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ABSTRACT In this paper, an explainable intelligence model that gives the logic behind the decisions
unmanned aerial vehicle (UAV) makes when it is on a predefined mission and chooses to deviate from
its designated path is developed. The explainable model is on a visual platform in the format of if-then rules
derived from the Sugeno-type fuzzy inference model. The model is tested using the data recorded from
three different missions. In each mission, adverse weather, conditions and enemy locations are introduced
at random locations along the path of the mission. There are two phases to the model development. In the
first phase, the Mamdani fuzzy model is used to create rules to steer the UAV along the designated mission
and the rules of engagement when it encounters weather and enemy locations along and near its chosen
mission. The data are gathered as UAV traverses on each mission. In the second phase, the data gathered
from these missions are used to create a reverse model using a Sugeno-type fuzzy inference system based on
the subtractive clustering in the data. The model has seven inputs (time, x-coordinate, y-coordinate, heading
direction, engage in attack, continue mission, and steer UAV) and two outputs (weather conditions and
distance from the enemy). This model predicts the outputs regarding the weather conditions and enemy
positions whenever UAV deviates from the predefined path. The model is optimized with respect to the
number of rules and prediction accuracy by adjusting subtractive clustering parameters. The model is then
fine-tuned with ANFIS. The final model has six rules and root mean square error value that is less than 0.05.
Furthermore, to check the robustness of the model, the Gaussian random noise is added to a UAV path, and
the prediction accuracy is validated.

INDEX TERMS Explainable artificial intelligence (XAI), fuzzy logic, ANFIS, unmanned aerial
vehicle (UAV), subtractive clustering.

I. INTRODUCTION
Unmanned Air Vehicles(UAVs) are used for many pur-
poses including agriculture, industry, law enforcement, and
defense. These autonomous systems have several advantages
over manned aerial vehicles as not only they reduce expenses
by avoiding human error, but they also save the lives of
fighter jet pilots.The incoming generation of artificial intel-
ligence(AI) systems are showing significant success through
the use of various machine learning techniques. These sys-
tems offer a wide range of benefits when it comes to simpli-
fying the lives of individuals as well as military operations.
Continued advances promise to produce autonomous systems
that will perceive, learn, decide, and act on their own. How-
ever, the effectiveness of today’s AI systems is limited by the

inability of the machine to explain its decisions and actions to
human users [1]–[3]. This is where the concept of Explainable
Artificial Intelligence (XAI) comes in to play. XAI aims
to create a suite of machine learning techniques that will
produce more explainable models while maintaining a high
level of learning performance (prediction accuracy). As a
rule, XAI enables human users to understand, appropriately
trust, and effectively manage [1], [2] the emerging generation
of artificially intelligent partners.

The central problem of machine learning models is that
they are regarded as black-box models. Meaning, even if
we understand the underlying mathematical principles, they
lack an explicit declarative knowledge representation [1], [3].
The lack of knowledge representation and explainable
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features initiated a rising legal, ethical, and privacy concerns.
As a result, applying black-box approaches in business, per-
sonal, or military operations is becoming unfavorable. Thus,
triggering the need for systems that equip machines with
transparent and understandable attributes. This does not nec-
essarily imply a ban on automatic learning approaches or an
obligation to explain everything at all times. Instead, the goal
is to include a possibility to make results re-traceable on
demand [3].

There are two distinct methods of achieving explainability
i) making the entire decision process transparent and com-
prehensible (global explainability) ii) explicitly providing
an explanation for each decision [4]. This paper discusses
methods used to develop a model to achieve explainability
using the latter option. Providing an explicit explanation for
each decision using the rule-based method was found to be
a reasonable approach. For that reason, this paper gives a
brief introduction of a Fuzzy Logic, a rule-based method that
resembles human reasoning.

II. FUZZY LOGIC
The approach of fuzzy logic imitates the decision making
in humans. Unlike two-valued Boolean logic, fuzzy logic
is multi-valued. It deals with degrees of membership and
degrees of truth [5], [6]. A fuzzy rule can be defined as a
conditional statement in the form IF x is ATHEN y is B; where
x and y are linguistic variables; and A and B are linguistic
values determined by fuzzy sets on the universe of discourses
X and Y, respectively.

In order for a fuzzy expert system to achieve implementa-
tion abilities, a system has to be able to obtain a single crisp
solution for the output variable by first aggregating all output
fuzzy sets into a single output fuzzy set and then defuzzifying
the resulting fuzzy set into a single number [6], [7]. This
is achieved through Fuzzy Inference systems (FIS). FIS is a
process of mapping from a given input to an output, using the
theory of fuzzy sets. The two main types of FIS are Mamdani
and Sugeno systems discussed in the next sections.

A. MAMDANI FUZZY INFERENCE
The structure of any Mamadani system looks as follows:
IF x is A and y is B THEN z is C; where x and y are
linguistic input variables and is Z is the linguistic output.
These input and output variables could be stated in language
form. An example of that can be stating temperature mea-
sures as being ‘‘cold, medium, hot’’ or distance measures as
‘‘far, intermediate, close’’ and so on.
The Mamdani inference process is performed in four steps:

1) Fuzzification of input variables
2) Rule evaluation
3) Aggregation of the rule output
4) Defuzzification

Mamdani method is widely accepted for capturing expert
knowledge. It allows users to describe the expertise in more
intuitive more human-like manner. For that reason, in this

paper data generation (predefinedUAVmission) uses aMam-
dani type FIS to capture human knowledge and enable UAV
to make autonomous decisions. However, this FIS entails a
substantial computational burden. Therefore, for the second
and main part of this research (i.e., explaining the decisions
taken during a mission) Sugeno FIS is developed.

B. SUGENO FUZZY INFERENCE
In the Sugeno model, the inputs are represented as fuzzy sets,
but the output of fuzzy rules is a first-order polynomial of the
of the form f (x, y) = ax+by+c. Sugeno model can be stated
as follows: IF x is A and y is B THEN z is f(x,y); where x and
y are fuzzy sets on a universe of discourse, and z is an output
in a form of mathematical function f(x,y) [6].

Sugeno method is computationally effective and works
well with optimization and adaptive technique, which will
be useful particularly in dynamic nonlinear systems [8]. That
makes the system a great candidate to create a hybrid system
that will not only effectively explain the autonomous deci-
sion, but also learn from gathered data (experience). Gram-
matical Evolution has been used to evolve the structure of
fuzzy rules [9], and in [10] the rules are visualized in parallel
coordinates. In [11] grammatical evolution is used to evolve
the fuzzy rules based on KDD99 intrusion dataset for the
classification of both normal and abnormal traffic. In [12],
the Grammatical Evolution approach is used for the structure
identification of a non-linear response of the laser lap welding
process.

The merger of a neural network with a fuzzy logic into one
integrated system, therefore, offers a promising approach to
building intelligent systems. Integrated neuro-fuzzy systems
can combine the parallel computation and learning abilities of
neural networks with the human-like knowledge representa-
tion and explanation abilities of fuzzy systems [6], [13]. As a
result, neural networks becomemore transparent, while fuzzy
systems become capable of learning.

C. PROPOSED EXPLANATION TECHNIQUE
The proposed Explainable Artificial Intelligence (XAI)
focuses on improving explainability while maintaining a high
level of learning performance for a range of machine learning
techniques. There is an inherent tension between machine
learning performance (predictive accuracy) and explainabil-
ity. Often the highest performing methods (e.g., deep learn-
ing) are the least explainable, and the most explainable
(e.g., decision trees) are less accurate [14]. To cover the
performance versus explainability trade-off, this paper intro-
duces the use of a combination of fuzzy logic (highly explain-
able) with Neural Networks (accurate prediction). To the best
of our knowledge, this is the first time ANFIS is proposed to
develop an XAI system.

Machine learning algorithm/expert knowledge algorithm
is used to train a system from previously collected data,
and cause the system to make decisions (make predic-
tions). Consequently, the hypothesis of this research is as
follows:
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FIGURE 1. Black-box autonomous system block diagram.

FIGURE 2. Proposed model block diagram.

If the output data from the original decision-making model
is employed as input in a new explainable model; and the
inputs from original decision-making model are used as out-
puts in the explainable model, then the outputs of the explain-
able model will serve as reasonings to an action that took
place during the decision-making process.

The block diagrams in Figure 1 and Figure 2 summarize
the hypothesis:

To prove the hypothesis, outputs 1 and 2 from Figure 1 are
used as inputs in Figure 2. Then using ANFIS, the system is
trained as seen in Figure 2 to give outputs 1 and 2 (which
are the corresponding inputs 1 and 2 from Figure 1). Hence,
giving an explanation of why a decision was made in the first
place. In other words, the outputs of Figure 2 are the reasons
why decisions are made.

To summarize, the goal of this paper is to use a machine
learning algorithm that will be able to learn as well as give
reasoning to why it is making a prediction.

III. LITERATURE ACQUISITION AND ANALYSIS
This section provides detailed background study of differ-
ent models that can be used as a development mechanism
for XAI.

A. BUILDING EXPLAINABLE ARTIFICIAL INTELLIGENCE
A variety of techniques have been considered to generate
a portfolio of methods that will provide future developers
with a range of design options covering the performance-
versus-explainability trade-off. Recent research is heading
in a promising direction when investigating ways to build
effective XAI system. Even though the on-going research
in XAI does not provide a complete solution, three possi-
ble models that are profoundly explored by researches as
XAI development methods are discussed below.

1) MODEL INDUCTION
Model Induction can be used to develop techniques that
could use any given machine learning model as a black box
to infer an approximate explainable model. For instance,
LIME (an algorithm that can explain the predictions of any
classifier of regressors by approximating it locally with an

interpretable model) was developed in order to demonstrate
an example of such a model-agnostic explanation system.
That was accomplished by observing and analyzing the input-
output behavior of the original black-box model [15]. There
are also other possible methods to develop opulent model
agnostics. These methods include abduction reasoning and
story generation to provide rational explanations for the rea-
sonings of a system [16], [17]. Such model induction tech-
niques are being explored because they indicate promising
preliminary results as they could work with most machine
learning applications.

2) DEEP EXPLANATION
Hybrid learning techniques that have inclusive explainable
representation can be implemented using a deep explana-
tion. Parameters such as architectural layers, optimization
techniques, and training sequences can affect deep learning.
These parameters are complicated and using deep explana-
tion they can be engineered to produce more explainable
representations. Recent research is showing progress when it
comes to deep explanation. For example, research shows that
extending the approaches used to generate image captions and
train a second deep network can help generate explanation
without explicitly identifying the semantic features of the
original work [18], [19]. Somework has also been donewhere
deconvolutional networks are used to visualize convolutional
networks by discriminating properties of the visible object,
jointly predict a class label, then explain why the predicted
label is appropriate for the image [20]. These are many types
of research that are trying to deliver XAI to systems using
deep learning. Deep learning is one of the most used ML
algorithms out there. Hence, one of the most important topics
to explore in developing explainable intelligence. However,
its the complexity and the large number of the hidden neu-
rons involved in deep learning makes it difficult to integrate
explainable features in the system directly.

3) INTERPRETABLE MODELS
Interpretable models should also be considered to be used in
XAI as they aremore structured, causal, and compact. Studies
show promising findings to develop explainable intelligence
by using Bayesian Rule Lists, Bayesian Program learning,
stochastic grammars, learning models of casual relationships,
etc. [21]–[24]. These techniques might show performance
less than optimal, but they are essentially more explainable.
Therefore, exploring how they can be modified to give rea-
sonable performance is of importance.

After studying the various forms of research that are cur-
rently being conducted in areas of XAI, it is decided to
focus the methodology of paper solely in using a hybrid
method that would combine features from the above three
models that can compensate for shortcomings of each model,
and therefore give a reasonable explainable intelligent sys-
tem. Consequently, in this paper, an interpretable model
(i.e., fuzzy logic) is combined with a hierarchical learning
method (i.e., Artificial Neural Networks). Then utilized a
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model induction method (i.e., reverse engineering black-box
model) by applying a hybrid system to make the explanation
more effective.

In the next section, the expert knowledge based
UAV mission setup (data generation) methodology used for
this research is discussed.

IV. DATA GENERATION
This research entails two significant components; first,
UAVmakes decisions on its own based on expert knowledge,
and second, an explainable intelligence is evolved to justify
why a decision was made at a particular time. The data gener-
ation (mission defining) is executed by creating a simulation
that shows UAV navigating through different conditions to
accomplish its mission. For that, a predefined path is formed
in MATLAB, and the UAV’s mission is to complete navi-
gating through that path while considering external factors.
These external factors (input variables) will determine the
UAV decision-making process. The selected input variables
are (i)weather conditions and (ii) distance between UAV
and locations of an enemy. In real-world applications, more
parameters need to be considered while UAV is navigating
through adverse conditions. However, for this research, these
two parameters are decided to be sufficient. By taking the
status of input variables, the UAVwill consider three different
actions. The next sections elaborate more on the technical
approach towards defining of UAVmissions and data logging
process.

A. PROCESS OF DATA GENERATION
By extracting expert knowledge, the UAVmakes autonomous
decisions. That is accomplished by using a Mamdani fuzzy
inference system to create a set of rules. The FIS has two
inputs and one output. The inputs are weather zones and
distance from an enemy. The first input (weather) has five
membership functions and the second input (distance from an
enemy) has three membership functions. Similarly, the output
(UAV decision) has three membership functions. The step
by step process of creating this Mamdani FIS is elaborated
below.

1) SPECIFY A PROBLEM AND DEFINE LINGUISTIC VARIABLES
The first step in creating a mamdani model is specifying the
problem. As stated above, the problem statement is creating a
navigational mission of UAV while it is considering external
factors such as weather and distance from enemy. The lin-
guistic variables here are:

1) Input 1 (Weather zones) : Wind, Cloud, Rain, Thunder-
storm, Snow

2) Input 2 (Distance from enemy) : Too Close,Moderately
Close, Far

3) Output (Decisions/Actions of UAV): Continue, Engage
in Attack, Steer UAV

Figure 3 below shows the overall structure of the
Mamdani FIS.

The next step is determining fuzzy sets.

FIGURE 3. Two input one output Mamdani FIS for UAV decisions.

FIGURE 4. Weather zone (input 1) membership functions.

FIGURE 5. Distance from enemy (input 2) membership functions.

2) DETERMINE FUZZY SETS
The fuzzy sets here are values that take different shapes and
forms to represent membership functions. Each membership
function is assigned a particular shape and a range of values
as seen fit by a knowledge engineer. The values given here
intend to provide a close representation of conditions (knowl-
edge representations.). However, they can be adjusted accord-
ingly based on the most up to date information gathered
by knowledge experts. Triangular functions have parameters
[a b c] where a is a value of the left vertex, b is the cen-
ter, and c is the right side vertex. Trapezoidal shapes have
parameters [d e f g] where d is the left vertex, e is the
top left edge, f is the top right edge, and g is the right
vertex.

Figure 4 below shows the fuzzy sets for input variable
‘‘Weather zone’’ with a combination of trapezoidal and tri-
angular membership functions.

As it can be seen above, the fuzzy sets for eachmembership
function is as follows:

Snow [−16 1 10 30], Cloud [−1 18 45], Rain [32 55
62 85], and Thunderstorm [50 74 80 95], Windy
[10 95 120]. These values represent temperature in Fahrenheit
that represent these weather zones. Similarly, Figure 5 shows
the fuzzy sets of for the input variable ‘‘UAV’s distance from
enemy’’.
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FIGURE 6. Output membership functions.

As it can be seen in Figure 5, the fuzzy set for each
membership function is as follows:

Too close [−0.4 0 0.2], Moderately close [0.2 0.5 0.8],
and Far [0.8 1 1.4]. These are normalized values that are
arbitrarily assigned.

Finally, Figure 6 shows the fuzzy sets of the output
(UAV decisions)

As it can be seen above, the fuzzy sets are triangular and
are represented as follows:

Engage in attack [−0.4 0 0.2], Steer UAV [0.1 0.5 0.9],
and Continue [0.8 1 1.4]. These are normalized values that
are assigned for simulation.

After representing the input and output variables as fuzzy
sets, the next part is constructing fuzzy rules.

3) EXTRACT FUZZY RULES
Five input membership functions in input 1 and three mem-
bership functions in input 2 give 15 total fuzzy rules. The
fuzzy rules are listed below.

1) If (Weather is Snow) and (Enemy is too Close) then
(Action is Steer)

2) If (Weather is Snow) and (Enemy is Moderately Close)
then (Action is Continue)

3) If (Weather is Snow) and (Enemy is Far) then (Action
is Continue)

4) If (Weather is Cloud) and (Enemy is Too Close) then
(Action is Attack)

5) If (Weather is Cloud) and (Enemy isModerately Close)
then (Action is Continue)

6) If (Weather is Cloud) and (Enemy is Far) then (Action
is Continue)

7) If (Weather is Rain) and (Enemy is too Close) then
(Action is Attack)

8) If (Weather is Rain) and (Enemy is Moderately Close)
then (Action is Steer)

9) If (Weather is Rain) and (Enemy is Far) then (Action is
Continue)

10) If (Weather is Thunderstorm) and (Enemy is too Close)
then (Action is Steer)

11) If (Weather is Thunderstorm) and (Enemy is Moder-
ately Close) then (Action is Steer)

12) If (Weather is Thunderstorm) and (Enemy is Far) then
(Action is Steer)

13) If (Weather is Wind) and (Enemy is too Close) then
(Action is Steer)

FIGURE 7. Surface view of tuned system.

14) If (Weather is Wind) and (Enemy is Moderately Close)
then (Action is Attack)

15) If (Weather is Wind) and (Enemy is Far) then (Action
is Continue)

4) INTEGRATE FUZZY INFERENCE INTO THE EXPERT SYSTEM
Encode the Fuzzy Sets, Fuzzy Rules, and Procedures in
fuzzy inference by combining fuzzy rules with fuzzy oper-
ator ‘‘AND’’. In the case of operator ‘‘AND’’, the mini-
mum of the two membership functions is the final result.
For instance, if rule 1 fires and membership function (µ)
of weather zone is snow with a strength of 0.6, and the
membership function of distance from the enemy (close)
is 0.4. the firing strength of that rule will be µAction =
min[µWeatherzone, µDistancefromenemy] = min[0.6, 0.4] = 0.4.

5) EVALUATE AND TUNE THE SYSTEM
The surface view of the system in Figure 7 is used to analyze
the input-output relationship.

By using the rules extracted from this Mamdani FIS,
aMATLABprogram that incorporates these rules is written to
run simulations of UAVmission. The data generation process
using the MATLAB program is discussed in the next section.

B. MULTI-COMPLEX UAV PATHS
Three different UAV missions with varying complexity are
predefined to test the accuracy and robustness of explanation
given by the proposed model. A path is set for UAV to nav-
igate through and reach its destination. The UAV navigates
in x and y coordinates. For the purposes of the paper, it is
assumed that UAV is flying at a constant altitude. Then var-
ious adverse weather conditions and enemies are introduced
to the simulation. Under certain conditions, the UAV would
have to attack the enemy or change its path. It can also detect
enemy as well as difficult weather conditions and still decide
to continue the mission. When the continue flag is set to
high (1), that means something interesting has occurred, but
UAV still decided to continue the mission. When UAV is
steering (changing direction) the final path of simulation
displays that it travels underneath the rectangularly shaped
weather conditions. Whereas when no interesting events
occur, the UAV follows the top path of the rectangularly
shaped weather condition.
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FIGURE 8. Keys for simulation diagrams.

FIGURE 9. Mission 1 (a) mission set up (b) final path taken by UAV.

Note: Use the keys below to interpret what is represented
by each color in the mission diagrams

1) FIRST MISSION
In the first mission, the UAV is set to navigate in the envi-
ronment displayed in Figure 9 (a). On the right, Figure 9 (b)
shows the final step UAV has taken. As it can be seen from
Figure 9, UAV travels taking into consideration five adverse
weather conditions displayed in different sized and colored
rectangular shapes. Three enemies are also introduced in the
system in forms of small dots. The UAV begins its mission
to travel in the predefined path displayed below by dashed
black lines. Figure 9 (b) shows that when the UAV enters
rainy weather condition (shown in blue) and an enemy is
moderately close; it decides to steer (went underneath the
rainy zone). That episode occurs around (200, 10) x and y
coordinates respectively.

Other decisions the UAV makes cannot be displayed in
the images below. Rather they are logged along with other
important information that was displayed in Figure 12. The
simulation set for the first mission logged data of 1990 rows.
That data is used in the next section to evolve explanation.

2) SECOND MISSION
In the second mission, similar procedures are followed to
introduce weather conditions and enemies. However, this
time the UAV is set to navigate more steps in a more compli-
cated path. This simulation created 13223 rows of data. The
Enemies in this mission are placed inside of rainy condition
(shown in blue) and snowy condition (shown in red). The path
for the simulation is setup is in Figure 10 (a). The final path
it has taken can be seen from the Figure 10 (b). Whenever
UAV is entering an adverse weather condition, it follows the
top section of the rectangularly shaped weather condition.
The data collected from this simulation is used to explain all

FIGURE 10. Mission 2 (a) mission set up (b) final path taken by UAV.

FIGURE 11. Mission 3 (a) mission set up (b) final path taken by UAV.

FIGURE 12. Process of data logging.

the interesting episodes that occurred during the time UAV is
accomplishing mission two.

3) THIRD MISSION
In the third mission, a unique path is created where UAV has
to navigate in a zigzag-shaped path. The simulation logged
3821 rows of data. Similar to the first two missions, the UAV
makes the decisions based on the fuzzy rules it is programmed
with. Figure 11 (a) and (b) show UAV steers away from the
mission (goes under weather condition) when it approaches
rainy weather zone, and an enemy is nearby. That is dis-
played approximately around (350, 150) x and y coordinates
respectively.

After completing mission, the most essential parameters
are recorded in the order displayed in Figure12. As discussed
earlier, the goal of XAI is not to explain everything that
happened in autonomous systems. Rather, it is meant to give
explanations to interesting (selected) events. In this paper,
the 11 parameters displayed in Figure 12 are selected as
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interesting events that occurred during the missions of the
UAV. Then, those parameters are used to develop an XAI
system.

Once the data generation process is completed, the next
step is selecting a decision, and explaining which episode
led to a specific decision. The next section gives a detailed
explanation of the results by utilizing the explainable model
created.

V. EVOLVING EXPLANATION USING ANFIS
In this section ANFIS models used to give explainable fea-
tures of UAV decisions are studied. Further, the robustness
of the system is tested by introducing noise to the UAV path,
and verifying if the system identifies if there is noise in the
environment. Then the results from each ANFIS model are
analyzed. Finally, using Rule Viewer, an example of explana-
tion is given for each UAVmission set in the previous section.

A. ADAPTIVE NEURO-FUZZY LOGIC
ANFIS performs neural learning using fuzzy typed numbers.
Employing a set of input and output data. The adaptation
function of ANFIS provides the machine learning system
with neuro-fuzzy characters [25]–[28] The structure of a
neuro-fuzzy system is similar to a multi-layer neural net-
work [4]. In general, a neuro-fuzzy system has input and
output layers, and three hidden layers that represent mem-
bership functions, fuzzy rules, normalized rule strengths and
defuzzification process. [29].

This paper proposes developing two separate ANFIS mod-
els for the two entities that contribute to UAV decision mak-
ing. Both ANFIS models have seven inputs and one output.
While the inputs for both models remain the same, the output,
however, varies. The output of the first ANFIS model shows
weather zones, whereas the output of the second ANFIS
model shows the UAVs distance from the enemy.

B. NEURAL EXPERT SYSTEM TO EXTRACT RULES
Neurons in the network are connected by links, each of which
has a numerical weight attached to it [30]. The weights in a
trained neural network determine the strength or importance
of the associated neuron inputs; this characteristic is used for
extracting rules. Neural expert systems still suffer from the
limitations of Boolean logic, and any attempt to represent
continuous input variables may lead to an infinite increase in
the number of rules [31]–[33]. This might significantly limit
the area of application for neural expert systems. The natural
way of overcoming this limitation is to use fuzzy logic [34].

C. OVERVIEW OF A NEURO-FUZZY SYSTEM
The structure of a neuro-fuzzy system is similar to a multi-
layer neural network. In general, a neuro-fuzzy system has
input and output layers, and three hidden layers that represent
membership functions, fuzzy rules and normalized weights of
fuzzy rules [29], [34]. Each layer in the neuro-fuzzy system
is associated with a particular step in the fuzzy inference
process.

1) LAYERS IN NEURO-FUZZY SYSTEMS
Layer 1 is input layer. Each neuron in this layer transmits
external crisp signals directly to the next layer.

y(1)1 = x(1)1 (1)

where y(1)1 and x(1)1 are outputs and inputs of the input layer
respectively [31], [32].

Layer 2 is the fuzzification layer. Neurons in this layer
perform fuzzification [6], [35]. In Jang’s model, fuzzification
with regular bell shape is specified as:

y(2)i =
1

1+ (
x(2)i −a1

ci
)2bi

(2)

where x(2)i and y(2)i are input and output of neuron i in
layer 2 respectively. Moreover, ai, bi, and ci are parameters
of control. The center, width and slope of the bell activation
function of neuron i receptively.
Layer 3 is the rule layer. Each neuron in this layer

corresponds to a single Sugeno-type fuzzy rule [31]–[33].
A rule neuron receives inputs from the respective fuzzifi-
cation neurons and calculates the firing strength of the rule
it represents [6], [35]. In ANFIS, the conjunction of the
rule antecedents is evaluated by the operator product. Thus,
the output of neuron i in Layer 3 is obtained as:

y(3)i =
k∏
j=1

x(3)ji (3)

where y(3)i and x(3)ji are the output and input of neuron i in

Layer 3, (e.g. y(3)51 = µA1×µB1 = µ1 ), whereµ1 represents
the firing strength (truth value) of Rule 1.

Layer 4 is the normalization layer. Each neuron in this
layer receives inputs from all neurons in the rule layer, and
calculates the normalized firing strength of a given rule. The
normalized firing strength is the ratio of the firing strength
of a given rule to the sum of firing strengths of all rules.
It represents the contribution of a given rule to the final result.
Thus, the output of neuron i in Layer 4 is determined as:

y(4)i =
x(4)i∑n
j=1 x

(4)
ji

=
µi∑n
j=i µj

= µ̄i (4)

where x(4)ji is the input from neuron j located in Layer 3 to
neuron i in Layer 4, and n is the total number of rule neurons
(e.g. y(4)N1 =

µ1
µ1+µ2+µ3+µ4

= µ̄1).
Layer 5 is the defuzzification layer. Each neuron in this

layer is connected to the respective normalization neuron,
and also receives initial inputs, x1 and x2. A defuzzification
neuron calculates the weighted consequent value of a given
rule as,

y(5)i = x(5)i [ki0 + ki1x1 + ki2x2] = µ̄i[ki0 + ki1x1 + ki2x2]

(5)
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FIGURE 13. ANFIS model structure for six rules.

where y(5)i and x(5)i are the output and input of defuzzification
neuron i in Layer 5, and [ki0, ki1, ki2] are a set of consequent
parameters of rule i.

Layer 6 is represented by a single summation neuron. This
neuron calculates the sum of outputs of all defuzzification
neurons and produces the overall ANFIS output, y,

y =
n∑
i=1

x(6)i =

n∑
i=1

µ̄i[ki0 + ki1x1+ ki2x2] (6)

First-order Sugeno FIS, does not require to have any
prior knowledge of rule consequent parameters of an ANFIS
model. That eases the difficulty of specifying a rule conse-
quent in a polynomial form. ANFIS learns the parameters
discussed in Equations 1-6 and tunes membership functions.

D. HYBRID OPTIMIZATION TECHNIQUE
The learning algorithm for ANFIS developed in this paper is
a hybrid algorithm that is a combination of gradient descent
and least square methods. In the forward pass of the hybrid
learning algorithm, node outputs go forwards until Layer 4,
and the consequent parameters are determined by the least
squares. In the backward pass, the error signals propagate
backward, and premise parameters are updated using gradient
descent [28], [36]–[38].

E. SUBTRACTIVE CLUSTERING
The purpose of clustering is to identify natural groupings of
data from a large data set, such that a concise representation of
system’s behavior is produced [39]. A subtractive clustering
method with improved computational effort in which data

points themselves are considered as cluster center candidates
has been proposed by Hájek [35], Keshavarzi et al. [38],
and Chiu et al. [40]. By using this method, the computation
is simply proportional to the number of data points and is
independent of the dimension of the problem. The potential
of data point is estimated by the following equation:

Pi =
n∑
j=1

e−α|x
i
−xj|2 , (7)

α =
γ

r2a
, (8)

Here, Pi is the potential of ith data point, n is the total number
of data points, x i and x j are data vectors in data space includ-
ing both input and output dimensions, γ is a positive contant
and is selected as 4, and ra is a positive constant defining
the neighborhood range of the cluster or simply the radius of
hypersphere cluster in data space. Each time a cluster center
is obtained, the data points that are close to new cluster center
are penalized in order to facilitate the emergence of new
cluster centers [39]. The revising of the potential is done by
subtraction as shown in the following equation:

Pi = Pi − P∗kζ, (9)

ζ = e−β|x
i
−ck |2 , (10)

rb = η ∗ ra, (11)

In this case, P∗k is the potential of k th cluster center, x i

is the ith data point being subtracted and ck is k th cluster
center. A positive constant, rb defines the efficient subtractive
range. Squash factor η is a positive constant greater than 1.

17008 VOLUME 7, 2019



B. M. Keneni et al.: Evolving Rule-Based XAI for UAVs

The positive constant rb is somewhat greater than ra, and it
helps to avoid closely spaced cluster centers.

The process of acquiring a new cluster center is based on
the potential value in relation to an acceptance threshold ε̄,
rejection threshold ε and the relative distance criterion. A data
point with the potential greater than the acceptance threshold
is directly accepted as a cluster center. The acceptance of a
data point with a potential between the upper and the lower
thresholds depends on the relative distance equation, defined
as

dmin
ra
+
P∗k
P∗1
≥ 1, (12)

where dmin is the shortest distance between the candidate
cluster center and all previously found cluster centers.

Once the clusters are formed in the input and output space,
they are projected into each dimension. The Chiu’s [40]
proposal of defining fuzzy sets in input space is extended to
the individual input dimensions. The exponential type mem-
bership degree in the input space is defined by the following
equation:

µikj = e−α|x
i
j−c

k
j |
2

(13)

α =
γ

r2a
(14)

Here, |x ij − ckj | is the distance measure in dimension j
between the ith data point and the k th cluster center (repre-
sented by a data point, i.e., ckj = xkj ), and γ is a positive
constant determining fuzziness in the cluster. Subtractive
clustering has four parameters, namely, accept ratio ε̄, reject
ratio ε, cluster radius ra, and squash factor η (or rb). There
parameters have influence on the number of rules and error
performance measures. Large values of ε̄ and ε will result
in small number of rules. Conversely, small values of ε̄ and
ε will increase the number of rules. A large value of ra
generally results in fewer clusters that lead to a coarse model.
A small value of ra can produce excessive number of rules
that may result in an over-defined system Chiu [35], [38],
[40]. The suggested values for η and ra are 1.25≤ η ≤1.5 and
0.15≤ ra ≤ 0.30.

VI. DEVELOPMENT TOOL AND PERFORMANCE CRITERIA
To implement and test the proposed architecture, a develop-
ment tool is required. MATLAB Fuzzy Logic Toolbox (FLT)
from MathWorks was selected as the development tool. This
tool provides an environment to build and evaluate fuzzy
systems using a graphical user interface. The rule viewer
allows users to interpret the entire fuzzy inference process
at once. The ANFIS editor GUI menu bar can be used to load
a FIS training initialization, save the trained FIS, and open a
new Sugeno system to interpret the trained FIS model [28].
To test the performance criteria, the root mean square error
(RMSE) between the actual values and predicted values of
ANFIS output are compared. RMSE can be calculated using

the following equation:

RMSE =

√√√√ 1
N

N∑
i=1

(Actuali − Predictedi)2 (15)

Another criteria that is used to measure performance is the
accuracy percentage. For accuracy, an RMSE threshold value
is set, and a simple percentage calculation is executed using
the question:

Accuracy Percentage =
Threshold − RMSE

Threshold
× 100% (16)

Now that the theory behind the explainable model in this
paper is studied, the results are discussed in the next section.

VII. RESULTS AND DISCUSSION
The results in this section are presented by analyzing the per-
formance of ANFISmodel by comparing the RMSE values of
the actual and predicted values from ANFIS models created
for each UAV mission. The findings show that ANFIS can
be used in multiple scenarios to evolve effective explanation
features to autonomous systems.

As shown in Table 1, the sub-clustering parameters to
create a Sugeno model are varied until six fuzzy rules are
created. The reason six rules are determined to be sufficient
is that there are five weather zone membership function
in the simulation. In addition, there is the condition where
UAV navigates freely, which is considered to be the sunny
zone. Those weather states added together give six zones.
Therefore, having six clusters is comprehensible by users.
The performance of the model is then tested to see how much
the RMSE will vary based on the changes in sub-clustering
parameters.

In Tables 1 and 2, for each UAV mission, three attempts
of varying subclustering variables are displayed, and the
RMSE for each attempt are compared. As the data is scaled
between 0 and 1, the acceptable threshold of RMSE for the
purposes of this paper is selected to 0.05. As long as the
RMSE is below this threshold, the RMSE is considered to be
acceptable. The results are discussed in detail in the following
subsections.

A. ANFIS MODEL ONE: WEATHER ZONE AS OUTPUT
The first ANFIS model has seven inputs and one output. The
output in this model gives values for different weather zones.
Each number that is given as a crisp output from the Sugeno
FIS gives a number that indicates what weather conditions
caused UAV to make a decision to either engage in attack
with an enemy, steer (change the course of the path), or con-
tinue mission at that specific time, location and heading
direction.

Table 1 shows three attempts to generate six rules by
adjusting subclustering parameters without compromising
the persistence of keeping low RMSE values. As it can be
seen, in Mission 1, for six rules, the RMSE of checking
and the predicted value is 0.000206. Whereas for 19 rules it
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TABLE 1. Effects of subclustering parameters on evaluating parameters for weather output.

TABLE 2. Effects of subclustering parameters on evaluating parameters for distance output.

is 0.000134. Both these values are way below the threshold
set giving an accuracy of 99.58% for six rules and 99.73%
for 19 rules. There is only a percentage difference of 0.15%
to reduce the number of rules by 13. Therefore, for the
first mission, it can be concluded that ANFIS 1 gives
excellent results for generating Sugeno FIS of only six
rules.

In mission 2, generated data points are seven times more
than mission one. That gives more training and checking
points for the learning process. After adjusting subclustering
parameters to generate six rules, ANFIS 1 gives an accuracy
of 99.87% for six rules and 99.88% for 21 rules. An increase
in 0.01% is very insignificant when we were able to reduce
rules by 15 between checking RMSE of FIS of 21 rules to that
of six rules.

In Mission 3 after adjusting subclustering parameters to
generate six rules, ANFIS has 99.76% accuracy, whereas
for 11 rules it gives 99.88% accuracy. The accuracy
decreased by 0.12% to remove five rules, which again is not
very significant. Therefore, just like in previous missions,
ANFIS 1 gives excellent results for mission 3.

FIGURE 14. Comparison of ANFIS performance for missions 1, 2 and 3.

This section presented three mission with different results.
A summary of the performance of ANFIS 1 for each mission
is given in Figure 14.

Figure 14 shows mission 2 has the smallest RMSE for
training and checking data. As expected, the model performs
better when it has more data to work with. Similarly, it also
gives great results for relatively small data as ANFIS 1
performed well for missions 1 and 3.
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FIGURE 15. Comparison of ANFIS 2 performance for missions 1, 2 and 3.

B. ANFIS MODEL TWO: DISTANCE FROM ENEMY AS
OUTPUT
ANFIS model 2 has the exact same input variables as
ANFIS 1. It also follows the same methodology as ANFIS 1.
For this ANFIS model, subclustering parameters are adjusted
to give six rules. Six rules are selected to have a consistent
number of rules generated because both entities (weather and
distance) are the causes of UAV decision making.

In Table 2, after adjusting subclustering parameters to
generate six rules, the RMSE of checking data set vs predicted
value is 0.00734. For 21 rules RMSE is of checking data set
vs predicted value 0.00428. This gives an accuracy of 85.32%
for six rules and 91.44% for 21 rules. The accuracy decreased
by 6.12% to reduce number of rules by 15.

Similarly, for Mission 2, after adjusting subclustering
parameters to generate 6 rules, ANFIS 2 gives an accuracy
of 96.8% for six rules and 97.96% for 19 rules. A decrease
in 1.16% accuracy is very insignificant when the number of
rules is reduced rules by 13. As stated previously, the trade-
off between number of rules and accuracy has been known
to be one of the limitation in fuzzy systems. However, in this
ANFIS model, there is only a minimum decrease in accuracy
while adjusting subclustering parameters to reduce a signif-
icant number of rules. As a result, it can be concluded that
ANFIS 2 gives excellent results to model XAI for mission 2.

As it can been seen fromTable 2, after adjusting subcluster-
ing parameters to generate six rules, ANFIS for six rules has
85.34% accuracy, whereas for 17 rules it gives 89.9% accu-
racy. The accuracy decreased by 4.56% to reduce 11 rules.
Therefore, for the purpose of this research, generating six
Sugeno rules is found to be paramount.

A summary of the performance of ANFIS 2 for each mis-
sion is given in Figure 15.
As it can be seen in the Figure 15 above, mission 2 has the

smallest RMSE for training and checking. Just like expected,
themodel performs better when it has more data to work with.
Similarly, it also gives great results for relatively small data
as ANFIS 1 performed well for missions 1 and 2.

Next uncertainty will be added to the path of mis-
sion one and the robustness of the system will be tested
by comparing the RMSE of mission 1 with and without
error.

FIGURE 16. Mission 1 with random Gaussian noise added on path1.

FIGURE 17. Mission 1 for weather output with and without random noise
RMSE comparison for training and checking data.

VIII. UNCERTAINTY IN PATHTAKEN
As Figure 16 shows a noise of the following equation is added
to the path

P(z) =
1

σ
√
2π

e−
z−λ2

2σ2 (17)

Here P(z) is the probability density function P of Gaussian
random variable z, λ, and σ represent mean value and stan-
dard deviation respectively.

A. RESULTS AFTER UNCERTAINTY
Figure 17 and Figure 18 show a comparison of the RMSE
value of mission 1 with and without uncertainty added in
the system, in ANFIS model 1 (Weather zone) and ANFIS
model 2(distance) respectively. As it can be observed from
Figure 17 and Figure 18 when Gaussian noise is introduced
to the system, the RMSE value increases in both training and
checking results. This is beneficial because the system can
detect that this is a glitch in the environment when the same
mission shows such a significant increase in RMSE values.
As a result, it provides the opportunity to correct the error.

In the next section, three examples of episodes that
occurred during each mission will be discussed. As a result,
the paper will show the use of Rule View for XAI purposes.

IX. EXPLAINABLE UAV DECISIONS
For every decision UAV has taken in the simulation created,
the explanation can be provided by referring to the rule view
window. An example of an episode from each mission is
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FIGURE 18. Mission 1 for distance output with and without random noise
RMSE comparison for training and checking data.

FIGURE 19. Rule view numerical output to English interpretation.

given. For every event, the input variables are listed as the
first seven columns in rule view, whereas the output is the last
column in the rule view. The rules that fired are studied to give
an explanation as to why an event has occurred. If multiple
rules fired for one event, the rule with the highest degree
of membership is used for explanation purposes. On top of
the rule view window, there are numerical representations of
input variables. Those values are representations from scaled
data. Therefore, they would have to be converted to their
original form. To do that, multiply each numerical value of
variables in rule view window by the number of data points
generated in the mission (basically, multiply with the amount
of time UAV takes to complete the mission). After the con-
version (unscaling) is completed, the numerical values can be
interpreted to linguistic explanations based on the respective
values defined during UAV data generation process.

Note: use the following values to interpret numerical
results to linguistic values.

The results in the next sections give three examples of
explainable intelligence.

1) XAI FOR AN EVENT IN MISSION 1
In mission 1, an example to explain what caused the UAV
to engage in attack with an enemy is given. The Figure 20

FIGURE 20. Rule viewer for XAI weather output for mission 1.

FIGURE 21. Rule viewer for XAI distance output for mission 1 Explanation.

FIGURE 22. Rule viewer for XAI weather output for mission 2.

shows a rule view window for Sugeno model that has weather
zone as output (ANFIS 1). Whereas in Figure 21 a rule view
window for Sugeno model that has UAVs distance from the
enemy (ANFIS 2) as output is given.

In Figure 20, rule 4 has fired, and in Figure 21, rule 5 has
fired The English equivalent of this explanation is as
follows:
Explanation 1: At time step 1094, x-coordinate 49.95, y-

Coordinate 0.109, UAV was headed North, and it decided to
engage in attack with enemy because it was in a sunny zone
and moderately close to the enemy.

2) XAI FOR AN EVENT IN MISSION 2
This example gives explanation to what caused the UAV in
mission 2 steer (change course).

In Figure 22, rule 5 has fired, and in Figure 23, rule 5 has
fired.

The English Explanation is as follows:
Explanation 2: At time step 6611.5, x-coordinate 1079, y-

Coordinate 789.669, UAV was headed south, and it decided
to change course because it was in a snow zone and mod-
erately far from the enemy.
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FIGURE 23. Rule viewer for XAI distance output for mission 2.

FIGURE 24. Rule viewer for XAI weather output for mission 3.

FIGURE 25. Rule viewer for XAI distance output for mission 3.

3) XAI FOR AN EVENT IN MISSION 3
This example gives explanation to what caused the UAV in
mission 3 to continue mission even though it has detected
enemy. In Figure 24, rules 1 and 5 have fired. The rule with
largest membership function will cause the decision. That in
this case, is rule 5. In Figure 25, rules 1 and 6 have fired. The
rule with largest membership functionwill cause the decision.
That in this case is rule 6. The linguistic explanation can be
given as follows:
Explanation 3:At time step 3156, X-coordinate 142.523Y-

Coordinate 504.372, UAV was headed North East, and it
decided to continue mission even though it detected a nearby
enemy because it was in a rainy zone andmoderately close
to the enemy.

X. DEVELOP AN EASILY ACCESSIBLE RULE VIEW
HCI INTERFACE
Currently, in the XAI model studied in this paper, users have
to manually interpret the numerical values that are displayed
in the Rule View window to give explanations to decisions.
Therefore, developing an interface that allows easy human-
computer interaction for this explainable model is vital for
the implications of the use of ANFIS for XAI. Moreover,
we have designed and implemented an interface to interpret
the values of the ANFIS model to linguistic values. It allows

FIGURE 26. Flow chart diagram, describing stages design of the interface.

FIGURE 27. Interface design and outputs/UAV steer.

the user to understand the explanation of the UAV behavior
in human-reasoning logic. The interface has been designed
and developed in the MATLAB platform that is capable of
explaining the decision of the UAV at each point of time and
location. The workflow diagram of the proposed interface
is shown in Figure 26. Figure 27 shows an example of the
interface output; here the user can easily choose any raw data
to see the explanation of the UAV at a given location and time.

XI. CONCLUSION
The goal of this research is to investigate a method to evolve
an explanation of the decisions taken by autonomous systems.
The autonomous system that is selected in this research is
Unmanned Aerial Vehicle. By using Mamdani FIS inspired
method, a simulation that incorporated 15 fuzzy rules is
generated. During each mission, different weather conditions
and enemies are placed at random, and the UAV navigates
its predefined path by taking those entities into consideration
and following the 15 fuzzy rules. TwoANFISmodels of seven
input and one output are created. The first model has output of
weather zone and the second model has an output of distance
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from the enemy. By adjusting subtractive clustering parame-
ters to extract a different number of ruleswith different RMSE
values between actual data and predictive data are generated.

The best optimization was found to be generating six fuzzy
rules for the Sugeno model. In all of the missions having six
rules is found to be easily comprehensible and the RMSE
stays within a limit of acceptable value. The highest checking
RMSE found (the worst case) is 0.00734 during mission
1 distance output model. Based on the RMSE threshold value
(0.05) set for this research, that model gives an accuracy
of 85.32%. The lowest checking RMSE (the best case) is
0.000064 which was achieved in mission 2 weather zone
model. Based on the RMSE threshold set for this paper, this
model gives an accuracy of 99.87%. The explanation is given
using three examples for three missions.

In the paper, it is shown how ANFIS can be used to
develop XAI. As the findings are showing promising results,
models as such should be considered to be integrated with
upcoming UAV technologies in order to make the UAVsmore
transparent, easily understandable, and trustworthy.

XII. FUTURE WORK
As demonstrated in this paper, the finds from applyingANFIS
to develop explainable artificial intelligence show promising
results. The research thereof has the potential to diverge into
many possible future directions.

A. REAL-TIME APPLICATION
Acquiring real-time data and analyzing the performance of
this ANFIS model with that data can bring the research
towards XAI a step closer to acquiring the necessary tools to
achieve not only smart and self sustaining machines that can
learn from experience, but also smart systems that can explain
their autonomous decisions to human users adequately.

B. EXPLAINABILITY METRICS
It will be very useful to develop a metric that defines explain-
ability in a quantitative manner. If future research can find
quantifiable metrics for XAI, it will facilitate the develop-
ment of a faster, reliable, and accurate explainable artificial
intelligence systems.
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