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ABSTRACT This paper focuses on one-helper assisted binary data gathering networks, for example, such
as in Internet of Things, where a destination makes estimates of binary data relying on a number of agents
and one helper. Due to the noise, corrupting errors already exist in the agent observations. To analyze the
performance of this system, we formulate this system as a binary chief executive officer (CEO) problem
with a helper. Initially, we use a successive decoding scheme to decompose the binary CEO problem with
a helper into the multiterminal source coding and final decision problems. Then, we present an outer bound
on the rate-distortion region for multiterminal source coding with binary sources and a helper. After solving
a convex optimization problem formulated from the derived outer bound, we obtain the final distortion
by substituting the minimized distortions of observation into the distortion propagating function, which is
derived to bridge the relationship between the joint decoding results and final decision. Finally, we analyze
the trade-off of rate-distortion through theoretical calculation and simulations. Both the theoretical and
simulation results demonstrate that a helper can obviously reduce the signal-to-noise ratio threshold. We also
have an in-depth discussion on the differences of system performance improvement between locating a helper
and including an additional agent.

INDEX TERMS Binary CEO problem, binary data gathering, Internet of Things, rate-distortion, side
information.

I. INTRODUCTION
Internet of Things (IoT) attracts increasing attentions of
academia and industry, owing to the significant role of IoT in
the smart society. Due to the frequent use of binary signalling,
in general, binary data gathering plays fundamental roles of
IoT in the big data era. Generally, binary data gathering is
based on direct detection and/or with the aid of agents. How-
ever, direct transmissions are almost impossible in some strict
communications environment, e.g., path loss due to the long
distance between the original binary data and the destination,
and/or time varying nature of the channels due to fading.
Therefore, the destination has to only rely on the data received
from the agents and make estimations of the original binary

data. Essentially, this scenario can be formulated as the chief
executive officer (CEO) problem [1] with binary sources.
In the ordinary case, the agent observations of the original
data may contain errors when the agents suffer from noise.
Consequently, the estimate of the target information could be
a lossy recovery, if the rates supported by the channels are not
large enough due to the harsh communications environment.

Nowadays, to make connections more robust and enhance
the system performance, several wireless communications
systems introduce the concept of helper [2]–[5]. These appli-
cations of the helper inspire us to refine the performance
of binary data gathering in IoT system by the assistance
of a helper. As illustrated in Fig. 1, there are many agents
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FIGURE 1. A scenario of binary data gathering with a helper in IoT.

observing the same binary data while errors corrupt the data
sequences. Subsequently, the agents independently encode
and transmit the error-corrupted sequences to the destina-
tion; meanwhile, a helper generates the helper sequence by
monitoring the agents and then send it to the destination.
After decoding the received sequences from all agents and
the helper, the destination makes the final estimation of the
original binary data.

Since the system model shown in Fig. 1 can be formulated
as a binary CEO problem with a helper, we can analyze
the system performance inspired by the previous achieve-
ments related to the binary CEO problem. He et al. [6]
presented a lower bound of Hamming distortion for the binary
CEO problem with two sources, and the result was further
extended to solve the binary CEO problemwith many sources
in [7]. Razi and Abedi [8] developed a method to analyze
the convergence of iterative decoding for the binary CEO
problem. An iterative joint decoding algorithm was imple-
mented into the wireless sensor networks (WSNs) with binary
sources according to the model of binary CEO problem by
Haghighat et al. [9]. It is noticed that the binary CEO prob-
lem is solved in [6] and [7] by decomposing the problem
into multiterminal source coding and final decision, i.e., a
successive decoding process. Likewise, for the performance
analysis of the binary CEO problem with a helper, we can
start from the problem of multiterminal source coding with a
helper and then investigate the distortion of final decision.

Regarding the theoretical work related to multiterminal
source coding with a helper or side information, Ahlswede
and Korner [10] derived the rate region for source coding
with a helper providing side information.Wyner and Ziv [11]
characterized the rate-distortion function for lossy compres-
sion with side information, where only one source needs to
be recovered and another one provides assistance without
rate limit. Slepian and Wolf [12] presented the fundamental
theorem of lossless multiterminal source coding, where each
source can be viewed as the side information for another
one. The Slepian-Wolf theorem asserts a surprising result that
distributed compression has the same achievable rate region
as joint source coding. For the system without necessary
requirements of the full source recoveries, Berger [13] and

Tung [14] derived the inner and outer bounds on the rate-
distortion region of the lossy multiterminal source coding
problem. Wagner and Anantharam [15] extended the Berger-
Tung bounds to the case with multiple sources and one link
of uncompressed side information.

In the final decision step, the bit error probability of binary
data gathering was analyzed in [16], where many correlated
sources in a WSN have diverse bit-flipping probabilities,
and soft combining is implemented as the final decision
rule. Based on these previous achievements, we establish the
framework of the binary CEO problem with a helper as a suc-
cessive encoding/decoding process, i.e., encoding/decoding
the multiple sources with the assistance of a helper and then
combining the joint decoding results. By this means, we have
finished the performance analysis for binary data gathering
with a helper in IoT.

The contributions of this paper are summarized as follows:

• To theoretically analyze the system performance, we for-
mulate binary data gathering by a one-helper assisted
IoT as a binary CEO problem with a helper. Based on
the Berger-Tung outer bound, we derive an outer bound
on the rate-distortion region of multiterminal source
coding problemwithmany agents and a helper for binary
sources. Then, the outer bound is utilized to formulate a
convex optimization problem, for the purpose of mini-
mizing distortions when reconstructing observations.

• Moreover, we analyze the distortion propagating from
the estimate of agent sequences to the final decision.
By substituting the solution of the convex optimization
problem, we investigate the trade-off of rate-distortion
for binary data gathering with a helper in IoT.

• Finally, we propose a practical coding scheme and eval-
uate the system performance through simulations for
binary data gathering with a helper in IoT. Besides,
we make a comparison of performance improvement
between the system with a helper and that with an addi-
tional agent.

The rest of this paper is organized as follows. Section II
formulates binary data gathering with a helper in IoT as the
binary CEO problem with a helper. In Section III, we analyze
the rate-distortion performance of the formulated binary CEO
problem with a helper. Then, Section IV evaluates the system
performance through computer simulations for binary data
gathering with a helper in IoT. Finally, we conclude this work
in Section V.

II. SYSTEM MODEL
Notation: The random variables and their realizations are
denoted by uppercase and lowercase letters, respectively.
Calligraphic letters X , Y , · · · denote the finite alphabets of
a random variable. The superscript of a random vector and
its realization represent the length of the vector. We use t
to denote the time index and i to denote the index of an
agent. The random variable with a finite alphabet as subscript
denotes a set of all random variables with index in the finite
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FIGURE 2. A binary CEO problem with a helper.

alphabet, such as XL = {Xi|i ∈ L}. For a subset S ⊆ L, Sc
represents the corresponding complementary set.

As mentioned above, the IoT system depicted in Fig. 1
can be formulated as the binary CEO problem with a helper
in Fig. 2, where a binary source X acts as a common source.
The discrete memoryless source (DMS) X generates inde-
pendent and identically distributed (i.i.d.) sequence xn =
{x(t)}nt=1 by taking values from the binary alphabet X =
{0, 1} for each time slot. The sourceX is observed by L agents
at the same time. Due to the influence of noise, the obser-
vation xni = {xi(t)}

n
t=1, where i ∈ L = {1, 2, · · · ,L},

may contains errors bni = {bi(t)}
n
t=1 [1]. Hence, the error

probability Pr{xi(t) 6= x(t)} = pi for Bi ∼ Bern(pi). The
erroneous sequences are still forwarded to the destination,
which is referred to as lossy-forward [17], [18]. Simultane-
ously, a helper generates the helper sequence yn = {y(t)}nt=1
from the agent sequences bit by bit, and then transmits
the helper sequence to the destination after compressing it.
Therefore, all the Xi and Y can be also regarded as DMS.
The sequences xni and yn are encoded at rates Ri and RH by
encoder i and encoder H, respectively. Encoder i and encoder
H assign an index to each sequence according to the following
mapping rules:

ϕi : X n
i 7→Mi = {1, 2, · · · , 2nRi}, (1)

ϕH : Yn
7→MH = {1, 2, · · · , 2nRH}. (2)

Then, the encoder outputs ML and MH are transmitted to a
joint decoder. The joint decoder constructs the estimates x̂nL
from indices ML and MH by utilizing the mapping rule, as:

ψ :M1×M2×· · ·×ML×MH 7→ X n
1 ×X

n
2 × · · · × X n

L .

(3)

Since the estimate x̂ni may occasionally deviate from the
observation xni , the Hamming distortion measure is defined
to describe the distortion level between xi(t) and x̂i(t), as

di(xi(t), x̂i(t)) =

{
1, if xi(t) 6= x̂i(t),
0, if xi(t) = x̂i(t).

(4)

Hence, the expected distortion between the sequences
xni and x̂ni is

di(xni , x̂
n
i ) =

1
n

n∑
t=1

di(xi(t), x̂i(t)). (5)

For given distortion values DL, the rate-distortion region
R(DL), consisting of all achievable rate tuple (RL,RH),
is defined as

R(DL) = {(RL,RH) : (RL,RH) is admissible such that

lim
n→∞

E(di(xni , x̂
n
i )) ≤ Di + ε,

for i ∈ L, and any ε > 0}. (6)

Finally, the destination reconstructs the estimate of xn

from x̂nL. Obviously, the distortion between xni and x̂ni will
determine the final estimate x̂n. Hence, the final distortion

E

[
1
n

n∑
t=1

d(x(t), x̂(t))

]
≤ D+ ε, (7)

can be formulated as a function FDP(·) of DL, where FDP(·)
is referred to as distortion propagating function (DPF). The
DPF is defined as D = FDP(DL), which highly depends on
the decision rule. It should be emphasized here that the DPF
limits the decoding scheme to successive decoding, i.e., first
reconstructing x̂nL and then making the final decision.

III. RATE-DISTORTION ANALYSIS
The first step of performance analysis for binary data gath-
ering with a helper in IoT is to derive an outer bound on
the achievable rate-distortion region of multiterminal source
coding with a helper. By utilizing the derived outer bound,
we can formulate a convex optimization problem to minimize
the distortions in the step of multiterminal source coding.
Then, by investigating the DPF with respect to specified
decision rule, we can obtain the distortion of final decision
and finish the performance analysis.

A. MULTITERMINAL SOURCE CODING WITH A HELPER
1) OUTER BOUND OF RATE-DISTORTION REGION
From the extended Berger-Tung outer bound [15] with mul-
tiple sources and one link of side information, we can obtain
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the outer bound for multiterminal source coding with a helper
as presented in the following proposition.
Proposition 1: Let (XL,Y ) be a (L+1)-DMS and di(xi, x̂i)

for i ∈ L be distortion measures. If a rate tuple (RL,RH)
is achievable with distortion tuple DL for distributed lossy
source coding with a helper observing Y , then it must satisfy
the inequalities∑

i∈S
Ri ≥ I (XL;US |USc ,V ), (8)

RH ≥ I (Y ;V ), (9)

for some conditional probability mass function p(uL, v|
xL, y), and functions x̂i(uL, v) such that Ui → Xi → Xj and
Xi → Xj → Uj form Markov chains and E(di(Xi, X̂i)) ≤ Di,
where i, j ∈ L and i 6= j.

It is easy to understand that the constraint of (9) results
from the rate limit on the helper instead of uncompressed side
information. Then, we introduce the definitions to be used in
the derivation of the outer bound for binary sources.
Definition 1:We define the following variables:

αi = pi ∗ h−1(1− [Ri]−), (10)

βi = pi ∗ Di, (11)

where the operation ∗ denotes the binary convolution process;
[Ri]− = min{1,Ri}; h(·) and h−1(·) denote the binary entropy
function and its inverse, respectively.
Definition 2: According to [7], given a set of crossover

probabilities {P} with a common source X , the joint entropy
f (·) of the outputs from independent binary symmetric chan-
nels (BSCs) is calculated as

f ({P}) = −
2|P|∑
j=1

qj log2(qj), (12)

where | · | denotes the cardinality of the set, and

qj = 0.5

∏
k∈Ai

pk
∏
k ′∈Ac

i

p̄k ′ +
∏
k∈Ai

p̄k
∏
k ′∈Ac

i

pk ′

 , (13)

with p̄ = 1− p and Ai ⊆ {1, 2, · · · , |P|}.
Now, we calculate the outer bound for binary sources.

Consider∑
i∈S

Ri ≥ I (XL;US |USc ,V )

= H (XL|USc ,V )− H (XL|US ,USc ,V )

= H (XL|USc )− I (XL;V |USc )

−H (XL|US ,USc )+ I (XL;V |US ,USc )

= I (XL;US |USc )− I (XL;V |USc )

+ I (XL;V |US ,USc )

= I (XL;US |USc )+ I (XS ;V |UL)

− I (XS ;V |UL)− I (XL;V |USc )

+ I (XL;V |US ,USc ). (14)

Then, we calculate I (XL;US |USc ) + I (XS ;V |UL) and
−I (XS ;V |UL) − I (XL;V |USc ) + I (XL;V |US ,USc ) sepa-
rately. Consider

I (XL;US |USc )+ I (XS ;V |UL)

= I (XS ;US |USc )+ I (XSc;US |USc ,XS )

+ I (XS ;V |UL)

= I (XS ;US |USc )+ H (XSc |USc ,XS )

−H (XSc |US ,USc ,XS )+ I (XS ;V |UL)

= I (XS ;US |USc )+ H (XSc |USc ,XS )

−H (XSc |USc ,XS )+ I (XS ;V |UL) (15)

= I (XS ;US |USc )+ I (XS ;V |UL)

= I (XS ;US ,USc )− I (XS ;USc )

+ I (XS ;V |US ,USc )

= I (XS ;UL,V )− I (XS ;USc )

≥ I (XS ; X̂S )− I (XS ;USc ), (16)

where (15) follows the fact that Ui → Xi → Xj form a
Markov chain for i ∈ S and j ∈ Sc; (16) follows data
processing inequality when estimating X̂S from (UL,V ).
By applying the result in [7] into (16), we have

I (XL;US |USc )+ I (XS ;V |UL)

≥ f ({pS , αSc})− f ({αSc})−
∑
i∈S

h(Di), (17)

Next, consider

−I (XS ;V |UL)− I (XL;V |USc )+ I (XL;V |US ,USc )

= −I (XS ;V |UL)− H (V |USc )

+H (V |XL,USc )+ H (V |US ,USc )

−H (V |XL,US ,USc )

= −I (XS ;V |UL)− H (V |USc )+ H (V |XL)

+H (V |US ,USc )− H (V |XL) (18)

= H (V |UL,XS )− H (V |UL)− H (V |USc )

+H (V |US ,USc )

= −I (V ;US ,XS |USc )

= −I (V ;XS |USc ), (19)

where (18) and (19) follow since Ui → Xi → V form a
Markov chain for i ∈ L. To further calculate (19), consider

I (V ;XS |USc ) ≤ I (V ;XS ) (20)

≤ I (V ;Y ) (21)

≤ RH, (22)

where (20) follows since condition reduces entropy, and (21)
follows since XS → Y → V form a Markov chain. Notice
that the equality of (20) holds when no mutual information
exists between V and USc , i.e., the helper allocates full rate
to help recovering XS . The equality of (21) holds when the
helper only utilize XS to generate the helper information Y .
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FIGURE 3. The system model for final decision with compressed side information.

Moreover, the equality of (22) holds when the helper rate is
completely exploited for compression. Consequently, there is
no waste of the helper rate if the conditions for the equality of
(20-22) are satisfied. In this case, it is obvious that the struc-
ture of the helper is optimal. By assuming that we have an
optimal helper and substituting (17), (19) and (22) into (14),
we can finally obtain∑
i∈S

Ri ≥ f ({pS , αSc})− f ({αSc})−
∑
i∈S

h(Di)− RH. (23)

Remark 1: Since we assume that the structure of the helper
is optimal, the constraint on the helper link, i.e., the inequal-
ity (9), is satisfied by the helper encoder, which finds a proper
codeword MH to make I (Y ;V ) as large as possible.
Remark 2: If we set RH = 0, i.e., the helper link is

equivalently cut off, (23) reduces to the outer bound without
a helper in [7].

2) DISTORTION MINIMIZATION
Since the final distortionD is a function ofDL by the succes-
sive decoding for given RL and RH, we can first minimize the
l2-norm of the vector [D1,D2, · · · ,DL] by solving a convex
optimization problem [6], [7], which is formulated from the
outer bound. Then, we calculate the minimum distortion
D∗ by substituting the solution of the convex optimization
problem into DPF. Notice that for a practical communica-
tions system with channels, the channel capacity should also
be taken into consideration. According to Shannon’s lossy
source-channel separation theorem [19], [20], the distortion
tuple DL is achievable if the following inequalities hold:{

Ri(Di) · ri ≤ C(γi), for i ∈ L,
RH · rH ≤ C(γH),

(24)

whereC(γi) andC(γH) are the Shannon capacity using Gaus-
sian codebookwith γ as the signal-to-noise ratio (SNR) of the
channel; ri and rH represent the end-to-end coding rates [21]
of each agent link and the helper link, respectively. By apply-
ing the outer bound derived above, we can formulate the
convex optimization problem for the system with an optimal

helper as

min
D1,D2,··· ,DL

‖[D1,D2, · · · ,DL]‖2

s.t.
∑
i∈S

h(Di) ≥ f ({pS , αSc})− f ({αSc})−
∑
i∈S

C(γi)
ri

−
C(γH)
rH

,

0 ≤ Di ≤ 0.5, i ∈ L. (25)

After solving the convex optimization problem, we can
obtain the minimum value of distortion D∗i for i ∈ L. Then,
we use the estimates X̂nL with minimum distortions D∗L to
make final decision.

B. FINAL DECISION
Notice that the compressed side information V n is not used
in the final decision to minimize the distortion between Xn

and X̂n. Hence, it is necessary to discuss the influence of the
compressed side information on final decision. We consider
the theoretically optimal case and a practical case, i.e., major-
ity voting decision, respectively. For the final decision with
compressed side information, i.e., the system model shown
in Fig. 3, when the final decision is optimal, consider

H (X )− h(d̃) ≤ I (X; X̂ )

≤ I (X; X̂L,V ) (26)

= I (X; X̂L)+ I (X;V |X̂L)

= I (X; X̂L)+ H (V |X̂L)− H (V |X̂L,X ) (27)

= I (X; X̂L), (28)

where d̃ is a dummy variable, and the steps are justified as:
(26) according to data processing inequality, information

loss may happen in the final decision,
(27) notice that V is a function of Y and Y is a function

of XL, and hence V is a function of XL, i.e., V = g′(XL).
If H (V |X̂L) = H (g′(XL)|X̂L) > 0, it means that there is
still some information of XL not utilized in joint decoding.
Hence, some distortions Di for i ∈ L can be further reduced
in the convex optimization problem. Consequently, we have
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H (V |X̂L) = 0 and H (V |X̂L,X ) = 0 for the best utilization
of helper information in multiterminal source coding.

It is obvious that (26) is equal to (28), i.e., the com-
pressed side information does not change the minimum final
distortion. Similarly, for the majority voting decision, since
we use the successive decoding scheme, the distortions DL
must be minimized after joint decoding. This means that
the helper information has been completely utilized in joint
decoding step. Hence, the final distortion will not further
reduce, whether the compressed side information is taken
into consideration or not in the majority voting decision. It is
sufficient to derive the DPF FDP(DL) for both optimal and
majority voting decision without side information.

For the optimal decision rule, consider

H (X )− h(d̃) ≤ I (X; X̂ )

≤ I (X; X̂L) (29)

= H (X )+ H (X̂L)− H (X , X̂L)

= H (X )+ f ({βL})− f ({0, βL}), (30)

where the steps are justified as:
(29) the probable information loss in the final decision,
(30) X can be regarded as the output of a BSC with itself

as the input and the crossover probability equal to 0.
Consequently, we have

d̃ ≥ h−1[f ({0, βL})− f ({βL})]. (31)

Obviously, the minimum final distortionD, i.e., the distortion
by optimal decision, is given by

D = h−1[f ({0, βL})− f ({βL})]. (32)

Since the optimal decision specifies a universal lower
bound, here, we consider another practical decision scheme,
i.e., majority voting. The distortion between Xn and X̂n by
majority voting is the sum probability of several events in
a Poisson binomial process [16]. We introduce a function
to evaluate the distortion in a Poisson binomial process as
follows:
Definition 3: Poisson binomial distortion function [16].

The distortion between Xn and X̂n, which is estimated from
X̂nL by majority voting, is calculated by D = PB(βL) as

PB(βL) =



L∑
j=
L + 1
2

Pr(J = j), if L is odd,

1
2
Pr(J =

L
2
)

+

L∑
j=
L
2
+1

Pr(J = j), if L is even,

(33)

where

Pr(J = j) =



L∏
i=1

(1− βi), j = 0,

1
j

j∑
i=1

(−1)(i−1)Pr(J = j− i)λ(i), j > 0,

(34)

with λ(i) =
∑L

k=1(
βk

1−βk
)i for 0 ≤ j ≤ L.

By utilizing the Poisson binomial distortion function,
we can calculate the distortion D by majority voting among
X̂L as

D = PB(βL). (35)

Remark: If pi are various among all links, weighted major-
ity voting should be implemented to generate more accurate
estimate of Xn. The error probability by weighted majority
voting is presented in Appendix. In this paper, we focus on
the system with homogeneous agents for simplicity, and the
results can be easily extended to the case with heterogeneous
agents according to Appendix.

In summary, the DPFs for optimal decision and majority
voting are (32) and (35), respectively. Therefore, we can
obtain the minimum final distortion between Xn and X̂n by
substituting the solutionD∗L of the convex optimization prob-
lem into DPF asD∗ = FDP(β∗L), where β

∗

L = {pi∗D
∗
i |i ∈ L}.

C. NUMERICAL RESULTS
Now, we start investigations on the trade-off of rate-distortion
for binary data gathering with a helper in IoT through numer-
ical results. A memoryless source X ∼ Bern(0.5) is used in
the following. Initially, we compare the bit error rate (BER)
performance between majority voting and optimal decision.
By utilizing the DPF after solving a corresponding convex
optimization problem, we can depict the curve of SNR for
each link versus BER as shown in Fig. 4. All the crossover
probabilities between X and Xi are set at the same value of
0.01. Moreover, the end-to-end coding rate is set at 1

2 , and
the SNR is set at the same level for all of the agent and
helper links. Notice from the results that whether there is a
helper or not, a gap obviously appears between the Poisson
binomial (PB) process, i.e., majority voting, and the theo-
retical lower bound (LB), i.e., optimal decision. The reason
for the performance gap is that it is extremely difficult to
completely utilize the mutual information between Xn and
XnL. For instance, assuming that there are 2K agents with
Xt = X1,t = · · · = XK ,t = 0 and XK+1,t = · · · = X2K ,t = 1
at some time index t , it is obvious that there is some mutual
information between Xt and {X1,t , · · · ,XK ,t }. However, deci-
sion error will still occur in the Poisson binomial process,
resulting in the loss of mutual information between Xt and X̂t .
It should be also noticed that the gap is sensitive to the number
of agents, i.e., the gap is smaller when there are odd number of
agents. Because there could be equal number of ‘‘0’’ and ‘‘1’’
at the same bit of the agent sequences, if the number of agents
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FIGURE 4. Comparison of system performance between majority voting
and optimal decision, where pi = 0.01. (a) The number of agents is even.
The number of agents is odd.

is even. In this draw case, the bit of final decision by majority
voting is randomly selected, resulting in more performance
loss. Hence, the majority voting decision can achieve better
performance if odd number of agents are deployed. For the
effect of a helper, we find that the helper can reduce BER
at small SNR value range, but keep the same BER floor as
the case without a helper. Because for sufficiently large SNR,
there is already no distortion between Xni and X̂

n
i , and the side

information Y n generated from XnL becomes redundant.
We further investigate the effect on rate-distortion by intro-

ducing a helper with majority voting decision in Fig. 5. Since
the rate allocation scheme is out of the scope in this paper,
the rate is evenly allocated to all nodes including agents and
helper. Surprisingly, the helper can reduce the final distor-
tion D before achieving the distortion floor, even though the
agent rate decreases by sharing the sum rate with a helper.
This phenomenon indicates that it is possible to improve the
system performance for multiple access channels with the

FIGURE 5. The trade-off of rate-distortion with a majority voting helper,
where pi = 0.01 for all agents.

same sum rate by introducing a helper. However, the curve
with a helper will finally converge with the no-helper case at
the same distortion floor. Notice the fact that the curve with
a helper is still valuable, although the improvement is very
small.

Finally, we make a comparison of rate-distortion between
majority voting and optimal decision with diverse pi. Fig. 6
shows an inclination that the more correlated observa-
tions are, i.e., pi is smaller, the faster the distortion floor
is achieved. Because it is easier to minimize the distor-
tion between Xni and X̂ni for more correlated observations,
owing to more mutual information among the observations.
Moreover, as the correlation among the agent observations
increases, the distortion floor decreases for both majority
voting and optimal decision. We can also find the same
phenomenon as Fig. 4 that the gap between majority voting
and optimal decision is smaller for odd number of agents,
even if the number of agents in Fig. 6(a) is less than that
in Fig. 6(b). In addition, since in the situation where the
mutual information is lost less frequently with smaller pi,
the gap between majority voting and optimal decision is
smaller with more correlated observations.

IV. PRACTICAL PERFORMANCE EVALUATION
A. SIMULATION DESIGN
In this section, we evaluate the practical performance of
binary data gathering with a helper in IoT through simu-
lations. As depicted in Fig. 7, there are L encoders sepa-
rately encode the observations Xni , which is detected from a
common source sequence Xn and mixed with the error Bni .
Simultaneously, the encoder H encodes the side information
Y n generated from the agent observations. Next, the encoded
sequences are sent to a fusion center through additive white
Gaussian noise (AWGN) channels after modulation. The
fusion center first demodulates the received signals and then
jointly decodes them. Finally, the estimate of all sequences in
the last round of iteration is used to make final decision.

VOLUME 7, 2019 12861



W. Lin et al.: Binary Data Gathering With a Helper in IoTs: Distortion Analysis and Performance Evaluation

FIGURE 6. The trade-off of rate-distortion with diverse number of agents.
(a) L = 3. (b) L = 4.

Regarding the helper sequence Y n, since its optimal
structure is still an open problem, we select two frequently
implemented structures in practice as g(·), i.e., the helper
information generated by modulo-2 sum or majority voting.
The g(·) by modulo-2 sum is illustrated in Fig. 8, where Xni
is interleaved by 5i,1 for the first step; subsequently, Y n is

produced by the modulo-2 sum of interleaved XnL bit by bit.
By the interleaver 5i,1, the distribution of Y is approximate
to Bern(0.5), i.e., Y n can contain side information as much as
possible.
Fig. 9 shows the structure of encoders. In order to better

exploit the correlation among XnL, the interleaver5i,1 is used
to disperse noises into different bits of Xni . Subsequently,
the interleaved Xni is outer-encoded with a convolutional code
(CC). For the purpose of utilize the principle of turbo code
[22] in decoding, an accumulator (ACC) [23] inner-encodes
the interleaved outer code processed by another interleaver
5i,2. For the helper, only one interleaver 5H is needed
between CC and ACC.
The general structure of joint decoder is depicted in Fig. 10.

A decoder of ACC (ACC−1) and a decoder of CC (CC−1)
decode inner code and outer code, respectively. In local
iteration, the extrinsic information is exchanged between
ACC−1 and CC−1 via an interleaver5 and its corresponding
deinterleaver 5−1. After several rounds of local iteration,
the CC−1 outputs a posteriori log-likelihood ratio (LLRp) of
information bits. In global iteration, an extrinsic information
exchanger updates a priori LLR (LLRa) with the extrinsic
LLR (LLRe), which is calculated by (LLRp − LLRa). The
joint decoder alternately executes local iteration and global
iteration, until the mutual information calculated from LLRpi
is large enough or the maximum iteration time is exceeded.
Finally, the estimate of Xni is produced by the hard decision
of LLRpi in the last round of local iteration.
The extrinsic information exchanger updates the LLRa

according to the rules shown in Fig. 11. For the case with
helper information generated by modulo-2 sum, the LLRe

of all agents and the helper is first exchanged based on the
same principle for the check node of low-density parity-check
(LDPC) codes [24], as

LLRtmp
i = LLRei − 2arctanh

( ∏
j∈W

tanh
−LLRej

2

· tanh
−LLReH

2

)
, (36)

LLRaH = LLReH − 2arctanh
(∏
i∈L

tanh
−LLRei

2

)
, (37)

FIGURE 7. Simulation system.
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FIGURE 8. Generation of helper information by modulo-2 sum.

FIGURE 9. The structure of encoders. (a) Agent encoder i . (b) Helper
encoder H.

FIGURE 10. The structure of joint decoder.

where W = L \ i, and LLRtmp
i is the temporary result

for agents. Then, according to the correlation model [25],
the LLRtmp

i is deinterleaved by 5−1i,1 and further calculated
by the LLR updating function µ(·) for correlated source [26].
Finally, 5i,1 interleaves the output of µ(·) again to provide
LLRai . The structure of extrinsic information exchanger is
much simpler for g(·) being majority voting. As illustrated
in Fig. 11(b), µ(·) directly updates all of the LLRei after
deinterleaving with the LLReH, and then the outputs fromµ(·)
for agents are interleaved into LLRai .

B. SIMULATION RESULTS
Fig. 12 compares the simulation results between g(·) being
modulo-2 sum (M2S) and majority voting (MV), where the
basic parameter settings are listed in Table 1. Since the major-
ity voting decision rule is implemented in simulations, we use
the limit derived from Poisson binomial as the theoretical
bound. Clearly, the trade-off of rate-distortion in simulations

FIGURE 11. The structure of extrinsic information exchanger. (a) The
helper information is generated by modulo-2 sum, where i, j ∈ L and
i 6= j . (b) The helper information is generated by majority voting.

TABLE 1. Basic settings of simulation parameters.

perfectly matches that in theoretical analysis, i.e., a helper
can shift the turbo cliff to left but cannot reduce the BER
floor. It should be highlighted that shifting SNR to left also
means eliminating distortions for low SNR level. Moreover,
the helper with g(·) being majority voting can obviously
reduce the SNR threshold more than the helper which gen-
erates its information by modulo-2 sum. The reason for the
difference of performance is that the distortion is included in
the helper sequence with modulo-2 sum operation if there is
only one check node. If one of the LLRi is with the opposite
sign, all of the other (L − 1) LLRs will get negative helper
information. However, such negative helper information can-
not be reversed again as in the LDPC codes, because no
other check nodes exist in the system with only one helper.
Hence, if the SNR is in an extremely low level, the helper with
g(·) being modulo-2 sum will lose its effect due to the large
distortion of Xi. This problem also results in the reduction
of helper efficiency for large L, i.e., it is difficult to shift the
turbo cliff by further increasing L. Therefore, the system with
only one helper for g(·) being modulo-2 sum cannot obtain
enough gains as the LDPC codes with a lot of check nodes.
Nevertheless, the helper with its information generated by
majority voting still can obviously reduce the SNR threshold
with larger L. Because not only can the helper information
generated by majority voting preserve large enough mutual
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FIGURE 12. Comparison of simulation results between different
structures of helper, where pi = 0.03. (a) L is even. (b) L is odd.

information among XL for lower error-corrupted probability
pi, but the distortions occurring at the small part of nodes are
also not dominant when exchanging extrinsic information.
Besides, the simulation results for both structures of helper
can achieve the bound derived from Poisson binomial pro-
cess. Hence, we can draw a conclusion that it is convincible
and effective to predict the trade-off of rate-distortion for a
practical system by applying the theoretical results.

Finally, we make a comparison between (L + 1) agents
and a helper for diverse pi as illustrated in Fig. 13 and
Fig. 14. Since majority voting shows a better performance
than modulo-2 sum as the helper structure, we only plot the
curves of majority voting for comparison. It is remarkable
in Fig. 13(a) and Fig. 13(b) that the systemwith (L+1) agents
can achieve the BER floor of the case with (L + 2) agents,
when L is an even number. Because one additional agent
provides extra information of X , and this avoids the draw case

FIGURE 13. Comparison between one additional agent and a helper,
where pi = 0.03. (a) L is even. (b) L is odd.

that equal number of ‘‘0’’ and ‘‘1’’ appear in the same bit of
agent sequences when L is even. However, the system with a
helper has a lower SNR threshold for arbitrary L, due to the
larger mutual information between Y n and XnL by majority
voting. Especially when pi becomes larger or L is odd, the gap
of turbo cliff between (L + 1) agents and a helper is very
conspicuous. We can also find that the system with (L + 1)
agents keeps the same BER floor as one-helper system when
L is odd, even though one more agent provides extra mutual
information about X . Consequently, except the additional
implementation cost needed, it is better to add a helper than
one more agent for a systemwith odd number of agents. If the
wireless channels are good enough, one more agent can make
the estimate of source more accurate for the system already
having even number of agents. However, in an extremely
noisy environment, i.e., before achieving BER floor and/or pi
is relatively large, the system performance can benefit more
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FIGURE 14. Comparison between one additional agent and a helper for
more independent sources, where pi = 0.05. (a) L is even. (b) L is odd.

from a helper than adding an additional agent. In addition,
there is another noticeable phenomenon that the BER floor
is not immediately achieved for relatively larger pi and L
after turbo cliff appears. Because for the bits at the same time
index, they need to obtain enough extrinsic information from
each other, so as to decode correctly when SNR is extremely
low. Hence, only the bits almost without corrupting errors
can accumulate their extrinsic information and be correctly
decoded. The SNR threshold decreases as the number of
agents increases, while larger SNR is required for large pi
to correctly decode all bits at the same time index. Once the
SNR threshold decreases to the level in which the bits with
some corrupting errors decode fail, the BER is not able to
achieve the BER floor as soon as the turbo cliff appears.

V. CONCLUSION
We have analyzed and evaluated the performance of binary
data gathering with a helper in IoT. To begin with, we

formulate binary data gathering with a helper in IoT as a
binary CEO problem with a helper. Then, we decompose the
binary CEO problem with a helper into two sub problems as
multiterminal source coding with a helper and final decision.
Subsequently, we derive an outer bound on the rate-distortion
function for themultiterminal source coding step and the DPF
for the final decision step. Based on the derived outer bound,
a convex optimization problem is formulated to minimize the
distortion of observations with given agent and helper link
rates. By substituting the minimized distortions into DPF,
we investigate the relationship between link rates and final
distortion. Although there is an obvious gap betweenmajority
voting and optimal decision, they show the same tendency
on the trade-off of rate-distortion. Finally, we have risen
an encoding/decoding scheme and design a simulation for
practical performance evaluation, so as to compare with the
theoretical results and analyze the trade-off of rate-distortion
for binary data gathering with a helper in IoT. Both the
theoretical and simulation results indicate that a helper can
reduce the SNR threshold, while the BER floor does not
change. Moreover, a helper with its structure as majority
voting has a better performance than an additional agent for
the system with odd number of agents or in extremely noisy
communication environment. These significant observations
are extremely useful for the design of practical systems.

APPENDIX
ERROR PROBABILITY BY WEIGHTED MAJORITY VOTING
Regarding the error probability by weighted majority voting,
the final decision x̂ follows [27]:

x̂ =

{
1, if wzT > 0,
0, otherwise,

(38)

where w = [log 1−p1
p1
, · · · , log 1−pL

pL
] and z = 2 ·

[x̂1, · · · , x̂L]− 1. Similarly to the Poisson binomial process,
the error probability for the estimate of x is given by

pe=Pr

∑
k∈Z+

wk>
∑
j∈Z−

wj

+ 1
2
Pr

∑
k∈Z+

wk=
∑
j∈Z−

wj

,
(39)

where Z+ = {i|zi = +1} and Z− = {i|zi = −1}. Note that
in order to calculate (39), it needs to carry out the search over
all the possible combinations of wi.
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