]T ,
we have
∂η(3, t)
∂t

= ϕ̄(3)
∂η(3, t)
∂3

+(Ā(µ,3)+1Ā(µ,3))η(3, t)

+ (B̄(µ,3)+1B̄(µ,3))ξ (3, t)
r(3, t) = (C̄(µ,3)+1C̄(µ,3))η(3, t)+ (D̄(µ,3)

+1D̄(µ,3))ξ (3, t) (13)

where ϕ̄(3), D̄(µ,3), 1D̄(µ,3), Ā(µ,3), B̄(µ,3),
1Ā(µ,3), 1B̄(µ,3), 1C̄(µ,3), and C̄(µ,3) are shown at
the top of the next page.

In what follows, the main results for the distributed fuzzy
fault detection filter are summarized in the following theo-
rem.
Theorem 1: Consider the hyperbolic PDE systems (1) and

the distributed fuzzy residual generators (8), if there exist
matrices

P(3) =
[
P1(3) 0

0 P2(3)

]
> 0 (14)
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ϕ̄(3) =
[
ϕ(3) 0
0 ϕ(3)

]
D̄(µ,3) =

[
0 F(µ,3)

]
1D̄(µ,3) =

[
1D(µ,3) 1F(µ,3)

]
Ā(µ,3) =

[
A(µ,3)− L(µ,3)C(µ,3) 0

0 A(µ,3)

]
B̄(µ,3) =

[
0 E(µ,3)− L(µ,3)F(µ,3)

B(µ,3) E(µ,3)

]
1Ā(µ,3) =

[
0 1A(µ,3)− L(µ,3)1C(µ,3)
0 1A(µ,3)

]
1B̄(µ,3) =

[
1B(µ,3)− L(µ,3)1D(µ,3) 1E(µ,3)− L(µ,3)1F(µ,3)

1B(µ,3) 1E(µ,3)

]
1C̄(µ,3) =

[
0 1C(µ,3)

]
, C̄(µ,3) =

[
C(µ,3) 0

]
.

2i(3) =

[
�ii(3) ?

T̄ Ti (3)5
T
ij (3) −ϑiiI

]
, 5ij(3) =

P(3)L̄j(3)0
Z̄i(3)



2̄ij(3) =


�ij(3)+�ji(3) ? ?

T̄ Ti (3)5
T
ij (3) −ϑijI ?

T̄ Tj (3)5
T
ji (3) 0 −ϑjiI

 �ij(3) =


0
(1)
ij (3) ? ?

0
(2)
ij (3) 0

(3)
i (3) ?

ωi(3)C̄i(3) ωi(3)D̄i(3) −I


0
(1)
ij (3) = 9(3)+

[
Sym

{
P1(3)Ai(3)− Qj(3)Ci(3)

}
?

0 Sym {P2(3)Ai(3)} + ϑijV T
1i (3)V1i(3)

]

0
(2)
ij (3) =

[
0 BTi (3)P

T
2 (3)+ ϑijV

T
2i (3)V1i(3)

ETi (3)P
T
1 (3)− F

T
i (3)Q

T
j (3) ETi (3)P

T
2 (3)+ ϑijV

T
3i (3)V1i(3)

]

0
(3)
i (3) =

[
−I+ ϑijV T

2i (3)V2i(3) ?

ϑijV T
3i (3)V2i(3) −I+ ϑijV T

3i (3)V3i(3)

]

T̄i(3) =

[
δ1T1i(3)

δ1T2i(3)

]
, L̄j(3) =

[
I −Lj(3)

I 0

]
C̄i(3) =

[
Ci(3) 0

]
, D̄i(3) =

[
0 Fi(3)

]
Z̄i(3) =

[
0 ωi(3)I

]
9(3) = (δ(3− k2)− δ(3− k1))P(3)−

∂

∂3
(P(3)ϕ̄(3)) (17)

Qi(3), 1 ≤ i ≤ ν and constant ϑij > 0, 1 ≤ i < j ≤ ν,

ωi(3) > 0, 1 ≤ i ≤ ν, such that

2i(3) < 0, 1 ≤ i ≤ ν (15)

2̄ij(3) < 0, 1 ≤ i < j ≤ ν (16)

where (17), as shown at the top of this page, then, we have
Li(3) = (P1(3))−1 Qi(3) and∫ T

0
||r(·, t)||22dt ≤

∫ T

0
ϕ2(‖u(3, t)‖)dt + ρ0

+

∫ T

0
ϕ3(‖w(3, t)‖)dt (18)

where

ϕ2(‖u(3, t)‖) =
∫ k2

k1
uT (3, t)u(3, t)d3

ϕ2(‖w(3, t)‖) =
∫ k2

k1
wT (3, t)w(3, t)d3

ρ0 =

∫ k2

k1
ηT (3, 0)P(3)η(3, 0)d3. (19)

Proof: Consider the following type of Lyapunov
function

V (t) =
∫ k2

k1
ηT (3, t)P(3)η(3, t)d3 (20)

where P(3) > 0 is defined on the interval [k1 k2].
It is evident that (18) holds provided that the following

inequality is feasible

V̇ (t)+ ||r(·, t)||22 − ||u(·, t)||
2
2 − ||w(·, t)||

2
2 < 0. (21)

It follows directly from (13) and (20) that the left-hand-side
(LHS) of (21) is equivalent to

LHS(21) =
∫ k2

k1
ηT (3, t)P(3)

∂η(3, t)
∂t

d3

+

∫ k2

k1

∂ηT (3, t)
∂t

P(3)η(3, t)d3

−

∫ k2

k1
ξT (3, t)ξ (3, t)d3

+ (ω(3,µ))2
∫ k2

k1

[
zT (3, t) ξT (3, t)

]
×

[
(C̄(µ,3)+1C̄(µ,3))T
(D̄(µ,3)+1D̄(µ,3))T

]
(?)d3. (22)
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It is noted that∫ k2

k1
ηT (3, t)P(3)ϕ̄(3)

∂η(3, t)
∂3

d3

+

∫ k2

k1

∂ηT (3, t)
∂3

P(3)ϕ̄(3)η(3, t)d3

= ηT (3, t)P(3)ϕ̄(3)η(3, t)|3=k23=k1

−

∫ k2

k1
ηT (3, t)

∂

∂3
(P(3)ϕ̄(3)) η(3, t)d3. (23)

By introducing the following Dirac delta function

δ(3) =

{
∞, 3 = 0
0, 3 6= 0∫

∞

−∞

δ(3)d3 = 1 (24)

one has that

LHS(23) = −
∫ k2

k1
ηT (3, t)

∂

∂3
(P(3)ϕ̄(3)) η(3, t)d3

+

∫ k2

k1
(δ(3− k2)− δ(3− k1))ηT (3, t)

×P(3)ϕ̄(3)η(3, t)d3. (25)

Therefore, we have

LHS(21) = 2
∫ k2

k1
ηT (3, t)P(3)(B̄(µ,3)

+1B̄(µ,3))ξ (3, t)d3

+

∫ k2

k1
ηT (3, t)Sym{P(3)(Ā(µ,3)

+1Ā(µ,3))}η(3, t)d3

+ (ω(3,µ))2
∫ k2

k1

[
zT (3, t) ξT (3, t)

]
×

[
(C̄(µ,3)+1C̄(µ,3))T
(D̄(µ,3)+1D̄(µ,3))T

]
(?)d3

−

∫ k2

k1
ξT (3, t)ξ (3, t)d3+

∫ k2

k1
ηT (3, t)

×9(3)η(3, t)d3 (26)

where

9(3) = (δ(3− k2)− δ(3− k1))P(3)−
∂

∂3
(P(3)ϕ̄(3)) .

(27)

It is evident that by Schur complement, (21) holds provided
the condition (28), is feasible as shown at the bottom of this
page.

By expanding the fuzzy basis function of (28), one has that
ν∑
i=1

ν∑
j=1

µiµj4ij(3) < 0 (29)

where

4ij(3) = �ij(3)+ sym
{
5j(3)1i(3)

}
�ij(3) =

9(3)+ Sym{P(3)Āij(3)} ? ?

(P(3)B̄ij(3))T − I ?

ωi(3)C̄i(3) ωi(3)D̄i(3) − I


1i(3) =

[ [
0 1Ai(3)

] [
1Bi(3) 1Ei(3)

]
0[

0 1Ci(3)
] [

1Di(3) 1Fi(3)
]

0

]

5ij(3) =

P(3)L̄j(3)0
Z̄i(3)

 , Z̄ (3) =
[
0 ωi(3)I

]
L̄j(3) =

[
I −Lj(3)
I 0

]
, D̄i(3) =

[
0 Fi(3)

]
Āij(3) =

[
Ai(3)− Lj(3)Ci(3) 0

0 Ai(3)

]
C̄i(3) =

[
Ci(3) 0

]
B̄ij(3) =

[
0 Ei(3)− Lj(3)Fi(3)

Bi(3) Ei(3)

]
.

As a result, the following inequality implies (29)

4ii(3) < 0, 1 ≤ i ≤ ν (30)

4ij(3)+4ji(3) < 0, 1 ≤ i < j ≤ ν. (31)

Noting that for any positive constant ϑij, it holds that

sym
{
5j(3)1i(3)

}
≤ ϑ−1ij δ

2
15j(3)

[
T1i(3)
T2i(3)

] [
T1i(3)
T2i(3)

]T
5T
j (3)

+ϑij
[ [

0 V1i(3)
] [

V2i(3) V3i(3)
]

0
]T (?).

(32)

By defining Qi(3) = P1(3)Li(3), 1 ≤ i ≤ ν and applying
Schur complement, it is evident that (30)-(31) hold provided
that the inequalities (15)-(16) are feasible, which completes
the proof.
Remark 3: It is important to point out that the Dirac delta

function δ(3 − k1), δ(3 − k2) are adopted here to deal with
the boundary condition at the boundary points 3 = k1 and
3 = k2 [15], [31]. Due to the distinguished feature of the
Dirac delta function, it has been widely adopted in the design
scheme of point-wise controller for distributed parameter
systems.

It is noteworthy that for optimizing the fault detectability
of the FD system, the weighting factor ωi(3), i = 1, · · · , ν
should be maximized. To this end, the following algorithm is
proposed in order to determine Li(3), ωi(3) for the residual

9(3)+ Sym
{
P(3)

(
Ā(µ,3)+1Ā(µ,3)

)}
? ?

(B̄(µ,3)+1B̄(µ,3))TPT (3) −I ?

ω(3,µ)
(
C̄(µ,3)+1C̄(µ,3)

)
ω(3,µ)

(
D̄(µ,3)+1D̄(µ,3)

)
−I

 < 0. (28)
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generator

max
ωi(3)

ν∑
i=1

∫ k2

k1
(ωi(3)) subject to (15)− (16). (33)

With the residual generator, by setting

J (r) =
∫ T

0
||r(·, t)||22dt

Jth =
∫ T

0
||u(·, t)||22dt +

∫ T

0
||w(·, t)||22dt + γ̄0

γ̄0 = sup
z(3,0),ẑ(3,0)

∫ k2

k1
ηT (3, 0)P(3)η(3, 0)d3 (34)

theL2-type of fuzzy FD systems is obtained for the nonlinear
hyperbolic PDE processes.

B. THE RECURSIVE ALGORITHM
It is worth mentioning that the conditions given in (15)-(16)
are space-dependent linear matrix inequalities (SDLMIs).
This requires solving infinity number of linear matrix
inequalities (LMIs), which limits its application. To deal with
this issue, we apply the following recursive algorithm:
• discretizing the position space 3 ∈ [k1, k2] as

3l = 3l−1 + α, 1 ≤ l ≤ Z

α =
k2 − k1
Z − 1

(35)

• iteratively solving the following linear matrix inequali-
ties

2i(3l) < 0, 1 ≤ i ≤ ν (36)

2̄ij(3l) < 0, 1 ≤ i < j ≤ ν (37)

where ∂
∂3
(P(3)ϕ̄(3)) is replaced by

(P(3l)− P(3l−1)) ϕ̄(3l)/α

+P(3l) (ϕ̄(3l)− ϕ̄(3l−1)) /α. (38)

with P(30) given as a priori. Then, the weighting factors and
the gain matrix for the residual generators can be obtained by
Li(3l) = (P1(3l))−1 Qi(3l) and ωi(3l), 1 ≤ i ≤ ν, 1 ≤
l ≤ Z , respectively.
Remark 4: It is worth mentioning that the above iterative

algorithm can be considered as the approximation of the
solution to the SDLMIs. With a relatively large integer Z ,
the LMIs (36)-(37) obtained from the iterative algorithm can
well approximate the SDLMIs (15)-(16).

IV. ILLUSTRATIVE EXAMPLE
Consider the following fuzzy hyperbolic PDE system (3) with
the following system parameters

A1(m) =

[
0.8 sin(2m)− 0.9 0.1

−0.1 0.5 cos(2m)− 2

]

A2(m) =

[
0.8 sin(2m)− 1.6 0.1

−0.1 0.5 cos(2m)− 2

]

FIGURE 1. L1(m), L2(m) for residual generator.

FIGURE 2. ω1(m), ω2(m) for residual generator.

C1(m) = C2(m) =
[
0 1

]
, B1(m) = B2(m) =

[
1

0

]

E1(m) =

[
0.001m

0.002m

]
, E2(m) =

[
0.005m

0.003m

]
F1(m) = 0.002m, F2(m) = 0.005m

and m as the distribution parameter. In addition, the model
uncertainties satisfies (4) with

T11(m) =

[
0.001

0.002

]
, T21(m) = 0.001,V31(m) = 0.03+ m

V11(m) =
[
0.01+ m 0

]
, V21(m) = 0.02+ m.

In this study, 1 ≤ m ≤ 2 represents the position. 1i(m, t)
is chosen as 0.01 sin(mt) which is bounded by δ1 = 0.01.
We first assume the input is set as 0 and the disturbance as
0.1 sin(t). The fuzzy membership function are chosen as

µ1(y(m, t))

=


0, if y(m, t) < −2

0.5sin
(
y(m, t)π

2

)
+ 0.5, if − 2 ≤ y(m, t) ≤ 2

1, if y(m, t) > 2
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FIGURE 3. Residual signal for fault-free case.

FIGURE 4. Residual signal for faulty case.

µ2(y(m, t))

=


1, if y(m, t) < −2

−0.5sin
(
y(m, t)π

2

)
+ 0.5, if − 2 ≤ y(m, t) ≤ 2

0, if y(m, t) > 2.

To apply the proposed results, the position space m ∈ [1, 2]
is first discretized as

mj+1 = mj +
1
99
, 1 ≤ j ≤ 99

with m1 = 1. By applying

max
ωi(mj)

2∑
i=1

100∑
j=1

(ωi(mj)) subject to (15)− (16) (39)

the gain matrices

L1(m) =
[
L1(1)(m)
L1(2)(m)

]
, L2(m) =

[
L2(1)(m)
L2(2)(m)

]
and the weighting factors ω1(m), ω2(m) are given in Fig. 1
and Fig. 2, respectively. By running the residual generator (9),
the residual signal in the fault-free situation is shown in Fig. 3.

For demonstration purpose, an offset 0.02 is simulated on
the measurement y(m, t) from 200 s. The associated residual
signal is shown in Fig. 4. The corresponding fault detection
performance is given in Fig. 5.

FIGURE 5. The fault detection performance.

V. CONCLUSIONS AND FUTURE WORK
The distributed fuzzy fault detection filter is investigated for
nonlinear hyperbolic PDE systems in this paper. For our
purpose, the T-S fuzzy model for the nonlinear PDE system is
established first. Then, the distributed fault detection filter is
investigated in away that the residual is robust against process
uncertainty and input. Then the recursive algorithm is applied
for the solution of the design condition proposed for the PDE
systems. The future work is dedicated to the sampled-data
and point-wise based fault detection approaches for nonlinear
PDE processes.
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