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ABSTRACT Deep neural networks (DNNs) have been widely applied to the automatic analysis of medical
images for disease diagnosis and to help human experts by efficiently processing immense amounts of
images. While the handcrafted feature has been used for eye disease detection or classification since
the 1990s, DNN was recently adopted in this area and showed a very promising performance. Since
handcrafted and deep feature can extract complementary information, we propose, in this paper, three
different integration frameworks to combine handcrafted and deep feature for optical coherence tomography
image-based eye disease classification. In addition, to integrate the handcrafted feature at the input and fully
connected layers using existing networks, such as VGG, DenseNet, and Xception, a novel ribcage network
(RC Net) is also proposed for feature integration at middle layers. For RC Net, two ‘‘rib’’ channels are
designed to independently process deep and handcrafted features, and another so-called ‘‘spine’’ channel
is designed for the integration. While dense blocks are the main components of the three channels, sum
operation is proposed for the featuremap integration. Our experimental results showed that the deep networks
achieved better classification accuracy after the integration of the handcrafted features, e.g., scale-invariant
feature transform and Gabor. The RC Net showed the best performance among all the proposed feature
integration methods.

INDEX TERMS Artificial intelligence, deep learning, optical coherence tomography, feature integration.

I. INTRODUCTION
Most of today’s ophthalmologists identify eye diseases by
visual observation and interpretation. Optical coherence
tomography (OCT) has become a powerful imaging modality
for non-invasive diagnosis of various retinal abnormalities,
such as choroidal neovascularization (CNV) [1]–[3], diabetic
macular edema (DME) [4], [5] and drusen [6]. Since accurate
diagnosis has great impact for timely treatment, the process
can be improved by employing disease-specific computer-
aided diagnostic (CAD) systems based on OCT images [7].

Ophthalmologists have found some morphological
changes such as variations in thickness of retinal layers and
the choroid, the presence of DME, and drusen caused by eye
diseases before any noticeable vision deterioration [8], [9].
The traditional OCT image based retinal disease detection

methods relied on segmentation and feature analysis of
retinal layers [10]–[12]. Eltanboly et al. [10] employed a
Markov–Gibbs random field (MGRF) model for retinal layer
segmentation and an auto-encoder was used for diabetic
retinopathy (DR) detection. The method showed promising
performance on a small OCT dataset (52 OCT scans). The
performance of the method in [10] relied highly on the
segmentation of retinal layers whilst its robustness has not
been proven on large datasets. Duan et al. [11] proposed a
geodesic distance method (GDM) for retinal layer segmen-
tation. The curvature of the layer was employed for drusen
detection. The segmentation method in [11] relied on the
gradient of the layer borders and was thus sensitive to noise.
Lemaître et al. [12] proposed a local binary pattern (LBP)-
based method for DME detection. The method achieved 80%
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accuracy on a small dataset (32 OCT volumes, 16 DME and
16 normal).

In recent years, deep learning showed great performance
in many medical image analysis tasks. Many deep learning-
based methods have been developed for retina segmentation
and eye disease detection using OCT images [7], [13], [14].
Roy et al. [13] proposed a U-net-based fully connected net-
work (FCN) for retina segmentation. The network showed
over 0.9 Dice on the public Duke SD-OCT segmenta-
tion dataset. Lee et al. [14] proposed a convolutional neu-
ral network (CNN)-based method for age-related macular
degeneration (AMD) detection. About one hundred thousand
OCT scans were selected for training and testing the network.
The network showed 0.87, 0.88 and 0.93 accuracy on image,
macular and patient level, respectively. However, the dataset
is not publicly available. Kermany et al. [7] implemented an
Inception network based approach for multiple eye diseases
detection. The network was pre-trained on the imageNet
database and applied to OCT images using transfer learning
technology. The classification accuracy was 0.97 and 0.93 on
the ‘‘full model’’ and ‘‘limited model’’, respectively. The full
model was trained using about eighty thousand OCT images
while the limited model was trained using one thousand
OCT images. Both models were tested using the same test
set with one thousand images.

In recent years, fusion of handcrafted features and deep
features has been used in medical image classification and
face recognition. Antropova et al. [15] employed size, shape,
texture, and morphology of segmented lesion areas as hand-
crafted features and fused them with deep features for diag-
nosis of breast cancer. The fusion was done at the feature
level. Wang et al. [16] employed about 25 handcrafted fea-
tures extracted using the first and second order filters and
combined them with DNN to reduce the false positives of
lung nodule detection. The fusionwas also at the feature level.
Xie et al. [17] introduced a handcrafted feature integra-
tion method for lung nodule classification. The gray-level
co-occurrence matrix (GLCM) and Fourier descriptor were
employed and fused with deep features vectors at the end
of the network. Xie et al. [18] improved their work by
employing DNN to the handcrafted features extracted on the
ROI image. Zhang et al. [19] proposed a RGB-D DNN for
face recognition. Depth image was employed as handcrafted
feature image. A three channel network was proposed for
feature integration. The handcrafted and deep features were
fully integrated through the network. In summary, both hand-
crafted and deep features have been applied for OCT image
based eye disease diagnosis. However, to the best of our
knowledge, no work combining the two features has been
done in this area.

In many cases of medical image recognition applications,
large numbers of annotated samples are difficult to obtain.
When lacking of training samples, the deep learning-based
method often cannot achieve satisfactory performances, e.g.
low accuracy or overfitting. Employing handcrafted features
can help alleviate the problem. In this work, we presented a

deep learning-based framework to combine handcrafted and
deep features for eye disease classification. The handcrafted
features, i.e. Scale-invariant feature transform (SIFT) and
Gabor were employed in this work since they can extract
edge and texture features, which are significant for OCT
image diagnosis. In addition to integrate handcrafted features
at input and output of FC layer using existing networks
like VGG [20], Xception [21] and DenseNet [22] we also
proposed a dense block based Ribcage network (RC Net)
to integrate handcrafted features at different layers of the
network. All proposed networks were tested using the dataset
collected in [7], which is the only large OCT dataset available
in the literature. The main contribution is that a novel inte-
gration network, e.g. RC Net, was proposed to integrate the
handcrafted and deep features and significant improvement
of the performance has been achieved.

The paper was organized as below. Section 2 introduces
the databases used to train and evaluate the networks,
SIFT and Gabor features and the integration networks
employed for eye disease classification. Section 3 presents
the experimental results of the proposed methods. Finally,
Section 4 draws a conclusion.

II. MATERIALS AND METHODS
A. DATASET
We employed the publicly available dataset proposed in [7]
to train and test our method. The OCT images were selected
from retrospective cohorts of adult patients from the Shi-
ley Eye Institute of the University of California San Diego,
the California Retinal Research Foundation, Medical Cen-
ter Ophthalmology Associates, the Shanghai First Peo-
ple’s Hospital, and Beijing Tongren Eye Center between
July 1, 2013 and March 1, 2017. All OCT imaging was per-
formed as part of routine patient clinical care. There were no
exclusion criteria based on age, gender, or race. The dataset
contained 84484 OCT images captured from 6277 subjects,
which are classified into four categories, i.e. CNV, DME,
DRUSEN and NORMAL (examples were shown in Fig. 1).
The number of images for the four categories are 37455,
11598, 8866 and 26565, respectively. As far as we know,
the database is the only publicly available large OCT
dataset for eye disease diagnosis. The work presented in [7]
tested their network in two modes, i.e. ‘‘full model’’ and
‘‘limited model’’, employing Inception V3 network. While
the full model was trained using about eighty thousand
OCT images, the limited model was trained using one thou-
sand OCT images. The main purpose is to test the perfor-
mance of the algorithm when large and small numbers of
training data are available.

In this paper, we designed three groups of testing data to
evaluate our approach. For group 1 we kept 1000 images
(250 for each class) for testing and the remaining images for
training. For group 2 we employed the same testing dataset
as group 1 and selected another 1000 images (250 for each
class) for training. While group 1 and 2 are exactly the same
as that presented in [7], we further used the third groups
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FIGURE 1. Examples of the OCT images (from left to right: CNV, DME,
DRUSEN and NORMAL).

TABLE 1. The training and testing datasets.

to test the algorithm when a reasonable number of training
data was available. For group 3, we selected 50% images for
training and the remaining 50% for testing. The training and
testing images in all three groups were selected from different
patients. Table 1 lists the detailed information for the three
groups of testing data.

B. METHODS
In this work, we employed SIFT and Gabor as handcrafted
features and combine them with deep features for eye dis-
ease classification. Three frameworks, namely early, late and
full integration frameworks were proposed in this paper to
integrate handcrafted features into the DNN for performance
enhancement. While early and late integration frameworks
simply concatenate original and feature images or the feature
maps output by FC layers, full integration network processes
the original and handcrafted feature images through differ-
ent channels, and combine the output of each dense block
through the inference. Figure 2 shows the architectures of the
proposed networks. One can observe from the figure that the
full integration network has a much more complex structure
to fuse the handcrafted feature with deep feature at different
levels.

1) HANDCRAFTED FEATURES
The curvature and thickness of the retina layers are the
key characteristics of eye disease diagnosis [10]. There-
fore, two handcrafted features sensitive to the orienta-
tion of edges and textures, i.e. SIFT and Gabor, were
employed.

FIGURE 2. The architectures of the proposed networks.

FIGURE 3. SIFT feature extraction.

FIGURE 4. The SIFT features of different directions.

a: SIFT FEATURE
The SIFT features [23] are local features representing local
appearance of the object at particular interest points, and
are invariant to image scale and rotation. They are also
robust to changes in illumination, noise, and small changes
in viewpoint. In addition to these properties, they are highly
distinctive, relatively easy to extract, and thus are widely used
in object recognition applications. Fig. 3 shows the SIFT
feature extraction process. In this work, the window with
8×8 pixels was employed. The direction vectors of each win-
dow was calculated as the SIFT features. The SIFT features
at each direction were given in Fig. 4. The retina layers show
horizontal structure, therefore, the SIFT features with vertical
orientation are more effective.
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FIGURE 5. The real and imaginary component of Gabor features.

b: GABOR FEATURE
The impulse response of Gabor filter is defined by a sinu-
soidal wave (a plane wave for 2D Gabor filters) multiplied
by a Gaussian function [24]. Due to the multiplication-
convolution property (Convolution theorem), the Fourier
transform of a Gabor filter’s impulse response is the convolu-
tion of the Fourier transform of the harmonic function (sinu-
soidal function) and the Fourier transform of the Gaussian
function. The filter has a real and an imaginary component
representing orthogonal directions. The two components may
be formed into a complex number or used individually. The
definition of components is given below.
Real component:
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In these equations, λ represents the wavelength of the sinu-
soidal factor, θ represents the orientation of the normal to the
parallel stripes of a Gabor function, ψ is the phase offset,
σ is the standard deviation of the Gaussian envelope and
γ is the spatial aspect ratio which specifies the ellipticity of
the support of the Gabor function.

We employed the real and imaginary component as the
Gabor features (see Fig. 5). In this work, λ = 4, θ = 90,
ψ = 0, σ = 2, γ = 0.5.

2) FEATURE INTEGRATION NETWORK
In order to combine handcrafted features and deep learning,
three different integration architectures were proposed in this
work. The architectures of the proposed networks were given
in Fig. 2 (a. early integration; b. late integration and c. full
integration). As shown in Fig. 2(a), the early integration

FIGURE 6. The generated SIFT and Gabor feature image for early
integration.

method integrated the original and handcrafted feature map
at the first stage as the feature image (the SIFT and Gabor
feature image given in Fig. 6); and then input it into the DNN.
The late integration method, shown in Fig. 2(b), input the
original image and the handcrafted feature image into two
independent deep networks, concatenated the output feature
maps of FC layers, and made the final classification using
softmax. The full integration method (shown in Fig. 2(c)) was
different from the previous two integration methods, and can
be considered as the combination of the both.

a: EARLY INTEGRATION NETWORK
The early integration utilized the original and handcrafted
feature images at the very beginning. The SIFT/Gabor images
were concatenated with the original image and the concatena-
tion is used as the input of the network. In this work, we con-
catenated the two SIFT feature images at 90◦ and 270◦ with
the original image, generated a RGB color image (showed as
the middle image in Fig. 6), and used this image as the input
of deep network. For Gabor we concatenated the real and
imaginary component with the original images and generated
the input using the same processing as SIFT (showed as the
right image in Fig. 6). The networks employed for early
integration were classic DNNs, i.e. VGG-16, DenseNet and
Xception.

b: LATE INTEGRATION NETWORK
In late integration network, the information of the original and
feature images were integrated at the end of the deep network.
Two independent deep networks were employed to extract
features of the original and feature images, respectively.
The outputs of the two networks were 1D feature vectors,
which were concatenated and then fully connected to the
classification layer. If the same network is adopted, the late
integration network required twice the network parameters
when compared to that of the early integration network.

c: FULL INTEGRATION NETWORK
In the full integration network, the information of the orig-
inal and handcrafted feature image interchanged after every
convolutional block. To realize this, the structure of the net-
work used in full integration should be redesigned, and the
existing networks cannot be employed directly. In this work,
we proposed a DenseNet-based ribcage network (RC) to fully
integrate the handcrafted and deep features. Our RC Net is
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FIGURE 7. The structure of RC Net and dense block.

an improved version of the ribcage network previous devel-
oped as a discriminator in Generative Adversarial Networks
(GAN) [25]. As shown in Fig. 7, the RC Net consists of three
channels. The first and second channels, referred to as the
‘‘Ribs’’, process the original and handcrafted feature images
respectively. The third channel, referred to as the ‘‘Spine’’,
uses the fusion of the feature map of each ‘‘Rib’’ channel as
input.

The original RCNet employed convolutional blocks (series
connection of 2D convolutional layers) for deep feature
extraction; and concatenated the output feature maps of the
‘‘rib’’ channel as the inputs of the ‘‘spine’’ channel. In this
work, we replaced the convolutional blocks with the recently
proposed dense blocks [22], as the cross layer connections,
which can significantly reduce the number of parameters
for deep networks. Sum, instead of concatenation, was used
to fuse the output feature maps of ‘‘rib’’ channels. While
concatenation doubled the number of feature maps, sum oper-
ation does not increase the complexity of the network. In this
work, five and four dense blocks were employed in each
‘‘Rib’’ and ‘‘Spine’’ channel, respectively. For each dense
block, the number of convolutional layers was 3; the growth
rate was 12 and the dropout rate was 0.5.

3) DATA AUGMENTATION
Additional training instances are generated by applying ran-
dom crop (range from 0.8 to 1 image size), zoom in (range
from 1 to 1.2) and mirroring to the images of the training set.
Random noise with zero mean and 0.001 standard deviation
was added to the input images.

4) NETWORK TRAINING
In this work, the networks were implemented using Keras
toolbox, and trained with a mini-batch size of 32 using
four GPUs (GeForce GTX TITAN X, 12GB RAM). The
VGG-16 and Xception were initiated using the pre-trained

FIGURE 8. The testing accuracy when using SIFT and Gabor feature with
different parameters.

weights on ImageNet, while the DenseNet and RC Net
were initiated using ‘‘He_uniform’’ [26]. The initial learning
rate is set to 0.001. ‘Adam’ [27] instead of the traditional
stochastic gradient descent (SGD)was employed as optimiza-
tion algorithm, and to update neural network weights based
on training data iteratively. All networks converged after
300 epochs.

III. EXPERIMENTAL RESULTS
A. PARAMETERS OF HANDCRAFTED FEATURES
In this work, we firstly tested the influence of parameters
for handcrafted feature extractors, i.e. SIFT and Gabor. The
window sizes of 2 to 16 were tested for SIFT and wave-
lengths of 2 to 6 were tested for Gabor. Other parame-
ters remained the same. Due to the page limit, we only
show the results of Xception network with early inte-
gration for testing group 2 (1000 images each for train-
ing and testing) in Fig. 8. One can observe from the
figure that the handcrafted features extracted using the pro-
posed window size and wavelength achieve the best testing
accuracy.

B. PERFORMANCE OF NETWORKS WITH AND WITHOUT
FEATURE INTEGRATION
Now we can evaluate the performances of the integration
of handcrafted features when existing VGG, DenseNet and
Xception networks are used. While Fig. 9 lists the perfor-
mances of VGG, DenseNet and Xception with and without
the integration of SIFT and Gabor. In Fig. 9, the blue, red
and green bars represent the testing accuracy of the original
DNN, DNN integrated with SIFT and DNN integrated with
Gabor.

One can observe from the figure that all three DNNs
showed better accuracy after integrating handcrafted features.
However, the Xception and DenseNet achieved better per-
formances than VGG. There is no significant differences
among the integration of SIFT and Gabor features. For test-
ing group 1 and 2, the DNNs with Gabor feature showed
the best performance, while the DNN with SIFT feature
showed the best performance for testing group 3. When using
feature integration, the average performance improvement
was 0.38%, 0.93% and 0.44% for testing group 1, 2 and 3,
respectively. The integration of handcrafted features pro-
duced larger performance improvements for smaller training
sets.
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FIGURE 9. The testing accuracy of VGG, DenseNet and Xception with and
without handcrafted feature integration.

TABLE 2. The number of parameters and testing accuracy of RC Net with
different improvements.

C. PERFORMANCE OF THE PROPOSED RC Net
As described in Section 2.2.2.C, the proposed RC Net
replaced the convolutional blocks with dense blocks, and
using sum instead of concatenation for feature fusion. In this
section, we compared performance of the proposed RC
Net with the original version in Table 2 and Fig. 10.
Since SIFT and Gabor features showed similar performance,
we employedGabor features to evaluate the RCNets. One can
observe from the figure and table that dense block (RC+D)
greatly improved the performance of RC Net, and using
sum (S) instead of concatenation (Cc) can not only reduce
the model parameters, but also improve the network per-
formance. While the proposed RC Net with sum operation
only requires 10% of the parameters of the original one,
the proposed dense block further reduced the number to 5%.
When both dense block and sum operations are used, the

FIGURE 10. The testing accuracy of RC Net with different improvements
(Cc: concatenation; Cv: convolutional block; S: sum; D: dense block).

TABLE 3. The comparison of the performances of three integration
network (ACC: accuracy; SEN: sensitivity; SPE: specificity).

proposed RC Net greatly reduced the memory requirement
from 31M to 625K. At the same time, 0.3%, 4.5% and 1.7%
improvement were achieved using the proposed RC Net for
group 1, 2 and 3, respectively. The proposed RC Net is not
only much more efficient, but also more accurate.

D. COMPARISON OF DIFFERENT INTEGRATION
NETWORKS AND THE STATE-OF-THE-ART
We also compared in Table 3 the performances of three differ-
ent integration network architectures, i.e. early, late and full
integration. We only listed the performance of the best model
when handcrafted features are integrated or not. As the work
in [7] is by far the only work available using the same dataset
for eye disease detection, we also include its results for
comparison. For dataset group 1 and 2, we directly included
the reported results; for group 3, since it was not tested in [7],
we replicated the network and tested the performance.

As both group 1 and 2 were used for testing in [7],
the results for the two groups in this paper are directly com-
parable. For group 3, we implemented the same network, i.e.
Inception V3 and reported its result in Table 3. As shown in
the table, the proposed integration networks generally achieve
much better performance than the Inception V3 network
proposed in [7]. Take group 1 for example, the integration
of Gabor features using the proposed RC Net improved the
accuracy of [7] from 96.6% to 99.6%. Similarly, 5.4% and

33776 VOLUME 7, 2019



X. Li et al.: Integrating Handcrafted and Deep Features for OCT

2.2% improvement was also achieved for group 2 and 3,
respectively. When handcrafted feature was not integrated,
Xception and DenseNet also achieved better performance
than Inception.

For different integration strategies, while the early and late
integration showed equal classification performance for all
three testing groups, the full integration method showed the
best performance. Compared to the deep feature, the inte-
gration of handcrafted features achieved an improvement
of 0.3%, 2% and 1.8% for testing group 1, 2 and 3, respec-
tively. As only 1000 training samples are available in group 2,
the integration of handcrafted features is more useful when
limited training samples are available.

IV. CONCLUSION
In this work, we proposed three different feature integration
methods: early, late and full integration for eye disease classi-
fication using a public OCT image database. Three groups of
testing data were used to test the performance of the algorithm
when large, small and reasonable numbers of training data are
available.

The primary finding of this work is that the performance of
DNN can be improved after integrating handcrafted features.
It seems that the introduction of handcrafted features can help
integrate the human prior knowledge and thus improve the
performance of the DNNs.When limited training samples are
available, such boosts in performance are more significant.
The differences among different handcrafted features, i.e.
SIFT and Gabor, are not substantial.

Another finding is that compared to late integration, early
integration methods did not show worse performance for
this database, but with a substantial saving in parameters
and computation time. The full integration method showed
better performance on all three testing groups, but with more
parameters. The proposed RC Net employed dense block and
sum operation to replace the convolutional block and concate-
nation. This can substantially reduce the model parameters
and improve the performance of network.
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