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ABSTRACT Outlier detection is an extensive research area, which has been intensively studied in several
domains such as biological sciences, medical diagnosis, surveillance, and traffic anomaly detection. This
paper explores advances in the outlier detection area by finding anomalies in spatio–temporal urban traffic
flow. It proposes a new approach by considering the distribution of the flows in a given time interval. The
flow distribution probability (FDP) databases are first constructed from the traffic flows by considering
both spatial and temporal information. The outlier detection mechanism is then applied to the coming flow
distribution probabilities, the inliers are stored to enrich the FDP databases, while the outliers are excluded
from the FDP databases. Moreover, a k-nearest neighbor for distance-based outlier detection is investigated
and adopted for FDP outlier detection. To validate the proposed framework, real data from Odense traffic
flow case are evaluated at ten locations. The results reveal that the proposed framework is able to detect the
real distribution of flow outliers. Another experiment has been carried out on Beijing data, the results show
that our approach outperforms the baseline algorithms for high-urban traffic flow.

INDEX TERMS Anomaly detection, kNN, flow distribution probability.

I. INTRODUCTION
Spatio-temporal data embodies information related to space
and time dimensions [1]. Spatio-temporal data mining is
largely used in many number of domains including ecol-
ogy [2], climatology [3], earth sciences [4], epidemiology [5],
and urban traffic [6], [7]. The aim is to adapt classical data
mining techniques and propose new methods for discover-
ing useful knowledge from spatio-temporal data [8]. Recent
surveys overviewing spatio-temporal data mining techniques
including spatio-temporal clustering, spatio-temporal pattern
mining can be found in [9]–[13]. One application of spatio-
temporal data mining is spatio-temporal outlier detection.
The goal is to identify anomalies from both spatial and tem-
poral information from the input data [14].

With the popularization of GPS and IT devices, urban
traffic flow analysis has attracted growing attention in the
last decades. Zheng [15] and Feng et al. [7] reviewed spatio-
temporal data mining techniques. The surveys included seg-
mentation and clustering, detecting outliers and anomaly
flows, classification sub-trajectories, and finding frequent
and periodical sequential patterns from clusters of trajecto-
ries. The traffic flow is computed by counting the number

of objects (cars, passengers, taxis, buses, etc) across a given
location during a time interval. This generates a high number
of Flow Distribution Probabilities (FDP).

One of the main applications in urban traffic analysis
is detecting anomalies from the traffic flow data. The aim
is to identify flow values significantly different to other
flow values by considering both spatial and temporal infor-
mation of urban traffic data. A useful way for anomaly
detection on traffic flow is to apply outlier detection tech-
niques. An outlier is defined as an observation (or a set
of observations) which appears to be inconsistent with the
remainder of that set of data [16]. Outlier detection has been
intensively studied in the last two decades. It can be cat-
egorized as statistical-based methods, distance-based meth-
ods, deviation-based methods, density-based methods, and
clustering-based methods [16]–[21]. Interesting recent sur-
veys which reviews on existing outlier detection are found
in [22] and [23]. In addition, many researchers have investi-
gated outlier urban flow detection [24]–[27]. In the anoma-
lous urban traffic flow data we aim to learn from different
traffic actors (bikes, cars, buses, and trucks), the unusual
behaviors represented by anomalous flow values due to some
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FIGURE 1. Motivated Example: outliers in flows vs. outliers in flow distributions. (a) Flows over time (potential outliers marked). (b) Flow probability
distributions: outliers (in color) vs. inliers (in grey).

circumstances such as oversaturated conditions [28], traffic
congestion [29], and bottlenecks [30].

A. MOTIVATION
Let us illustrate the conceptual difference with an example
in Figure 1. In Figure 1(a) we illustrate the flows over time
(a time series of the flow values measured over the day) for
the Anderupvej location at Odense city in Denmark for two
weeks excluding the weekend days. Each flow value is deter-
mined for an interval of 15 minutes. In Figure 1(b) we show
the distributions of flow values per day between 07:00 to
10:00, for the working days over two weeks for the same
location. Here, each flow value is determined for a 1-hour
interval. The existing algorithms in the literature can only
detect single flows. For example, the flows marked by red
circles in Figure 1(a) might be unusual. Such methods could
have the use case of real-time detection of, e.g., sudden peaks.
However, unusual flow distributions (i.e., longer periods of
flow measurements) as represented in Figure 1(b) cannot be
detected by the state-of-the-art algorithms for outlier detec-
tion in flow sequences. In this example, the distributions col-
ored red and blue, respectively, are rather different from the
other flow distributions and hint at unusual conditions with
impact on the overall traffic behavior on those days. Indeed,
the distributions colored red and blue have large flow values
between 0 to 50. Contrary to the other FDPs, which regular
density of flows among the interval [0, 100] is observed.
The aim of this paper is to identify such outliers by propos-
ing an outlier detection framework for flow distribution
probabilities.

B. CONTRIBUTION
In this paper, we propose a technique based on the kNN
algorithm for identifying anomalies on distributions of flows.
The main contributions of this work are as follows.

1) We propose a new framework that updates the historical
data for dealing with outlier FDP of the traffic flow
data.

2) We propose a strategy for constructing the historical
FDP database by taking into account both spatial and
temporal information of the traffic flow data.

3) We extend the kNN algorithm for FDP data and we
adapt the KL-divergence [31] for computing distances
between the FDPs.

4) We present a case study on real data from both Odense
and Beijing traffic flow to demonstrate the usefulness
of the proposed framework. The results reveal that the
proposed framework is able to detect the real distribu-
tion of flow outliers. In addition, it is very competitive
compared to the state-of-the-art algorithms for solving
big urban traffic networks.

C. OUTLINE
The paper is organized as follows. Section II reviews out-
lier techniques for spatio-temporal traffic data. Section III
presents the proposed framework for outlier flow distribution
probability detection. Section IV presents the experimental
analysis on real world data. Section V summarizes the con-
clusions and outlines future work.

II. RELATED WORK
In this paper, we are interested in urban traffic. In the fol-
lowing, we relate recent studies on spatio-temporal urban
traffic data mining techniques, and in particular, the outlier
and anomaly detection from flow data.

A. URBAN TRAFFIC FLOW DATA MINING
In the last decade, several data mining approaches have been
proposed for urban traffic analysis. Landesberger et al. [32]
present a visual analysis study of people flows among places
in the London city area. The people flows are aggregated
into regions to reduce the mass mobility patterns using the
k-means algorithm [33]. However, only aggregated regions
are shown to the user for better understanding the flow
distribution between places. Zheng et al. [34] address the
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problem of mining sequential patterns in semantic trajecto-
ries, leveraging a new method named SPLITTER to discover
fined-grained sequential patterns. Yuan et al. [35] address the
problem of discovering regions of different activities in a
city. The knowledge can help citizens to make decisions,
e.g., whether to invest in real estate. Asif et al. [36] develop
unsupervised learning methods to speed up the prediction in
the context of multiple and heterogeneous road traffic. The
experimental study reveals that the suggested approach pro-
duces better prediction accuracy compared to other forecast-
ing algorithms. A dynamic segmentation model for hotspot
detection in multiple levels of the spatial network is proposed
in [37]. A shortest path tree pruning algorithm is introduced to
filter the irrelevant hotspot detection. This algorithm suffers
from the quality of returned paths that are considered hotspot
which takes only the shortest paths and not meaningful paths.

B. OUTLIER AND ANOMALY DETECTION FOR URBAN
TRAFFIC FLOW
Several surveys on outlier detection algorithms for traffic
flow data have been published [7], [12], [38]. Here, we give
a short survey, dividing these methods into three categories:
statistical approaches, similarity-based approaches, and fre-
quent pattern-based approaches.

1) STATISTICAL APPROACHES
Statistical approaches use statistical models and tech-
niques such as the Gaussian aggregation model [39],
principle component analysis [40], stochastic gradient
descent [41], or Dirichlet Process Mixture [42]. In general,
inlier flows are assumed to follow some common statisti-
cal process while the flows that deviate from this statistical
mechanism are treated as outliers. Ngan et al. [43] used a
DPMM (Dirichlet Process Mixture Model) for deriving out-
liers in urban traffic flow data. First, the set of all flow values
F = {f1, f2, . . . , f|F |} is projected into an n-dimensional
space, where the ith object is defined by the flow values
{fi, . . . , fi+n−1}. The obtained dimensions are then reduced by
PCA (Principal Component Analysis) to a two-dimensional
space. Then, the Chinese restaurant process [44] is performed
to cluster the flow values with an infinite number of clusters.
Each flow value is assigned to a new cluster with a proba-
bility proportional to a concentration parameter α, otherwise,
it is assigned to the previously created cluster. Afterwards,
all flow values belonging to the cluster having a maximum
number of elements are considered inliers, the remaining flow
values are outliers. Lin et al. [45] introduce an algorithm that
uses Gaussian aggregation for road traffic speed prediction.
Speed sensing data are first integrated with tweet and tra-
jectory data to enrich the training data. A combination of a
disaggregation model and a Gaussian process is then used in
the overall framework. This combination allows to improve
traffic speed prediction on the expense of computation time,
especially when dealing with a high number of vehicles.
Lakhina et al. [46] study the use of PCA with an algorithm
for discovering anomalous flows to explore network-wide

traffic data. The approach aims to separate network traffic
into a normal component that is dominated by predictable
traffic and an anomalous component which is noisier and
contains the significant traffic spikes. Ye et al. [47] present
an anomaly-tolerant traffic matrix estimation approach called
SETMADA (Simultaneously Estimate Traffic Matrix and
Detect Anomaly). It estimates the traffic matrix and uses it
for anomaly detection. Based on the prior low-rank property
and temporal characteristic of the traffic flow, the outlier
detection is formulated as a prior information-guided matrix
completion problem. Nevat et al. [48] address the problem of
correlation between the anomalous traffic flows. The authors
develop a statistical decision theoretic framework based on a
Markov chain model [49] for temporally correlated traffic in
networks. The anomaly detection problem is reformulated via
the generalized likelihood ratio test [50]. A two-step approach
is suggested: in the first step the cross entropy [51] is applied
to quickly detect anomalous flows, in the second step a trans-
formation of aggregated flows is performed using an efficient
low-dimensional representation of the traffic flow.

2) SIMILARITY-BASED APPROACHES
Similarity-based approaches use distance metrics and neigh-
borhood computation methods or classic outlier detection
methods [16], [18] to find outliers. In general, the normal
flows (inliers) are assumed to build dense regions while
outlying flows are assumed to build regions of lower density.
Dang et al. [52] proposed a combination between kNN [16]
and PCA for outlier flow detection. A dimensionality reduc-
tion is performed by PCA. In the derived subspaces the
kNN outlier detection [16] is applied. Tan et al. [53] pro-
posed BLOF algorithm (a density-based bounded LOF) for
large scale traffic flow data in Hong Kong. A three dimen-
sional space is derived by PCA, then the LOF algorithm [18]
is applied on this reduced space to find local outliers in
the flow data. Huang et al. [54] proposed a dimensionality
reduction algorithm for anomaly detection in traffic data by
developing a distance-based subspace measure called DR-SS
(Dimensionality Reduction based on Sub-Space measure).
This measure aims to find an appropriate reduced subset of
dimensions in a multi-dimensional space in different time
intervals. Munoz-Organero et al. [55] proposed a distance-
based algorithm to detect abnormal driving locations caused
by particular traffic conditions such as traffic lights, street
crossings, or roundabouts. The aim is to filter outlying driving
points related to random traffic conditions such as traffic
jams from infrastructural road elements. The Mahalanobis
distance is used to compute the similarity between the sin-
gle flows captured each second during 20 seconds. Dense
flows with high similarity values are considered as inliers,
the others are treated as outliers. Shi et al. [56] proposed
a dynamic neighborhood-based approach to detect local
anomalies in spatio-temporal flow data. The dynamic flow
is first represented by the real-time velocity values of vehi-
cles. The dynamic neighborhood structure is then designed
by computing the similarity between spatio-temporal flows.
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Lee et al. [57] proposed the Athena framework, a distributed
application that allows to detect anomalies from the network
flows. A wide range of anomaly detection services based on
similarity approaches and network monitoring routines are
integrated into this framework. The results reveal that Athena
outperforms the Spark implementation [58] in terms of the
runtime performance using real network flow data.

3) PATTERN MINING-BASED APPROACHES
Pattern mining-based approaches use techniques such as
Apriori [59] or FP-growth [60] to discover connections
between outliers. Liu et al. [61] introduced the problem of
causal interaction in traffic data streams, i.e., the discovery
of relationships among the detected outliers. The traffic data
are first preprocessed by building a region graph. Temporal
outliers are then identified based on a distortion function that
computes the similarity between segment flows. Association
rule mining is performed to extract relationships between
the discovered outliers. Pang et al. [24] developed a pattern
mining-based strategy for spatio-temporal outlier detection.
Two kinds of outliers could be detected, persistent outliers
and emerging outliers. An upper bounding strategy for both
outliers is applied. Chawla et al. [25] focus on analyzing the
traffic between regions rather than the entire flows. This strat-
egy reduces considerably the computational cost of the pro-
posedmodel. Nguyen et al. [62] predict frequently congested
sites in spatio-temporal data and detect causal relationships
among them from traffic data streams. A tree of segment flow
outliers is constructed for snapshots over time, frequent sub-
trees are extracted from all trees, where the subtree is selected
if its support rate exceeds the given support threshold. This
algorithm allows not only to detect flow outliers in a single
arc of the network but also to discover congestion patterns.
In addition, a dynamic Bayesian network approach is applied
to represent the congestion propagation between segment
flows.

4) DISCUSSION
The statistical approaches are very sensitive to the out-
liers, i.e., outliers interfere with the model fitting. Further-
more, they rely on a specific statistical model and it is
often not clear whether or not that model reflects well the
actual distribution of the given traffic flow data. Similarity-
based approaches solve this latter issue by adopting a non-
parametric approach. However, these approaches do not deal
with correlations between flow data and only try to detect
single outlier flow data. Pattern mining-based approaches
take into account also correlations between single outliers.
On the other hand, these approaches are very time consuming
as they are based on the frequent pattern mining process that
needs multiple scans of the flow database.

To the best of our knowledge, there is only one approach
called FPD-LOF [63], that explores the local outlier fac-
tor for finding out the set of distribution of flow outliers.
This approach deals only with a single location, where a
temporal dimension is used, to construct the distribution of

flows, and considers the Bhattacharyya metric, to compute
the local reachability distance for each distribution of flows.
In order to deal with spatio-temporal data, and based on the
success of kNN [64] and KL-divergence distance in a distri-
bution data [65], this paper proposes a novel approach called
kNN-FDP to derive the distribution of flow outliers.

To the best of our knowledge, there is only one approach
called FDP-LOF [63], that explores the local outlier fac-
tor for finding out the set of distribution of flow outliers.
This approach deals only with a single location, where a
temporal dimension is used, to construct the distribution of
flows, and considers the Bhattacharyya metric, to compute
the local reachability distance for each distribution of flows.
In order to deal with spatio-temporal data, and based on the
success of kNN [64] and KL-divergence distance in a distri-
bution data [65], this paper proposes a novel approach called
kNN-FDP to derive the distribution of flow outliers.

III. PROPOSED FRAMEWORK
A. PROBLEM STATEMENT
In this paper, we focus on detecting anomalies from the flow
distribution probabilities. A flow distribution probability can
be regarded as a sequence of pairs of flow and its probability.
A flow is defined by the number of objects at each determined
time interval. In this investigation, the traffic flows are first
determined during each time interval. The frequency of each
flow is computed and then the flow distribution probability
is derived. Let L = {L1,L2, . . . ,Lk} be the set of k loca-
tions. Each location Li is featured by the set of FDPi =
{FDP1i ,FDP

2
i , . . . ,FDP

r
i }. The outlier FDP detection prob-

lem aims to identify outliers from the set {FDPi}. In the other
terms, it aims to divide the set {FDPi} into two sets (Oi and Ii).
The setOi consists of FDP outliers of the location Li whereas
the set Ii consists of the FDP inliers of the location Li.
Definition 1: Consider a score function, defined as fol-

lows:

Score : FDPi → R (1)

FDPji 7→ Score(FDPji) (2)

The outliers and the inliers sets are defined as follows:
Oi = {FDP

j
i | ∀ FDP

l
i ∈ Ii,

Score(FDPji) ≥ Score(FDP
l
i)}

Ii = FDPi/Oi.

(3)

B. PRINCIPLE
The proposed framework is overviewed in Figure 2 and it
consists of two steps:

1) FDP Construction: This step aims to create the his-
torical flow distribution probability database from the
urban traffic data. First, it extracts the information of
each location from the traffic flow. Multiple databases
are extracted, each of which is assigned to one speci-
fied location. Second, it builds the flow’s distribution
for each location. From each database of the given
location, the flow’s distribution is computed for a
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FIGURE 2. Proposed framework for outlier detection on flow distribution
probabilities.

given time interval. Multiple historical flow’s distri-
bution databases are then created, each one represents
the flow’s distribution of the given location. Finally,
the flow’s distribution probability of each location is
then determined and stored on an adequate structure.

2) Outlier Detection Technique: The historical flow dis-
tribution probabilities are used independently to detect
outliers from new flow’s distribution coming in a
streaming way. Any outlier detection algorithm can
be used. Several improvements may be investigated
for this purpose. The most frequently used outliers
detection techniques are adapted for flow’s distribution
data. If the new data is an inlier then it is added to
the historical data, otherwise, it is excluded from the
historical flow’s distribution probability database for
the next processing.

C. FDP CONSTRUCTION
The goal of this step is to build the flow distribution proba-
bility of each location.
Definition 2: Consider L = {L1, . . . ,Lk} is the set of k

locations. We define the traffic flow TF = {TF1, . . . ,TFk},
where TFi is the traffic flow information related to the loca-
tion Li.
Definition 3: Each location Li has a set FDPi =

{FDP1i , . . . ,FDP
r
i }, where FDP

j
i represents the j

th flow dis-
tribution probability of the ith location.
Definition 4: Note TFOi as the time flow observation of

the location Li, [Tj−1,Tj] the time interval of the FDPji.
We define NFOji as the number of flow observations of the
FDPji by

NFOji =
Tj − Tj−1
TFOi

. (4)

Definition 5: We define the l th flow in FDPji by the set
of objects that across the location Li in the time between
(Tj + (TFOi × (l − 1))) and (Tj + (TFOi × l)) and we
obtain F j,li = {TF

r
i , |TF

r
i (time) ∈ [(Tj + (TFOi × (l − 1))),

(Tj + (TFOi × l))]}.

Definition 6: We define F j,li by the number of objects
(e.g., pedestrians, bicycles, cars, trucks, buses) that cross a
location Li during some time interval [i × j, (i × j) + 1] by
means of various types of sensors in streets, in traffic light
systems, or as mobile sensors. The maximum flow max ji of
the jth flow distribution in the ith location is defined by

max ji = {|F
j,l
i |, |∀l

′
∈ [1− NFOji], |F

j,l
i | ≥ |F

j,l′

i |} (5)

Definition 7: We define the flow frequency at level m,
i.e., the set of flows that occurs m times as

FF ji (m) = {F
j,l
i |, |F

j,l
i | = m} (6)

Definition 8: We define the probability flow at level m,
i.e., the probability flows that occurs m times as

FPji(m) =
|FF ji (m)|

|NFOji|
(7)

Definition 9: We define FDPij as

FDPij = {FP
j
i(m), |m ∈ [1,max ji ]} (8)

The FDP database of each location is constructed using
the definitions (Def. 2 to 9). Assume we have the traf-
fic flow database TF = {TF1,TF2, . . . ,TFk} of k loca-
tions L = {L1,L2, . . . ,Lk}. Each location has time flow
observation TFOi, r FDPs, {FDP1i ,FDP

2
i , . . . ,FDP

r
i }, the j

th

flow distribution probability contains observations from the
interval time [Tj−1,Tj] (Def. 2, 3, 4). The number of flow
observation is first determined of each flow distribution at
each location using Def. 4. A single flow observation is
then computed using Def. 5. The maximum flow of each
observation is calculated using Def. 6. The flow frequency
of each single observation is given using Def. 7. The prob-
ability flows of each location are finally extracted using
Def. 8 and 9.

D. OUTLIER DETECTION TECHNIQUE
In this section, a kNN-FDP algorithm that adapts the k Near-
est Neighbor algorithm kNN [16] is developed for detecting
flow distribution probability outliers. Before introducing the
algorithm, we show how to compute the distance similarity
between two FDPs, i.e., the similarity function in kNN.
Definition 10: Consider FDPji the j

th flow of the ith loca-
tion defined by Def.9. We define the vector Aji representing
the dj − dimensional space of FDP

j
i by{

dj = max ji
Aji[m] = FPji(m) ∀m ∈ [1,max ji ]

(9)

Proposition 1: Consider two vectors defined by Def. 10,
(Aj1i andA

j2
i ) with dj1 ≥ dj2 . Then, dj2 is transformed to dj1 by

setting all the missing values of Aj2i to 0 to obtain:{
Aj2i (m) =

Aj2i m ∈ [1,max j2i ]
0 ∀m ∈ [max j2i + 1,max j1i ]

(10)
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Algorithm 1 kNN-FDP Algorithm

1: Input: FDPi = {FDP1i , . . . ,FDP
r
i }: The FDP of the ith

location.
FDPnewi : The novel FDP observed in the ith location.
ε: ratio threshold.
k: The kNN threshold.

2: Output: Outlier: Boolean that indicates FDPnewi is out-
lier or not.

3: for j=1 to r do
4: dist[j]← KL(FDPnewi , FDPji)
5: end for
6: d← kNN(dist)
7: if d ≤ ε then
8: Outlier← false
9: else
10: Outlier← true
11: end if
12: return Outlier

In this paper, the KL-divergence (Kullback-Leibler diver-
gence) [31] will be explored. The KL-divergence distance is
chosen because it is the most used for probability similarity
computation. In the following, we adapt the KL-divergence
(KL) for FDP similarity computation as

KL(Aj1
i ,A

j2
i ) =

dj1∑
m=1

Aj1
i (m) ln

2Aj1
i (m)

Aj1
i (m)+Aj2

i (m)
(11)

Algorithm 1 describes the kNN-FDP algorithm that adapts
the kNN outlier algorithm presented in [16]. kNN-FDP has
as input the flow distribution probability of the ith location,
FDPi, the novel FDP FDPnewi , k and ε thresholds. It also
uses an internal data structure represented by a vector dist
to store the distance values. The algorithm returns a boolean
variable that indicates whether FDPnewi is an outlier or not.
First, the distance between FDPnewi and each FDP in FDPji is
determined (line 3 to 5). The distance value between FDPnewi
and its k th nearest neighbor is selected using KL-divergence
(line 6). If this value exceeds the ε threshold, then FDPnewi
will be considered as an outlier, otherwise, it will be consid-
ered as an inlier (line 7 to 11).

E. COMPLEXITY
The theoretical complexity cost of the proposed framework
is divided into the following costs:

1) FDP construction cost: The flow is first built from the
traffic flow on each location. This operation requires
|TFi| scans of each location i, so, this operation needs
k∑
i=1
|TFi| scans. The FDP database is then designed

from the flows, which needs to scan the entire flows,
and requires |Fi| scans for each location Li. This oper-

ation requires
k∑
i=1
|Fi| scans. Thus, the cost of FDP

construction is
k∑
i=1

(|TFi| + |Fi|).

2) Outlier detection cost: The two outlier detection tech-
niques presented in this paper mainly depend on the
similarity metric used. The complexity cost of the
adopted metrics in this paper is O(di) where di is the
number of dimensions on the FDP space, i.e., the max-
imum number of flows of all FDP at each location
Li. The kNN-FDP algorithm then requires O(|FDPi|)
where |FDPi| is the size of the historical database of
the location Li. The complexity cost of this operation is
k∑
i=1

(|FDPi| × di).

The complexity cost of the proposed framework is
k∑
i=1

((|TFi| + |Fi|) + (|FDPi| × di)), where k is the number

of locations, |FDPi| is the size of the historical FDP database
of the location Li, and di is the maximum number of flows in
FDP of each location Li.

F. ILLUSTRATION
Consider the following traffic flow TF1 related to the
location L1

Let us consider the TFO1 set to 1, FDP1 = {FDP11,FDP
2
1},

which their time interval as
[T0−T1] = [0−5] representing the time interval of FDP11,
[T1−T2] = [5−10] representing the time interval ofFDP21.
NFOj1 is calculated using Def. 4 ∀j ∈ [1− 2] as
NFO1

1 =
T1−T0
TFO1

= 5.
NFO2

1 =
T2−T1
TFO1

= 5.

F j,li is defined (see Def. 5) ∀j ∈ [1−2] and ∀l ∈ [1−5] as

F1,1
1 = {O1,O2,O3}, F1,2

1 = {O4,O5,O6}

F1,3
1 = {O7,O8}, F1,4

1 = {O9}

F1,5
1 = {O10,O11}.

F2,1
1 = {O11,O12}, F2,2

1 = {O13,O14}

F2,3
1 = {O15,O16}, F2,4

1 = {O17,O18,O19}

F2,5
1 = {O20}.

Using Def. 6, the maximum flow max11 and max21 are 3
and 3, respectively.

The flow frequency is given using Def. 7 as
FF1

1 (1) = {F
1,4
1 }, FF

1
1 (2) = {F

1,3
1 ,F1,5

1 }, and FF
1
1 (3) =

{F1,1
1 ,F1,2

1 }.

FF2
1 (1) = {F

2,5
1 }, FF

2
1 (2) = {F

2,1
1 ,F2,2

1 ,F2,3
1 }, and

FF2
1 (3) = {F

2,4
1 }.
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The probability flow is thus determined using Def. 8 and 9
as FDP11 = {FP

1
1(1),FP

1
1(2),FP

1
1(3)} with

FP11(1) =
|FF1

1 (1)|
NFO1

1
= 0.2,

FP11(2) =
|FF1

1 (2)|
NFO1

1
= 0.4, and

FP11(3) =
|FF1

1 (3)|
NFO1

1
= 0.4.

FDP21 = {FP
2
1(1),FP

2
1(2),FP

2
1(3)} with

FP21(1) =
|FF2

1 (1)|
NFO2

1
= 0.2,

FP21(2) =
|FF2

1 (2)|
NFO2

1
= 0.6, and

FP21(3) =
|FF2

1 (3)|
NFO2

1
= 0.2.

Consider now the novel FDP observed in the first location
as FDPnew1 = {FPnew1 (1),FPnew1 (2)} with
FPnew1 (1) = 0.9, and FPnew1 (2) = 0.1.
To determine if FDPnew1 is outlier or not, we first create the

vectors A11, A
2
1, and A

new
1 using Def. 10 and Prop. 1 as

A11 = {0.2, 0.4, 0.4}, and A
2
2 = {0.2, 0.6, 0.2}, and

Anew1 = {0.9, 0.1, 0.0}
The distance between A11, A

2
1 and Anew1 is then computed.

For instance, using the Bhattaharyyan metric, we get:

KL(A11,A
2
1) = 0.51.

KL(A11,A
new
1 ) = 0.75.

KL(A21,A
new
1 ) = 0.71.

If k is set to 1, then kNN (Anew1 ) = {A21}, and kNN (A21) = {A
1
1}.

The distance between Anew1 and A21 is 0.71. If ε is set to 0.5,
then FDPnew1 is an outlier.

IV. PERFORMANCE EVALUATION
A number of experiments have been carried out to demon-
strate the performance of the proposed framework using real
traffic flow data from Odense, Denmark, and Beijing, China.
We first present the Odense traffic flow data and describe the
configuration of the framework on each location. The output
of the best configuration is then shown to detect separately
outliers on each location. All codes are scripted on Java and
JavaScript, run on an Intel Core i7, whereas all plots are done
using RStudio. The source codes can be downloaded from1

to facilitate the reproducibility of the experiments. In the
following experiments, the interval time of determining each
FDP is fixed to one hour, which is the most standard interval
used by the traffic flow community.

A. DATA
In this experiment, two real urban traffic are used:

1) The first one is retrieved fromOdense Kommune (Den-
mark)2 is shown. The data is a set of rows, where each
row contains information related to the cars detected at
specific locations such as gap, length, location, date-
time, speed, and class. The location is represented

1https://sites.google.com/site/youcefdjenouri/software
2http://dss.sdu.dk/projects/its.html

TABLE 1. Odense data description.

FIGURE 3. Location’s Map: L1 –green–, L2 –red–, L3 –orange–, L4
–yellow–, L5 –brown–, L6 –blue–, L7 –Violet–, L8 –grey–, L9 –black–,
L10 –pink–.

by latitude and longitude. The speed is calculated as
km/h, and the datetime represents the year, the month,
the day, the hour, the minute and the second that the
car is passed by the given location. The most important
information in each car is given as follows:
• datetime: represents the time that the car passed
on the location. Datetime is: YYYY-MM-DD
hh:mm:ss.

• latitude: defines the first dimension (horizontal
position) of the location.

• longitude: defines the second dimension (vertical
position) of the location.

• speed: defines the actual speed of the car where it
across the location.

• class: defines the type of vehicle, e.g. class is set to
2 represents a passenger car.

IT infrastructure is installed to detect the cars passed
on each location. In this study, we focus on ten loca-
tions described in Table 1. The traffic data input is
obtained from Odense flow that is observed between
1st January 2017 and 30th September 2017. The global
view of the ten locations is given by the map presented
in Figure 3.

2) The second one is a real urban traffic data obtained
from Beijing traffic flow, and retrieved from.3

3https://www.beijingcitylab.com/
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It consists of more than 900 million traffic flow val-
ues during a two-months time period on one loca-
tion. The most important information of each car is
given as follows: Datetime: represents the time that
the car passed on the location, the datetime format is:
YYYY-MM-DD hh:mm:ss. Class: It defines the type
of vehicle or bus.

B. EVALUATION
The common problem in the evaluation of outlier detection
techniques using new data is how to derive the outlier set from
the inlier set. To solve this problem, virtual outlier flows are
generated by simulating usual flows. In this experiment, four
unusual flows are defined and generated as:

1) Null FDP: In the null FDP, the flow distribution is
equal to 0, whatever, the number of the flow. In other
words, we detect any flow during the observation, The
definition of this outlier flow is presented as

FDPji(m) = {0 | ∀ m ∈ [1, . . . ,max ji ]} (12)

2) Stable FDP: In the stable FDP, the flow distribution is
equal to 1 for flow equal to x, 0 otherwise. In other
words, the flow is stable at x, its definition is presented
as

FDPji(m) =

{
1 m = x
0 Otherwise

(13)

3) Regular FDP: The flow here is equally distributed, it is
defined as

FDPji(m) = {
1

|FDPji|
| ∀ m ∈ [1, . . . ,max ji ]} (14)

4) Unexpected FDP: It is observed when an unexpected
event occurs, such as city events or road accidents: It
is performed into three main stages, stable flow from 1
to x, a cumulative flow from x to y, After, a Null flow
from y to max ji , it is defined as

FDPji(m) =


ε m ∈ [1, . . . , x]
9(m) m ∈ [x, . . . , y]

0 m ∈ [y, . . . ,max ji ]

(15)

where 9(m) is a function defined from [x, . . . , y] to
[ε, . . . , (1− xε)], and described as{
∀(m1,m2),m1 ≥ m2 ⇐⇒ 9(m1) ≥ 9(m2)∑

m9(m) = (1− xε)
(16)

Moreover, a set of noise FDPs are generated using Gaus-
sian noise as in [63]. Figure 4 presents an example of gener-
ated noise FDP and original FDP for each location.

The ground truth is all FDPs generated including null,
stable, regular, unexpected and noise FDPs. The evaluation
is performed using the F-measure, which is defined as:

F − measure =
2× Recall × Precision
Recall + Precision

(17)

FIGURE 4. Noise FDPs (example). (a) Original FDP. (b) Noise FDP.

FIGURE 5. Boxplot of Outlier Scores of all FDPs in the Anderupjev
Location.

Recall(A) =
|OA

⋂
O|

|O|
(18)

Precision(A) =
|OA

⋂
O|

|OA|
(19)

O: The set of all outliers.
OA: The set of outliers returned by the scenario A.
IA: The set of inliers returned by the scenario A.

C. RESULTS ON ODENSE DATA
Figure 6 presents the boxplot of Outlier Scores of all FDPs
in the Anderupjev Location. By varying the interval time
(from 0 to 24), and the type of days (all days, weekdays, and
weekend days), we can observe that it exists many outliers
for the weekdays compared to the weekend days. Moreover,
there are many outliers between [7−10], [10−13], [16−19],
and [19−22]. We can explain this result by the fact that many
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FIGURE 6. Boxplot of Outlier Scores. (a) FDPs of All Days of Anderpvej.
(b) FDPs of Weekdays of Anderpvej. (c) FDPs of Weekend Days of
Anderpvej. (d) Boxplot of Outlier Scores of all FDPs in all locations.

people go to work in the weekdays between [7−10] (usually
at 9:00 in Denmark) go to lunch between [10 − 13] (usually
at 11:30 in Denmark) and return home between [16 − 19]
(usually at 17:00 in Denmark). Figure 5 shows the boxplot of
Outlier Scores of all FDPs in all locations. We remark that the
number of outliers differs from location to another depending

TABLE 2. Description of the most frequently returned outliers of all
locations.

on the type of the location (dense or non-dense). For non-
dense locations, there are few outliers except the location
L3. However, for dense locations, we observe many outliers,
except at the location L8.
In Figure 7 we depict the top three FDP outliers.

Figures 7(a), 7(b), and 7(c) returned by FDP-LOF and the
remaining FDPs, Figure 7(d), on location L5. It is apparent
that the top three outliers are very different from the majority
of FDPs. The density of these outlier FDPs does not exceed
0.02. Location L5 is a low-traffic location, where the flow
values are rather small (flow values between 0 and 25 are
the most abundant). The outliers in this location show a more
even distribution with a larger amount of high flow values
than the majority of the FDPs.

Table 2 show the interpretation of outliers for each loca-
tion. According to this table, we can conclude that there are
seven most frequent outliers repeated in the ten locations, for
instance, the first day of the year (01-01-2017) repeated in
three locations, the Women’s day (08-03-2017) also repeated
in three locations. We can justify the first case by the fact that
people stay at home and take some reset after a celebration at
the last night of 2016. However, we can justify the second
case by the fact that women celebrate their day in public
places (restaurant, cinemas, theaters, etc). There are also
outliers caused by particular events in Odense like the World
Cup 2018 TOLT hold on 23-02-2017. Detailed information
of events in Odense city can be accessed at.4

Figure 8 presents the F-measure of kNN-FDP on Odins
Bro location with different number of neighbors. By vary-
ing the number of neighbors from 1 to 10, the F-measure
augments to 77% until the number of neighbors equals to 8,
and then reduces to 72% for 10 neighbors. Similarly, Figure 9
presents the F-measure of kNN-FDP on Odins Bro location
with different mining threshold values. By varying themining
threshold from 0.1 to 1, the F-measure increases to 80% until
the mining threshold equal to 7, and then reduces to 74%
for a mining threshold set to 1.0. From these experiments,
we can conclude that kNN-FDP is sensitive to the number of
neighbors, and the mining threshold values. Thus, it is crucial
to choose the suitable values of these two parameters for each
dataset.

The last experiment of this part aims to compare
kNN-FDP with LOF-FDP [63]. Figure 10 shows in terms of

4www.visitodense.com
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FIGURE 7. Comparison between the top three FDP outliers and the
remaining FDPs (location L5). (a) Top outlier. (b) Second outlier. (c) Third
outlier. (d) Remaining FDPs.

the percentage of detected outliers of both kNN-FDP with
LOF-FDP using ten Odense locations. The results reveal that
kNN-FDP outperforms LOF-FDP in almost all locations.

FIGURE 8. F-measure of the kNN-FDP on Odins Bro location with
different number of neighbors.

FIGURE 9. F-measure of the kNN-FDP on Odins Bro location with
different mining threshold.

FIGURE 10. kNN-FDP Vs LOF-FDP on Odense locations.

The reasons of these results are i) The KL-divergence dis-
tance is more adequate than the Bhattacharyya distance for
computing similarity between FDPs, and ii) Thanks to our
framework which updates the historical FDP by new inliers
FDPs. This enrichment influences positively to the quality of
outliers obtained.

D. RESULTS ON BEIJING DATA
The aim of the experiments in this section is to show the
performance of our approach using big datasets such as
Beijing data. We compare our approach with the baseline
methods (DPMM [43], PCA [46], and SETMADA [47]).
Figure 11 shows the runtime in seconds of the kNN-FDP,
and the baseline algorithms (DPMM, PCA, and SETMADA)
using Beijing data. By varying the number of flows in million
from 100 to 900, kNN-FDP outperforms the baseline algo-
rithms. This result is obtained thanks to the kNN computa-
tion much faster than the other algorithms. Figure 12 shows
the F-measure of the kNN-FDP, and the baseline algorithms
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FIGURE 11. Runtime (seconds) of kNN-FDP, and the state-of-the-art
urban traffic flow algorithms on Beijing data.

FIGURE 12. F-measure of kNN-FDP and the state-of-the-art urban traffic
flow algorithms on Beijing data.

(DPMM, PCA, and SETMADA) using Beijing data. By vary-
ing the number of flows in million from 100 to 900, the
F-measure of the kNN-FDP increases, while the F-measure of
the other approaches decreases. Furthermore, up to 500 mil-
lion of flows, kNN-FDP outperforms the baseline algorithms
in terms of F-measure. These results are obtained thanks to
the enrichment phase that adds the new inliers in the training
databases.

E. DISCUSSION
For the sake of conciseness, in the remainder of this section,
we discuss the main research findings from the application of
our approach to Odense and Beijing real traffic data.

• The first finding of our study is that the number and the
quality of the outliers differ from location to another.
They also differ from the time of day to another, for
instance, using the data of the Anderupjev location,
we found many outliers in two interval times [10 − 13]
and [16 − 19]. Moreover, the number of outliers in
Odins-Bro is more interesting compared to the outliers
in Anderupjev.

• Based on a data level, our approach is the first approach
in the literature, that considers the distribution of the
flows in the outlier detection of spatio-temporal data.
Moreover, our approach is able to outperform the base-
line urban traffic flow algorithms for dealing with the
challenging Beijing large-scale data.

• Being based on an architecture level, our approach is
typically able to deal with streaming data by employing
the enrichment phase that adds the new inliers in the
training databases. In the context of spatio-temporal
outlier detection techniques, we argue that the current
tools do not deal with this primordial issue.

• Being based on a conceptual level, kNN-FDP is sensitive
to the number of neighbors and the mining threshold.
Selecting suitable values for these two parameters is
crucial for each location.

• From a data mining research standpoint, our paper is
an example of the application of a generic data min-
ing technique to a specific context. The literature calls
for this type of research, particularly in the times of
massive spatio-temporal data, where increasingly large
amounts of data are available in different locations and
at different times. As in many other cases, porting a pure
data mining technique into a specific application domain
requires methodological refinement and adaptation. In
this context, we argue that our approach benefits from
the knowledge extracted in the refinement step that shifts
the intelligence required for identifying the outlier flow
distribution probabilities from traffic flow data on each
location.

V. CONCLUSION
This paper introduced a new framework for outlier flow
distribution probability detection. It performs on two steps:
i) The FDP databases are first built using both spatial and
temporal traffic flow information. ii) The outlier detection
process is established to the coming FDP, the inliers are
kept to enrich the FDP databases while the outliers are
deleted. The kNN algorithm has been adapted for FDP out-
lier detection, this arises a new algorithm kNN-FDP. The
KL-divergence distance is also investigated to compute the
similarities between two FDPs. To demonstrate the perfor-
mance of the suggested framework, several experiments have
been carried out using ninemonths Odense traffic flow shared
at ten different locations, and the challenging Beijing large-
scale data. The results reveal that the proposed framework
is able to detect real distribution of flow outliers. Moreover,
it outperforms the baseline urban traffic flow algorithms
on high urban traffic flow. As a perspective, we plan to
investigate other outlier detection techniques to deal with
flow distribution probability anomalies. We are also planning
to apply other data mining techniques for flow distribution
probability. Finally, proposing a parallel version that explores
high-performance computing to launch the proposed frame-
work on many locations in real time context is also in our
agenda.
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