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ABSTRACT Upper-limb amputation imposes significant burden on amputees thereby restricting them from
fully exploring their environments during activities of daily living. The use of intelligent learning algorithm
for electromyogram-pattern recognition (EMG-PR)-based control in upper-limb prostheses is considered as
an important clinical option. Though the existing EMG-PR prostheses could discriminate multiple degrees
of freedom (DOF) limb movements, their transition to clinically viable option is still being challenged by
some confounding factors. Toward realizing a clinically viable multiple DOF prostheses, this paper first
explored the principles and dynamics of the existing intelligently driven EMG-PR-based prostheses control
scheme. Then, investigations on core issues including variation in muscle contraction force, electrode shift,
and subject mobility affecting the existing EMG-PR prosthetic control scheme were reported. For instance,
variation in muscle contraction force and subject mobility led to degradation in the performance of the
EMG-PR controlled prostheses with approximately 17.00% and 8.98% error values, respectively, which
are still challenging issues among others. Thus, this paper reports core issues and best practices with respect
to intelligent EMG-PR controlled prosthesis, the major challenges in implementing adaptively robust control
scheme and provides future research directions that may result in the clinical realization of intuitively
dexterous multiple DOF EMG-PR-based prostheses in the near future.

INDEX TERMS Amputees, electromyogram, pattern recognition, rehabilitation, upper-limb prostheses.

I. INTRODUCTION
Electromyogram (EMG) signal recorded from the residual
limb muscles of amputees is an important source of con-
trol input for powered upper-limb prostheses built to restore

lost limb functions. This is because EMG signal contains
motor/neural information from which limb movement intent
could be identified and most amputees retain the ability
to generate such signals from their residual limb muscles.
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FIGURE 1. EMG control system based on the amplitudes of two-channel recordings.
EMGChan_1 is the first channel placed on the flexor muscle, EMGChan_2 is the recording from
the second channel placed on the extensor muscle, ThreVal_1 is the predefined threshold for
the EMG amplitude in EMGChan_1, ThreVal_2 is the threshold for the EMG amplitude in
EMGChan_2, HO = hand open, HC = hand close, and NA no action.

Hence, EMG signals have been considerably explored and
utilized as control input to upper-limb prostheses, assistive
wheel chair, assistive humanoid robot, and meal assistive
robot [1]–[3]. The control method adopted in developing
a prosthesis determines the functionality supported by the
device, it ease of use, and acceptability [1]–[4]. Such control
schemes represent a core part of upper-limb prosthesis, and
the existing control methods have been categorized into two
types, namely: the non-pattern recognition and intelligent
pattern recognition-based control methods.

The most adopted non-pattern recognition-based prosthe-
sis control method primarily focuses on determining the
motor intent of amputees by estimation of the amplitude of
EMG signal from a pair of electrodes placed on the residual
arm muscles as conceptualized in Fig. 1. For instance, when
the EMG signal’s amplitude from one of the control site mus-
cles is greater than a predefined threshold value (ThreVal_1)
with respect to the baseline (Baseline_1), the corresponding
prosthetic function (such as hand open (HO)) is selected and
executed by an embedded electric motor [2]–[5]. On the other
hand, when the signal’s amplitude from the other control site
is greater than a predefined threshold value (ThreVal_2) with
respect to the baseline (Baseline_2), the associated prosthetic
movement (that is hand close (HC)) is triggered. It should be
noted that this control mechanism only supports single degree
of freedom (DOF) movement (HO/HC or wrist flexion/wrist)
per time and require selecting a pair of physiologically appro-
priate control muscles for each DOF (Fig.1). Thus, the mech-
anism only works well if the goal is to provide a single DOF
function such as HO/HC. But when more DOF function such
as wrist rotation is required, an external switch is needed to
modulate the pair of control muscles to shift from hand mode
to wrist rotation mode. Intuitively controlling multiple DOF
becomes even more complex especially for individuals with
high amputation level who generally have limited residual
muscles [4], [7]. Apart from its support for limited DOF,

the conventional amplitude- based control method is slow,
cumbersome, and counter-intuitive since it involves switch-
ing from one mode to the other and users need to learn how to
contract/co-contract the pair of residual arm muscles [6], [8].

While several amputees have benefitted from the non-
pattern recognition-based prostheses control system, they
have also been denied of the intuitiveness and dexterity asso-
ciated with the natural hand functions, which may lead to sec-
ondary prostheses rejection [9]. Alternatively, the intelligent
EMGpattern recognition (EMG-PR) controlmethodwas pro-
posed primarily to address the short comings of the conven-
tional amplitude based control method. The EMG-PRmethod
is based on the premise that human can voluntarily activate
repeatable and distinct EMG signal patterns for different
motor tasks [3]. By applying efficient signal processing tech-
niques and suitable machine learning algorithms, amputees’
limb movement intent could be accurately decoded and used
as control commands for multiple DOF prostheses. Recently,
remarkable research efforts from the academia and industries
have led to the development of intelligent EMG-PR prosthe-
ses although their clinical robustness is still being challenged
by a number of critical issues that is discussed in this paper
with possible solutions for future clinical applications.

In synergy with previous research efforts, we firstly stud-
ied the principles and dynamics of the existing intelligent
EMG-PR based control method and how it could be improved
to achieve intuitively dexterous multiple DOF prostheses that
would be clinically viable. Furthermore, the paper reports
core issues and best practices in EMG-PR controlled prosthe-
sis, the major challenges in implementing adaptively robust
control scheme, and provides research directions that may
result in the clinical realization of intuitively dexterous multi-
ple DOF prostheses in the near future. Hence, this study may
provide potential insight on the development of advanced
intelligently driven prostheses control scheme in the context
of research and practical applications.
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Section II of the manuscript discusses the operational prin-
ciples of EMG-PR based prostheses control method with
emphases on its core components. In Section III, the major
challenges affecting the clinical success of EMG-PR con-
trolled prostheses are discussed with emphases on some
notable issues investigated recently. In Section IV, possible
solutions on how to overcome the current clinical challenges
faced by multifunctional upper-limb prostheses and their
future prospects are discussed in detail while Section V con-
cludes the paper.

II. ADVANCES IN INTELLIGENT PATTERN RECOGNITION
BASED CONTROL TECHNIQUE
Intelligent EMG-PR control method has shown great
potential for improved dexterity of control in upper-limb
prostheses. Such control method mainly consists of five core
components, which could be seen in Fig. 2. In brief, the con-
trol method involves EMG signal measurement (to capture
reliable EMG signals related to limb’s movement intent),
signal preprocessing (to minimize all forms of noise inherent
in the recordings) and data windowing, feature extraction (to
retain the most discriminating information related to move-
ment), pattern classification (to predict one of a subset of
intended limb movements), and issuing control commands
(translating the decoded motion into commands that drive
the prosthesis). Each of these components plays an important
role in determining the overall performance of the prosthetic
system. Hence, the components are described in detail as
follows.

A. TECHNIQUES FOR EMG SIGNAL COLLECTION
Signals from muscle contractions corresponding to upper-
limb movements could be obtained by using two different
methods namely invasive and non-invasive techniques. For
the invasive technique, intramuscular EMG (iEMG) elec-
trodes are employed as opposed to the non-invasive technique
where surface EMG (sEMG) electrodes are used. The iEMG
acquisition approach addresses some difficult challenges
associated with sEMG such as maintaining robust electrode-
skin contact, recording from deep muscles with mini-
mal crosstalk, and overcoming the issue of electrode-skin
impedance changes. This technique is however clinically
impracticable because it requires the use of percutaneous
wire/needle electrodes to transmit signals to the prosthe-
sis [4]. In contrast to iEMG selective electrodes, sEMG
electrodes can detect muscular activities from multiple mus-
cles and thus enables the acquisition of sufficient neural
information with few numbers of electrodes [5]. Moreover,
previous studies have reported similar classification perfor-
mance for multiple classes of forearm movements using
iEMG and sEMG recordings [5], [6]. Therefore, sEMG tech-
nique remains the most viable clinical option for acquiring
EMG signals in upper-limb prostheses primarily because
it is non-invasive and could still offer similar performance
with iEMG. Interestingly, the use of High Density surface
EMG (HDsEMG) recording system enables the acquisition of

signals with 2 dimensional arrays of electrodes that covers a
wider area of the muscles [10]. Thus, the HDsEMG approach
could provide even more efficient means of quantifying the
temporal and spatial properties of the muscle activity [11],
thereby addressing the limitation of the traditional single
channel sEMG signal acquisition approaches.

Principally, EMG signals consist of superimposed
motor unit action potentials propagated along the muscle
fibers underneath the electrode surface. Thus, the place-
ment/configuration of the sEMG electrode is an important
factor especiallywhen consideringHDsEMGacquisition sys-
tems. In this regard, various types of electrode configuration
schemes including Monopolar, Bipolar, and Laplacian, have
been used for sEMG signal acquisition. For instance, the
Monopolar configuration measures the difference between
the electrode on the active site (the muscle) and a common
reference electrode on non-active site (typically on bony
area) [7]. In a single channel of the bipolar electrode con-
figuration, the acquired sEMG signal represent the volt-
age difference between a pair of electrodes aligned across
the length of the muscle underlying the skin surface [8].
Meanwhile, the Laplacian electrode configuration mostly
employs a single central surface electrode with a number
of neighboring electrodes, and it has been recently applied
in different sEMG interfaces due to its promising nature in
comparison to other configurations [12], [13].

Once the electrode configuration is decided, next is the
placement of the sEMG sensors on the subject’s skin. The
positioning and orientation of the sensors are usually pre-
ceded by palpation of the residual arm muscles to identify
the length and belly of the muscles as specified in an anatom-
ical atlas [14]–[17]. In the case of upper-limb amputees,
the residual arm muscles would be firstly examined to know
exactly what muscles are left after amputation. Afterwards,
the status of the residual muscles are assessed to determine if
they could produce good enough EMG signals with respect
to a set of pre-defined limb movements. If yes, the region
where these muscles are located eventually become poten-
tial sites for sensor placement and then the electrodes are
placed in line with the muscle fibers in that region. Addi-
tionally, the characteristics of the sEMG signals during pre-
experimental trial is visualized through a software interface
integrated with the acquisition system to ensure that the
sensors are correctly placed on the arm muscles. Meanwhile,
for non-amputees, the use of anatomical bony landmarks
placed on the elbow or wrist is usually considered to identify
potential electrode locations on their arms. With proper elec-
trode placement, accurate detection of sEMG signals from the
targeted muscles could be guaranteed without picking signals
diffused from co-active adjacent or inactive muscles [18].
In addition, crosstalk (an unwanted signal picked up over a
non-contracted muscle or added by co-contracted muscle(s)
that often contaminate the recorded sEMG signals) could be
avoided by applying proper electrode placement scheme. The
positioning of sEMG electrodes over the region surrounding
the neuromuscular junctions as well as movement of muscle
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FIGURE 2. Pattern recognition based control strategy for multifunctional upper-limb prostheses.

underneath the electrodes can substantially alter the pattern
of the recorded signals [15]. Therefore, accurate estimation
of sEMG signal is subject to electrode location and failure
to adhere to proper electrode placement scheme may lead to
sub-optimal recordings.

To record sEMG signals, different types of hardware
devices have been utilized especially the recently developed
low cost Myo armband built by Thalmic Labs and the other
existing acquisition system such as the Delsys Trigno Wire-
less, and Cometa Wave [19]. A recent study that compared
the performances of six different sEMG acquisition devices
shows that theMyo armband could achieve similar classifica-
tion results compared to the Delsys Trigno and Cometa Wave
when used for hand gestures classification. Thus, the Myo
armband may be a potential choice for researchers in the
domain of EMG-PR since it is relatively cheaper and offers
good recordings [19], [20].

B. PRE-PROCESSING OF THE EMG RECORDINGS
Preprocessing of the raw recorded signals is a necessary step
towards minimizing the inherent interference and ensuring
proper analysis of the signal. To that end, different types
of noises that characterize EMG signal recordings have
been identified. These interferences include: noise from the
acquisition equipment, ambient noise caused by electromag-
netic radiation, motion artifact caused by electrode inter-
face or movement of cables, and instability of the signals due
to variation in the firing rate of motor units [21]. Typically,
raw EMG signals are mostly recorded in differential mode,
and with the aid of filters (band pass filters), the low and high
frequency components of the signals which mostly contain
less motor information are excluded. By utilizing low fre-
quency cutoff band pass filters, baseline drift in the recordings
that occur due to movement, perspiration as well as direct
current offset, are often eliminated. The low frequency cutoffs
usually range from 5Hz∼20Hz. It is noteworthy that the
mean value of the EMG recordings eventually becomes zero

after being subjected to band pass filtering since the filters
automatically removes the low frequency components thus
forcing the mean to approximately zero or even zero in most
cases. The high frequency cutoff filter eliminates the high
frequency noise and prevents aliasing from occurring in the
sampled signal. The cutoff frequency of the filter is quite high
such that rapid on-off burst of signal can be clearly identified.
Thus, the cutoff frequency range is between 20Hz∼450Hz.
Also, power-line interferences inherent in the recordings
are usually attenuated by using either a 50Hz or 60Hz
notch filter depending on the power grid specification of the
country/region.

After applying band pass filtering to eliminate the high
and low frequency components of the signals that may hold
less information related to limb movement intentions as well
as attenuating the power-line interferences, then the resultant
signal is segmented into series of analysis windows prior to
feature extraction.

C. EMG DATA WINDOWING SCHEMES
Upon successful cleaning of the signals, there is a need
for real-time analysis, and such analysis could be best per-
formed on time segments of the signals namely analysis
window [22]. It should be noted that the instantaneous value
of the preprocessed EMG signal is generally considered
as non-useful input for pattern recognition techniques due
to its random nature [23]. Thus, a window of the prepro-
cessed data is required from which descriptive features are
extracted [24]. Therefore, two different kinds of windowing
techniques namely, overlapping window and adjacent win-
dow have been proposed for producing segments of the pre-
processed signal needed for feature extraction and other kinds
of analysis in pattern recognition-based systems [25]–[27].
In the latter approach, a predefined length of consecutive
window segments are utilized for analysis and the feature
extraction tasks. Owing to the available high-speed proces-
sors, the processing time is often less than the duration of time
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FIGURE 3. The active segments of EMG signals from randomly selected channels during a hand close task and the sliding window
segmentation scheme using the obtained active EMG data.

segment, which makes the processor idle for certain amount
of time, leading to underutilization of the processor resources.
Whereas, in overlapped window approach, the idle time is
utilized to acquire more data thus leading to full utilization
of the processor’s resource. In other words, the overlapping
windowing technique utilizes the above described idle time
of the processor to produce more classified outputs. In this
technique, the preceding window slides over the current win-
dow with an increment time that is less than the window
length itself. Fig. 3a shows the segmentation of contraction/
non-contraction per motion class and the contraction seg-
ments are averaged across all the channels. The overlapping
window technique has been conceptualized in Fig. 3 where
each segment overlaps the previous one. It is noteworthy
that the overlapping window method is more appropriate in
myoelectric control systems since it tends to produce better
classification decision and at the same time reduces the length
of the maximum delay [28]. In principle, the length of the
overlapping window per time determines the amount of EMG
data used for feature extraction and other forms of analysis
to achieve a single class decision for a targeted limb move-
ment [26], [27]. Thus, to estimate the intended motion class
from each sliding window in real-time, continuous classifi-
cation is done using the data in the corresponding window.
Smaller window increments would generally lead to a more
dense but semi-redundant stream of class decisions that could
improve response time and accuracy [26]. The idea of over-
lapping the analysis window is often adopted to maximally
utilize the continuous stream of EMG data that produces a
decision stream that is as accurate as possible with respect
to the available computing capacity. In that case, the opera-
tional delay in real-time control due to data buffering would
simply be the duration of the overlap instead of the window
length which has been previously verified by Englehart and
Hudgins [26]. Using a larger window length would results
to more features with relatively lower statistical variance and
high classification accuracy. However, such larger window

lengths would lead to an observable delay in the classifier’s
decision which may be frustrating to the user of the pros-
thetic device. Thus, it is important to utilize a window length
that could yield an acceptable delay in real-time. Hence,
an optimal window length of between 150ms∼250ms was
suggested in [24], while a length of 250ms was suggested by
Englehart and Hudgins [26]. And window increment in the
range of 50ms∼100ms have also been suggested in [28].

D. CHARACTERIZATION OF EMG SIGNAL PATTERNS
After segmenting the preprocessed EMG data, a set of fea-
tures containing rich neural information that could aid the
decoding of multiple classes of upper-limb movements are
often obtained from each analysis window. Proper extraction
of features from the preprocessed data would eventually lead
to high performance in terms of motion recognition and sta-
bility of the prosthesis control. With the aid of mathematical
or statistical models, the high dimensional raw preprocessed
signals are mapped into low dimensional space by applying a
suitable feature extraction algorithm. Such low dimensional
feature vector basically helps to describe the information con-
tent of the signal more efficiently than the direct raw prepro-
cessed high dimensional EMG signals which may be random
and complex [26], [27]. Due to the relatively smaller size of
the feature vector, the classification algorithms predicts the
limb movement intent faster, thus improving the overall real-
time performance of the prosthetic control system. Addition-
ally, such informative feature vector would better characterize
the signal patterns leading to consistently high classifica-
tion accuracy. Considering the significant role that feature
extraction plays, dozens of previous studies have attempted
extracting feature sets from time-domain, frequency domain,
time-frequency domain, and spatial domains for limb move-
ment intent prediction [29].

In this direction, a range of feature extraction meth-
ods have been proposed across the different domains.
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Recently, a set of feature consisting of waveform length ratio,
irregularity factor, sparseness, first spectral moment, second
spectral moment, and fourth spectral moment known as time
dependent power spectral descriptors (TD-PSD) was pro-
posed by Al-Timemy et al. [30] for better recognition of
EMG signal patterns. Samuel et al. [31] also introduced a
combination of new simple but effective time-domain fea-
tures that considers the absolute value of the summation of
the expth root and the absolute value of the summation of
square root of the data across a set of analysis windows.
Furthermore, Khushaba et al. [32] recently proposed a set
of temporal-spatial descriptors for improved characteriza-
tion of EMG signal patterns. Hudgins proposed the use
of four different time-domain features for limb-movement
intent decoding. The features include mean absolute value,
waveform length, zero crossings, and, slope sign changes.
It is worthy to note that Hudgins time-domain feature set
is arguably the most adopted till date in the field of myo-
electric pattern recognition [33]. Meanwhile, other previ-
ously proposed feature extraction methods includes: Fast
Fourier transform (STFT) based features [34], [35], wavelets
based features and wavelet packet transform (WPT) based
features [34], cepstral coefficients (CC), Willison ampli-
tude (WAMP) [36], sample entropy (SampEnt) [37], reduced
spectral moments (RMOM), cardinality feature [38], EMG
synergies by matrix factorization analysis [39], [40], and
autoregressive (AR) model parameters [41]. In general,
time-domain features exhibit simple characteristics compared
to frequency-domain or wavelet based features and they
mostly require little computing resources, thus achieving sim-
ilar performance as features in the other domain. Therefore,
this is one reason for their wide adoption in myoelectric
controlled systems. Importantly, the choice of feature set is
considered the most significant aspect of myoelectric control
because its effect on classification accuracy is found to be
even greater than the type of classifier adopted [6]. Mean-
while, the feature space quality is determined based on their
different properties as previously reported which include:
maximum class separability, robustness, and computational
complexity [42], among others. It should be noted that a
high quality feature space would normally yield clusters with
maximum class separability or a minimum overlap, thus min-
imizing the misclassification rate.

Feature sets characterized by relatively good maximum
class separability are said to be more reliable especially in
applications where high accuracies are required. The robust-
ness of a feature set is described based on its ability to
preserve cluster separability in the presence of noise. Also,
the computational complexity of the feature set should be
as low as possible to facilitate its implementation with rea-
sonable hardware resources in real-time particularly in pros-
thetic control systems where rapid responses are required.
Considering that several state-of-the-art feature sets have
been proposed, deciding the optimal EMG feature set has
been a challenging task, leading to the development of fea-
ture selection algorithms including the recently proposed

Mapper based method [41], the conventional sequential for-
ward selection (SFS), and differential evolution feature sub-
set selection method [43] among others. By using this kind
of methods, optimal feature set can be easily identified
among the pool of available feature extraction methods. Also,
it should be noted that different feature reduction meth-
ods including principal component analysis (PCA), uncorre-
lated linear discriminant analysis (ULDA), orthogonal fuzzy
neighborhood discriminant analysis (OFNDA), as well as
spectrum regression have been utilized to obtain smaller size
of feature set that would minimize the computation cost and
yield good classification results.

E. MOVEMENT INTENT DECODING
Intelligent pattern recognition-driven control methods
assumes that a machine learning classifier has the capa-
bility to recognize input values (feature vector) introduced
during the training phase and assign the input values to
their corresponding target motion classes during the testing
phase. By extending the number of DOFs and increasing
the intuitiveness of control commands, intelligent pattern
recognition methods offer important improvements in myo-
electric control systems with several classifiers investigated
and compared [28]. Having extracted the target feature set,
a classification scheme is built, trained, and tested using the
obtained feature vector to predict the limb movement intent
upon which control commands are generated. As earlier
explained, apart from the feature extraction method adopted,
the choice of classifier would also influence the performance
of an EMG-PR based system. Detailed description of the
most commonly adopted classifiers in myoelectric interfaces
is given in [27] and [44]–[47]. Nonetheless, several compar-
ative studies agree that with an appropriate feature set and
sufficient number of EMG channels, most classifiers would
achieve relatively similar classification accuracy [6], [48].
This indicates that appropriate feature representation makes
the classification task a linear problem. Hence, recent
trend seems to be towards classifiers that are simple to
implement, fast to train, and meet real-time constraints,
such as the liner discriminant analysis (LDA) [5], [49]–[51],
support vector machines (SVM) [52]–[54], Extreme
learning machines (ELM) [55], hidden Markov mod-
els (HMM) [56]–[58], random forest (RF), and k-nearest
neighbors (kNN). Amongst these classifiers, the LDA scheme
is the most widely adopted in the field of myoelectric control.
Meanwhile, the SVM scheme has equally gained wide appli-
cations (due to its kernel trick characteristic) as well as the
kNN classifier (due to its non-parametric nature).

Notably, only few number of studies have compared the
ability of the classifiers to discriminate EMG signals in
long-term use and with additive artifacts or noise [59]–[62].
It can be assumed that linear classifiers are more capa-
ble to maintain high prediction accuracy compared to their
nonlinear counterparts because of their better capability to
generalize well on the EMG data. Kaufmann et al. [62]
demonstrated this by showing that LDA classifier was the
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most robust against the long-term effect of fluctuating EMG
signals when compared to five state-of-the-art classifiers.
By utilizing EMG data recorded over a period of 21 days,
82.37% classification accuracy was recorded by LDA when
trained with recent data and 78.73% when trained with data
collected only during the first day. Young et al. [50] found
that the LDA classifier also outperforms the multilayer per-
ceptron (MLP) classifier in the presence of electrode shifts.
However, more complex classifiers may be appropriate in
long-term use where there is need for accurate classification
of novel patterns during online training. Further, towards
improving the classification performance, robustness, and
usability of EMG-PR systems, as well as to overcome the
limitations of the conventional EMG control methods, post-
processing strategies such Majority Voting [63], Bayesian
Fusion (BF) [64], self-correcting schemes and rejection-
based methods have been proposed [65], [66].

The idea of targeted muscle reinnervation (TMR) which
represent a significant breakthrough was introduced about
a decade ago by Kuiken et al. [67] and Huang et al. [68]
to enable individuals with high level amputation generate
sufficient EMG signals for limb motion intent decoding in
EMG-PR prostheses. Although TMR led to the generation
of more EMG signals but the concept is yet to be fully
implemented in multiple DOFs prostheses for either clin-
ical or commercial use due to a number of challenging
issues. Meanwhile, the existing EMG-PR prostheses does not
support simultaneous control of multiple DOFs [69], which
prevents users from having the natural feel of coordinated
joint control while using the prosthetic device. Although
advanced prosthetic arms including multiple DOFs wrist,
offer the mechanical means to restore arm movements, there
is need for systems that enable simultaneous control of such
devices. Towards developing a simultaneous prosthetic con-
trol scheme, various methods have been proposed in the
recent years. These approaches include the use of artificial
neural networks for joint kinematics predictions [70], anal-
ysis of the muscle synergies underlying a range of upper
limbmovements [71], and the utilization of joint kinetics [72]
amongst others. Despite the progress made, development of
multiple DOFs prostheses that could aid the simultaneous
control of multiple joints in a coordinated manner is rare till
date.

To provide researchers with an avenue to compare the
performances of their control algorithms with other exist-
ing EMG-PR based prostheses control methods, bench-
mark databases have been made available. For instance,
the Ninapro database (http://ninaweb.hevs.ch/) [73] is con-
sidered a useful resource which provides benchmark EMG
dataset of upper limb movements for testing machine learn-
ing algorithms in the context of hand prosthesis con-
trol. Additionally, a myoelectric control toolbox (http://
www.sce.carleton.ca/faculty/chan/index.php?page=matlab)
andBioPatRec (http://code.google.com/p/biopatrec) are open
source software platforms that offers researchers the oppor-
tunity to conduct studies in the field of EMG-PR for limb

movement intent decoding. And these tools would help
researchers in the field of EMGclassificationmethods to have
a common methodology to compare theirs’ with [74].

III. MAJOR CHALLENGES TOWARD
CLINICAL ROBUSTNESS
In practice, the usability of upper-limb prostheses is influ-
enced by several factors including intuitiveness of the inte-
grated control mechanism, capabilities of the device, fit of
the socket, and weight of the device among others. In the
recent years, concerted efforts across the academia and indus-
try have brought about significant advancement in EMG-PR
based control for multiple DOF prosthetic devices. Despite
the considerable progress made, pattern recognition based
control methods are still being challenged by some confound-
ing factors that are currently limiting the clinical robustness
and overall success of the available multiple DOF prosthe-
ses [75], [76]. The main critical factors were investigated and
reported in this study as follows.

A. EFFECT OF MOBILITY ON EMG-PR SYSTEM
Ideally, EMG signal associated with various limb movements
is frequently recorded while subjects maintain static position
(seated or standing) and sometimes with their elbow or arm
resting on a chair or table. In such a scenario, the participants
can easily produce repeatable muscle activation patterns
across trials when performing targeted limb movements [77].
Thus, such laboratory experimental setting often result in
high and consistent accuracy simply because the training
set as well as the testing set are recorded while the partici-
pants assume static position that would allow them produce
consistent muscle contractions across trials for targeted limb
movements. Nevertheless in clinical practice, the situation
is somewhat different because prostheses users are not only
expected to use the device in static scenarios (sitting, as
shown in Fig.4a) but sometimes in non-static scenarios such
as walking on a flat ground (Fig. 4b), descending a stair
(Fig. 4c), or even ascending a stair (Fig. 4d).

Therefore, subject mobility has been reported previously to
have significant effect of about 11.35% reduction in the per-
formance of EMG-PRmotion classifier when EMGdata from
able-bodied subjects was considered [25]. Another recent
study by Samuel et al. [77] investigated the effect of mobility
on hand and wrist motion data (7 classes of limb movements)
collected across six upper-limb amputees based on EMG-PR
method and found that mobility would meaningfully degrade
the classification performance of EMG-PR based control
with respect to the results analyzed in Fig. 5 [77]. The results
show that when EMG data from the amputated limb was used
as the LDA classifiers’ input, the intra-scenario classification
errors (CEs) were much lower than the inter-scenario CEs
(Fig. 5a). And an average intra-scenario CE of 9.50% ±
1.08% in comparison to 18.48% ± 3.39 for the inter-
scenario case across subjects was recorded, resulting in an
inter-scenario CE that is approximately 1.94 times higher
than the intra-scenario CE (Fig. 5a). Similarly, using the
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FIGURE 4. The different scenarios assumed by the participants during which EMG signals corresponding their
limb movements were recorded. a) Acquisition of data in sitting position (S1). b) Collection of data while walking
on a flat ground (S2). c) Collection of data while ascending a stair (S3). d) Collection of data while descending a
stair (S4). e) Electrode placement on the residual arm of a transradial amputee subject.

FIGURE 5. Mean motion CE across subjects with respect to the four scenarios (S1, S2, S3, and S4) using recordings from the amputated
arm. a) Result obtained when EMG data was used input to LDA; b), Results obtained when ACCmmg data was used as input to LDA.

accelerometer mechanomyography (ACCmmg) data from the
amputated limb, an average intra-scenario CE of 13.40% ±
4.39% as against 63.80%± 10.29% for the inter-scenario CE
was recorded (Fig. 5b). Also, the inter-scenario CEwas found
to be 4.76 times higher than the intra-scenario error with
ACCmmg. The obvious differences observed between the
intra-scenario and inter-scenario CEswere found to bemostly
due to the effects caused by the mobility of subjects during
the experiment. By considering the off-diagonal classification
errors in Fig. 5b, it can be seen that ACCmmg recorded much
larger errors indicating that it would be more susceptible to
mobility compared to EMG that had lower error rates in the
off-diagonal entries (Fig. 5a). Thus, ACCmmg could be used

as a potential signal to distinguish between the static and non-
static scenarios.

Towards attenuating the effect of mobility in decod-
ing amputees’ limb motion intentions, three possible train-
ing methods namely the Dual-stage sequential strategy,
Multi-scenario training strategy, and Hybrid training strategy,
were proposed and examined [77]. The Dual-stage sequential
strategy consists of two stages of five sequential classifiers in
which the first stage is made up of a scenario classifier built to
identify each of the scenarios (S1, S2, S3, and S4) assumed by
the subject per time with respect to the ACCmmg recordings.
In the second stage, four different limb motion classifiers
were built with each corresponding to a specific scenario that
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a subject assumes per time. Then, each of the four motion
classifiers was trained with EMG data acquired from all the
classes of motions performed in the corresponding scenario.
The Multi-scenario training strategy is built by including all
the possible samples of EMG signals into the training set and
some previous studies had attempted to develop a somewhat
similar method to address other problems [79], [80]. While
the Hybrid training strategy is designed using more training
information related to the arm motions of the subjects with
both kinds of signals (EMG + ACCmmg) combine together.

The results of the three proposed training strategies are
shown in TABLE 1 (based on data amputated limb dataset)
and TABLE 2 (based intact limb dataset). Meanwhile,
the analysis in TABLE 1 and TABLE 2 show the performance
of the three proposed strategies in minimizing the effect of
subject mobility on EMG-PR motion classifier using data
from the amputated limb and intact limb, respectively.

TABLE 1. Performance in terms of classification error (%) of the
proposed methods towards attenuating the effect of subject mobility on
EMG-PR motion classifier using EMG data from of the amputated limb.

TABLE 2. Performance in terms of classification error (%) of the
proposed methods towards attenuating the effect of subject mobility on
EMG-PR motion classifier using EMG data from of the intact limb.

The Inter-Scenario CE was used as the baseline for com-
parison in both TABLES 1 and 2 across the four scenarios.
And the mean for each of the proposed method was computed
to determine the reduction in error achieved by the methods
for amputated and intact limb datasets across subjects. There-
fore, by applying the Dual-stage classification scheme, the
motion CEwas observed to be significantly minimized across
subjects/limb motions in comparison to the inter-scenario
CE as presented in TABLES 1 and 2. A mean reduction in
CE of approximately 7.12% and 7.28% were respectively
obtained for the amputated and intact limb. Note that the
inter-scenario CEs were used as baseline for comparison in

all the three proposed strategies shown in TABLES 1 and 2.
Meanwhile, the Multi-scenario training strategy minimized
the inter-scenario errors by 4.34% across all the scenarios
for the amputated limb while for the intact limb, a decrease
of 4.22% across all the limb motions and scenarios was
achieved (TABLES 1 and 2). Also, the Hybrid training strat-
egyminimized the CE by about 5.81% across all the scenarios
for the amputated limb and about 5.69% for the intact limb.
In summary, the three proposed training strategies were able
to minimize the degradation in classification performance
on EMG-PR motion classifier caused by subject mobility.
However, these training strategies would normally require
a participant to undergo several sessions of training to be
able to obtain reasonable performance especially in real-life
application which is still a challenge.

B. VARIATION IN MUSCLE CONTRACTION FORCE
During daily life activity, different muscle contraction force
may be required in accomplishing the same limb movement
tasks across different conditions. Thus, variation in muscle
contraction force while executing the same targeted limb
movement would obviously result in disparity in myoelectric
signal patterns for that particular movement. Since pattern
recognition based control solely rely on clustering repeat-
able patterns of EMG activities into discernible classes of
limb movement, varying the muscle contraction force would
inevitably affect the control performance of EMG-PR based
prostheses. One reason for this is that, contractions performed
at different force levels for specific limb movement may
present a challenge to the pattern classifier thus leading
to degradation in the overall classification accuracy of the
system.

In line with previous studies, we further demonstrated
here the impact of variation in muscle contraction force
on the performance of EMG-PR based classifier. To that
end, we performed the data collection tasks by conducting
experiments in which five able-bodied subjects performed
seven different classes of upper limb movements using three
distinct muscle contraction force levels defined as follows:
Low force level (20% of the maximum voluntary contraction
(MVC)), Medium force level (about 50% of the MVC), and
High force level (typically around 80% of the MVC) as
in Fig. 6b. Meanwhile, the limb movements included hand
close (HC), hand open (HO), wrist extension (WE), wrist
flexion (WF), wrist pronation (WP), wrist supination (WS)
and no movement (NM).

By considering the first two representative trials of the HC
movement, we observed that the amplitude of the waveform
for low force level is about 0.5x10−4 mV (at 20% MVC),
approximately 1.0x10−4 mV (at 50% MVC) for the mod-
erate force level, and about 1.5x10−4 mV (at 80% MVC)
for the high force level as shown in Fig. 6. This indicates
that the limb movements were performed with the designated
force levels, thus guaranteeing the validity of the subsequent
analyses. To examine the effect of variation in force level
on the performance of EMG-PR based classifier, we firstly
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FIGURE 6. Mean Classification performance across all subjects with training data from one muscle contraction force level and testing data
from all the muscle contraction force levels.

extract different types of features from the EMG recordings
of each force level. And the extracted features includes our
proposed time-domain feature set that is invariant to force
variation (invTDF), Huggins feature set (TD4), Fourth order
autoregressive coefficient (AR4th), and a recently proposed
two dimensional TD feature set denoted as NOV [81]. Sub-
sequently, we trained an LDA classifier using the features
extracted from the data for each force level and tested the
classifier with aggregation of features from data across the
remaining three force levels (Fig. 6). As shown in Fig. 6,
training the LDA classifier with feature set extracted from
EMGdata collected from a particular force level (for example
low) and testing the classifier with features extracted across
all the force levels led to degradation in classification perfor-
mance, which corroborate reports from [81]. The classifica-
tion error rate was observed to be much higher when training
with data from low force level compared to the other two
force levels which indicate that it is difficult for subjects to
naturally produce consistently low level muscle contractions.
Also, high level muscle contractions often produce tremor
that may result to degradation in performance of the EMG-PR
system. Unlike the low and high force levels, the moderate
force level was observed to have the least classification error
using the four different feature extraction methods as shown
in Fig. 6. This suggest that the subjects tend to consistently
activate their muscles with moderate force level while per-
forming different forearm movements. With the exception
of our recently proposed feature set, it is obvious that the
presence of contractions from unseen force levels actually
increased the overall classification error considerably to the
point where the system may be unusable (about 20% error) in
real-life application. It should be noted also, that the TD-PSD
feature proposed by Al-Timemy et al. [30] was applied to
minimize the degradation in classification caused by variation
in muscle contraction force level and a reduction in CE in

the range of 6% to 8% was achieved. Other researchers have
considered attenuating the effect of variation in force levels
on the performance of pattern recognition based prostheses
control by using training strategies that attempts to include
samples from all possible force levels. With such training
strategies, an error of about 17% was achieved, which is still
not ideal in real life application. Another challenge with this
method is that the prosthesis user would need to undergo
an extensive training session that would require data sam-
ples from all possible force levels, especially if they are to
do this daily to accommodate electrode shift while donning
the prosthesis. This kind of method will eventually lead to
significantly longer training time/phase which may limit the
clinical viability of pattern recognition based prostheses.

C. VARIATION IN LIMB POSITIONS DURING
TARGETED MOTION
The practical use of upper-limb prosthesis during activities
of daily living would require the limb to move through a
range of workspace leading to the limb assuming different
positions. For individuals with transradial or transhumeral
amputation, this would influence the loading of the residual
limb muscles situated in the prosthetic socket from which
the EMG signals are recorded. Also, different limb positions
may induce varying level of gravitational force, thus leading
to displacement of the target muscles. These factor would
normally cause alterations in the EMG signal patterns due
to the compression of the muscles and, possibly, elicitation
of mechanical stimulation or eccentric contraction of the
muscles. And such alterations in EMG signal patterns would
undoubtedly affect the performance of EMG-PR based pros-
thesis control.

Towards resolving the effect of variation in limb posi-
tions on the performance of EMG-PR based system,
Geng et al. [82] conducted an experiment involving five
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FIGURE 7. Experimental results of limb motion intent prediction. (a) Using EMG data as the classifier’s input. (b) Using ACC-MMG data
as the classifier’s input.

amputees whose post-amputation periods varied from
2∼10 years and had residual forearm lengths ranging from
5cm∼14cm. The amputees have experience in the use of
either a myoelectric or cosmetic prosthetic arm in their daily
life, making the experiments relatively easier for them. The
experiments involved simultaneous acquisition of EMG and
ACCmmg signals corresponding to seven classes of limb
motions (hand close and open, wrist supination, pronation,
flexion, and extension, and no movement) in five different
limb positions. The recorded signals were firstly prepro-
cessed, then Hudgin’s time-domain features and LDA clas-
sifier were considered for the analysis. The obtained results
(Fig. 7) demonstrates that when data for a particular limb
motion say ‘‘wrist flexion’’ obtained from limb position
P1 is used to train the classifier and the trained classifier
is tested with wrist flexion data obtained from other limb
positions (P2, P3, P4, or P5), the CE for that motion increased
significantly (the off-diagonal entries).

However, when the data used for training and testing
the classifier comes from the same limb position, the CE
decreased significantly (the diagonal entries of the matrix),
suggesting that variation in limb positions while eliciting
targeted limbmotions would greatly degrade the performance
of EMG-PR based controlled prostheses. In an attempt to
address the degradation caused by variation in limb positions,
different training strategies have been suggested [82]. Most
of the strategies basically considered including possible rep-
resentative samples into the training set so as to increase the
chance of achieving high and consistent accuracies for limb
motion intent decoding. Meanwhile, other possible solution
would involve the use of additional signal source such as
the ACCmmg to predict the limb position per time before
utilizing EMG to classify the limb motion.

In this regard, Geng et al. [82] built several classifier
models based on LDA algorithm that were trained using EMG
data from multiple arm positions (P1-P5) and subsequently
tested using EMG data from all five arm positions. A total

of 31 motion classifiers (consisting of 26 multiple position
classifiers and 5 single position classifier) were built. Gen-
erally speaking, the error gradually decreased along with
more arm positions included in the classifier training. When
the EMG data from all five arm positions were involved in
the training set, the average classification error reached a
minimum value of around 10.8% for the amputated arm and
10.3% for the intact limbs. Note that in most of the 31 motion
classifiers, the amputated arms had a low classification error,
in comparison with the intact limbs [82].

D. ELECTRODE SHIFT DURING DONNING
In the practical use of a prosthesis, the EMG electrodes may
assume slightly different position relative to the underlying
musculature each time the device is donned. The electrodes
may also shift during usage as a result of loading and posi-
tioning of the amputee’s residual limb. Such shift in elec-
trode positions may lead to alteration in the characteristics
of EMG recordings for the limb movements over time, thus
making it difficult to decode the movement. For example,
a shift of approximately 1cm of four surface EMG elec-
trodes around the forearm circumference of an individual
increased classification error in a 10 class motion recognition
problem from about 5% ∼ 20% (if shifted distally) and to
about 40% (if rotated about the forearm) [83]. In addition,
the inclusion of shifted versions of the EMG recording into
the training session has been shown to virtually eliminate
degradation due to shift in the test set [59], [83]. A different
approach examining the influence of bipolar electrode con-
figurations, revealed that electrodes with larger surfaces that
are widely spaced could improve resilience to shift but not
nearly as much as incorporating exemplars of shift into the
training set [84].

Shifting of electrode position would normally occur during
day to day session when the prostheses is being donned. And
the EMG recordings corresponding to each donning can then
be stored and reused tomodel the pooling of data from various
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shift locations. With the accumulation of data from all the
possible shift positions, the system may become robust to
typical shifts encountered for during donning and in prac-
tical use. Thus, a daily calibration is probably warranted to
accommodate other influences that may affect the EMG, such
as electrode impedance (due to skin dryness, humidity) and
learning effects as the amputee become more experienced.
Electrode shift do not only affect the signal quality of EMG
recordings but also that of ECG recordings [85]–[87], and
other physiological signals.

IV. FUTURE PROSPECTS OF EMG-PR BASED
PROSTHESES CONTROL
The overall performance of multiple DOF upper-limb pros-
theses driven by EMG-PR control method could be improved
to meet the long expected desires of its potential users
by exploring the following perspectives with respect to
the existing challenges. For instance, transient changes in
EMG signals arising from short and long-term variations
in the acquisition environment during practical use have
been shown to degrade the clinical robustness of device,
and thus limit its adoption by users. These transient changes
often result from external interferences, electrode impedance
changes, muscle fatigue, and electrode shift among others.
One possible way to handle these issues would be to consider
developing intelligently driven strategic filtering and electro-
magnetic shielding techniques that could attenuate or even
eliminate most of the interferences.

Another major limitation of the existing EMG-PR based
prostheses is that they do not support continues classifica-
tion which makes them different from the natural control
phenomenon. Realizing simultaneous and proportional artic-
ulations of multiple DOFs movements associated with the
natural limb becomes a big issue with the currently available
EMG-PR based prosthetic control schemes. In this regard,
a number of researchers conducted studies on developing
prostheses control methods that could provide simultaneous
and proportional control of multiple DOFs joint movements
to realize more intuitive and advanced control of artificial
limbs [70]–[72]. However, the real-life implementation of
this concept is still a challenge till date.

Sources of variation in EMG signals that are intrinsic in
nature, cannot be effectively suppressed and they are even
more challenging to resolve. Even if the EMG-PR based
prosthetic system is calibrated upon donning, the nature
of the effects of such variation is unpredictable, therefore,
the system would need to adapt to the changes in EMG
signals. Meanwhile, adaptive EMG-PR method for mul-
tiple DOF prosthesis control has been rarely studied to
date [88]–[90]. One possible reason is that, the adaptation
of an intelligent pattern classifier is challenging since the
system needs to know exactly how and when to adapt.
Such intelligent pattern recognition system should be able
to learn and know how to adapt properly to the intended
limb movement based on prior knowledge from generated
data. Meanwhile, in cases where the amputees are instructed

(supervised) during the data acquisition, the limb motion
classes are obviously known and the recognition task
becomes a straightforward one for the classifier. On the con-
trary, the core benefits of the adaptive pattern classifier are,
during normal unsupervised use, in which the system needs
to accurately predict the intended class. Also, knowing when
to adapt is equally crucial. For instance, when parsing a data
stream in real-time, the EMG-PR system should be confident
that the data are representative of the estimated class. In this
regard, such intelligent adaptive prosthetic systemmightmeet
the expectations of most of its users and thus increase the
adoption of the device for usage in their daily life. Towards
making this a reality, the COAPT engineering, a company
based in Chicago recently developed a commercially avail-
able, intuitive EMG-PR based control for advanced prosthetic
arms [91].

Rather than relying on the use of the already proposed
training strategies that are found to be limited in a number of
ways, developing an intelligently adaptive pattern recognition
based controller could go a long way to resolve the discrep-
ancy in EMG signal patterns for the same limb movement
resulting from variation in muscle contraction force, changes
in limb positions, and subject mobility as discussed in the
previous sections. This is because improvement as a result
of adaptation has been reported during extensive use of a
prosthesis particularly in the presence of electrode shift and
muscle fatigue [83], [84]. However, proper understanding of
the dynamism of such adaptive concept and how it interact
with users of the prosthetic device are lacking to date. By fur-
ther exploring such an adaptive concept, a fully stable, unsu-
pervised method that could be of great clinical interest can be
realized. Therefore, an open research area would be to fully
explore such an adaptive concept in respect of the confound-
ing factors affecting the clinical robustness of the currently
available multiple DOF prostheses, and also to develop an
intelligently driven unsupervised pattern recognition based
control solution.

In light of the advancement in the field of sensor tech-
nology, developing sensors that could capture muscle spa-
tial information associated with changes in muscle shape
could provide useful and stable information from which limb
movement intent can be decoded. Such muscle shape change
information can serve as useful input to pattern recognition
based control system instead of the traditionally utilized
EMG signals, because the corresponding impedance signals
from such sensors can be obtained at lower sampling rate
(typically 125 Hz) in comparison to that of the commonly
utilized EMG sensors (1000Hz∼2000Hz) [16], [17]. This low
sampling rate would lead to less computational burden, and
this could be another possible research direction in the field
of upper limb rehabilitation technology.

The concept of adopting deep learning in pattern recogni-
tion based prostheses control is currently being explored by
several research groups around the world. This is because,
the deep learning has the potential to address the problem of
feature extraction that represent the core of the conventional

VOLUME 7, 2019 10161



O. W. Samuel et al.: Intelligent EMG-PR Control Method

EMG-PR based prostheses control system [92], [93]. At the
moment, the use of deep learning concept has rarely been
applied to providing simultaneous and proportional control
schemes for multiple DOFs prostheses. Hence, there is need
to conduct more research in this direction. Also, with the
advancement in hardware development for multi-channel sur-
face electrodes, the use of high-density sEMG arrays could
be a promising approach in future especially when explored
using deep learning.

V. CONCLUSION
Though the potentials of intelligent pattern recognition based
control methods for multiple DOF upper-limb prostheses
have been well investigated but their clinical robustness
are currently being challenged by a number of confound-
ing factors. Towards facilitation the clinical realization and
improve the acceptance rate of multiple DOF prostheses, this
paper explored the dynamics of the core aspects of intelli-
gently driven prosthetic control methods with emphases on
EMG-PR approach. And it was found that by applying an
optimized machine learning scheme, substantial degradation
in performance of the traditional EMG-PR methods of about
17.0% and 8.98% resulting from variation in muscle con-
traction force and subject mobility, could be meaningfully
reduced. Considering the advancement in intelligent comput-
ing algorithms, there is higher chance that the near future
will be a transitional period for EMG controlled systems
that would provide more functional benefit to upper-limb
amputees.
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