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ABSTRACT This paper presents a kind of concatenated polar codes called hash-polar codes with flexible
outer code lengths, in which a hash function-based encoder is used as an outer encoder. A partial hash-
polar code is also proposed to enhance the error-correcting performance at high signal-to-noise ratios. Since
polar codes have been recommended by 3GPP as the channel coding scheme for the 5G enhanced mobile
broadband control channel, the design of hash-polar codes for 5G is considered, where both good error-
correcting performance and low false alarm rate (FAR) are required. The simulation results show that,
under the 5G FAR requirement, the proposed hash-polar codes have similar frame error rate performance to
cyclic redundancy check (CRC)-polar codes and perform better than parity check polar codes. In order to
support early termination (ET) for 5G coding, we then propose segmented hash-polar codes, which exhibit
the advantages of the ET gain compared with both CRC-polar codes and distributed CRC-polar codes.

INDEX TERMS Concatenated polar codes, hash-polar codes, false alarm rate, early-termination, 5G channel
codes.

I. INTRODUCTION
Polar codes [1], the first provably capacity-achieving codes
discovered by Arıkan in 2009, are of great interest recently.
Under recursive encoding structures in conjunction with
successive cancellation (SC) decoding, channel polarization
arises, where equivalent bit-channels polarize to be nearly
noiseless or useless as the code length approaches infinity.
The capacity can be achieved by employing the noiseless
bit-channels for data transmission. Since the error-correcting
performance under the simple SC decoding for polar codes
with finite code length is inferior to other modern codes such
as low-density parity-check (LDPC) codes and Turbo codes,
successive cancellation list (SCL) decoding was proposed
in 2011 [2]–[5], where L paths were kept at each decod-
ing tree level to select the most likely estimation. In [6],
an adaptive SCL decoding algorithm was provided. Com-
pared with the conventional SCL decoder with constant list
size, the adaptive SCL decoder can achieve similar perfor-
mance but with significantly lower complexity.

An important direction of improving the finite perfor-
mance of polar codes is to concatenate a polar code with a
high-rate systematic outer code, such as cyclic redundancy
check (CRC)-aided polar (CRC-polar) codes [2], [7], and
parity check polar (PC-polar) codes [8], where check bits

are appended at the end of information bits and scattered
within information bits, respectively. For CRC-polar decoder,
the check bits are regarded as unfrozen bits and decoded
by the decoder. While, for PC-polar decoder, the check bits
can be viewed as dynamic frozen bits, and will be computed
from the decoded information bits. Recently, concatenated
polar codes have been accepted by 3GPP as the channel
coding scheme for 5G enhanced mobile broadband (eMBB)
control channel, where both low frame error rate (FER) and
false alarm rate (FAR) performance are required [9]. In [10],
we proposed a concatenated polar coding scheme called
hash-polar codes to reduce the FAR with satisfying error-
correcting performance. Moreover, the distributed CRC polar
(DCRC-polar) codes were proposed for downlink chan-
nel [11], [12] to reduce the energy consumption of the
decoder. DCRC-polar codes can be considered as an instance
of the PC-polar codes, in which the check bits are scat-
tered within information bits by swapping rows and columns
of the CRC-generator-matrix. These concatenated polar
codes (including hash-polar codes) were recommended
as candidates for coding the eMBB control information
in 2017 [13]–[18].

Other concatenated polar coding schemes are also avail-
able [19]–[23], where multiple polar codes are considered
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to concatenate with other codes. In 2010, Bakshi et al. [19]
demonstrated that concatenating polar codes with a high-
rate outer Reed-Solomon (RS) code could improve the
error decay rate. Then, in 2014, Mahdavifar et al. [20]
showed that the concatenation of polar codes with interleaved
RS codes could increase the error decay rate to be O(2−N

1−ε
)

for any ε > 0, where N is the total code length. In [21]–[23],
Bose-Chaudhuri-Hocquenghem (BCH) codes, convolutional
codes, and single-parity-check (SPC) codes were considered
instead of RS codes to increase the error decay rate and
improve error-correcting performance. Furthermore, general-
ized concatenated polar codes with multiple outer codes were
also designed in [24]–[27].

For a systematic outer code, increasing the number of
check bits, on the one hand, may obtain better error detection
performance, but on the other hand, may lead to increased
effective code rate of the inner polar code, resulting in inferior
error-correcting performance. Thus, in addition to the struc-
ture of outer codes, the number of check bits from the sys-
tematic outer code were also considered for the concatenated
polar codes. Murata and Ochiai [28] and Hashemi et al. [29]
showed that there is a trade-off between the FER performance
and the CRC code length. It means that specific CRC code
lengths are needed to accommodate different information
lengths, code rates and signal-to-noise ratios (SNRs). Thus,
to adapt those variations, it is preferred to use the outer codes
with flexible code lengths implemented by one outer encoder.

In this paper, we attempt to use a hash encoder as the sys-
tematic outer encoder to obtain arbitrary outer code lengths
for arbitrary input lengths, in which a hash function is used to
generate various check bits. In addition, taking the advantage
of the structure of the hash outer encoder, check bits can
be scattered within information bits, which has an advan-
tage, i.e. supporting early-termination [30], for 5G control
channel. Although the 5G standardization of polar codes for
eMBB control channel was finalized, since our proposed
hash-polar codes had ever been recommended as a candidate
for eMBB control channel, we introduce them with their
application to 5G in this paper in more detail for exploring
their potentials for other scenarios.

The main contributions of this paper are summarized as
follows:
• We first introduce the encoding and decoding of hash-
polar codes, where a hash function is used to gener-
ate various check bits for flexible outer code lengths.
By analyzing the decoding error probability for sys-
tematic concatenated polar codes, we then propose an
adaptive hash-polar coding scheme, where the number
of check bits varies with SNRs according to the pro-
vided upper-bound. In particular, the decoding error of
check bits by polar decoder is taken into account in our
upper-bound.

• To improve the error correcting performance at
high SNRs, we propose partial hash-polar codes, par-
tial information bits of which are fed into the hash
function twice, resulting in the reduction of collisions

for each check sequence. Inspired by considering the
minimum Hamming distance (for polar codes without
outer codes), the partial hash-polar codes are constructed
based on low row-weights and outperform that con-
structed based on low bit-channel reliabilities.

• We design and apply the proposed hash-polar codes for
5G eMBB control channel, where low FAR is required
for uplink and both low FAR and early-termination (ET)
are required for downlink. By analyzing the FAR per-
formance, the proposed hash-polar codes with designed
CRC bits can meet the 5G FAR target. To support ET,
segmented hash-polar codes are proposed, and a length
search algorithm is provided to design segmented hash-
polar codes for satisfying the FAR requirement.

The remainder of this paper is organized as follows.
Section II gives a brief introduction of polar codes. Section III
presents hash-polar codes and the corresponding decod-
ing algorithm. Improved partial hash-polar codes are intro-
duced in Section IV. In Section V, we discuss the design of
hash-polar codes for 5G eMBB control channel, where the
analysis of FAR performance is also given. Under the require-
ment of ET, segmented hash-polar codes and the correspond-
ing decoding algorithm are presented. Finally, conclusion is
drawn in Section VI.

II. BACKGROUND
A. POLAR CODES
Polar codes, as a class of capacity-achieving linear block
codes, are constructed based on the channel polarization.
The polarization effect refers to the phenomenon that part of
equivalent bit-channels become nearly noiseless while others
become useless with the code length tending to infinity. The
conventional polarization matrix (called Arıkan’s kernel) is
given as F2 =

[
1 0
1 1

]
. Then, the generator matrix GN for a

polar code of length N = 2n can be recursively obtained as

GN = F⊗n2 , (1)

where ⊗ represents the Kronecker power operation. Based
on GN , N bit-channels W (i)

N (1 ≤ i ≤ N ) with different
reliabilities can be obtained. Information bits are only trans-
mitted over those equivalent bit-channels with the highest
reliabilities. Let A ⊆ {1, 2, ...,N } denote the index set of
bit-channels with the highest capacities, which is called
the information set. The complementary set Ac

=

{1, 2, ...,N }\A is called the frozen set, which is known to
the decoder. The selection of A refers to as the code con-
struction. Many efficient construction methods, including
Bhattacharyya bounds method, Monte-Carlo method and
Gaussian approximation (GA) method, are summarized
in [31].

Assume that the binary-sequence u = {u1, u2, . . . , uN } is
fed into the polar encoder, where uA = {ui, i ∈ A} contains
data. The resulting codeword c = uGN is transmitted over
the channel with the transition probability W (yi|ci), where
{yi} is the received sequence. For any non-negative integer
0 ≤ j ≤ 2n − 1, we express it in a binary expansion
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FIGURE 1. Encoding and decoding process.

as j , (jn−1, jn−2, . . . , j0)2, i.e., j =
∑n−1

s=0 js · 2
s, where

js ∈ {0, 1}. Let (j, j′) (j < j′) denote the index pair that
their binary representations differ only in the s-th bit, where
(j, j′) is called s-complementary pair [32]. Thus, the polar
encoding process can also be described as a ‘‘recursive com-
putation’’ given by{

us+1,j = us,j ⊕ us,j′ ,

us+1,j′ = us,j′ ,
(2)

for each s-complementary pair (j, j′) with the initialization
u0,j = uj+1, where 0 ≤ j ≤ N − 1 and 0 ≤ s ≤ n − 1.
The codeword is then given by cj+1 = un,j. Refer to Fig. 1.
Consider SC decoder in the log-likelihood ratio (LLR)

domain. The estimate ûi with i ∈ Ac will be set to zero or a
known bit, and the estimate ûi with i ∈ A will be determined
by the decision LLRs

Li = L(ui) , ln
W (i)
N (yN1 , û

i−1
1 |ui = 0)

W (i)
N (yN1 , û

i−1
1 |ui = 1)

, 1 ≤ i ≤ N . (3)

That is ûi = 0 if Li ≥ 0, and ûi = 1 otherwise.
Assume that 0 ≤ s ≤ n − 1, and (s + 1)-complementary

pair is equal to s-complementary pair when s + 1 equals n.
Let Ls,j denote the recursive LLR in layer-s of the decoder.
Based on the butterfly computational structure, the decision
LLRs can be computed recursively as{

Ls+1,j = f−(Ls,j,Ls,j′ ), for ‘‘⊕
′′ constraint,

Ls+1,j′ = f+(Ls,j,Ls,j′ , ûs+1,j), for ‘‘ =
′′ constraint,

(4)

with {
ûs,j = ûs+1,j ⊕ ûs+1,j′ ,

ûs,j′ = ûs+1,j′ ,
(5)

where  f−(α, β) , ln
eα+β + 1
eα + eβ

,

f+(α, β, u) , (−1)u · α + β.
(6)

The initial value L0,j = ln W (yi|0)
W (yi|1)

with j = i − 1,
1 ≤ i ≤ N . With the recursive computation in (4), the deci-
sion LLRs are finally given by Li = Ln,i−1. The encoding and
decoding procedures are shown in Fig. 1.
Although polar codes with SC decoding are proved to

be capable of achieving the symmetric channel capacity,
SC decoding exhibits an inferior error-correcting perfor-
mance for polar codes with short and moderate block lengths.

Thus, the SC-based list decoding algorithm was proposed,
where the maximum L decoding paths are kept at each decod-
ing stage. The path metric for each path ` can be computed
as follows with the initialization PM0[l] = 0 for all `,

PMi[`] =

PMi−1[`], if ûi[`] =
1
2
(1− sign(Li[`])),

PMi−1[`]+ |Li[`]| , otherwise.
(7)

where 1 ≤ i ≤ N , and Li[`] = ln
W (i)
N (yN1 ,û

i−1
1 [`]|ui=0)

W (i)
N (yN1 ,û

i−1
1 [`]|ui=1)

, which

can be obtained by (4). Finally, the decoding path with the
smallest path metric is chosen as the output.

B. HASH FUNCTION
Hash function is a nonlinear function exhibiting avalanche
effect, where one bit variation of the input leads to a huge
change of the output. There are many kinds of hash functions
with one or more than one input, resulting in one output.
Assume that h(a, b) ∈ {0, 1}v denotes a two-input hash func-
tion with a ∈ {0, 1}k , b ∈ {0, 1}v. In order to guarantee a low
number of collisions, the hash function is chosen randomly
from a family of hash functions with uniform difference
property, where for ai ∈ {0, 1}k and bi ∈ {0, 1}v with i = 1, 2,
Pr{h(a1, b1) = h(a2, b2)|(a1, b1) 6= (a2, b2)} ≤ 1

2v , and
Pr{(h(a1, b1) − h(a2, b2)) mod 2v} is uniformly distributed
in 2v. In this paper, the improved ‘‘one-at-a-time’’ hash
function [33] with two 32-bit unsigned integer inputs (seen
in Appendix-A), which only requires 10 additions, 15 shifts,
and 6 XOR operations, is applied resulting in an unsigned
integer S ∈ {0, 1}32, called hash state.

III. HASH-POLAR CODES
On account of the fact that basic polar codes of finite length
exhibit inferior performance with list decoding, systematic
concatenated polar codes, with CRC-polar codes as typi-
cal examples, were proposed. Due to the trade-off between
the FER and the outer code length, flexible outer code lengths
are required, where different SNRs may correspond to dif-
ferent optimal code lengths. In this section, inspired by the
application of the hash function in spinal codes [34], we intro-
duce the hash-polar code, which is a concatenation of the
hash function and a basic polar code, and various numbers
of check bits (corresponding to various outer code lengths)
can be obtained via such a hash function.

A. DESIGN OF HASH-POLAR CODES
1) ENCODING OF HASH-POLAR CODES
A hash-polar encoder is shown in Fig. 2, where the hash
encoder has a trellis-coded modulation (TCM)-like structure.
A K -bit source sequence d is divided into non-overlapped
I ≥ 2 segments, each of which is a bit-sequence of length ri
and is represented as an integer ki (1 ≤ i ≤ I ). The splitting
process is denoted by d → {ki}. Note that

∑I
i=1 ri = K ,

where ri can be different for different segments. Let the
two inputs of the hash function h be the integer ki from the
i-th segment and the prior hash state Si−1 obtained by
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FIGURE 2. Hash-polar encoder.

the (i − 1)-th segment. Then, the output is given by
Si = h(Si−1, ki). The initial state S0 is known both to
the transmitter and to the receiver, and here we assume
that S0 = 0.
After computing all the segments, the output state SI is

clamped as a J -bit integer 2(SI ) (J ≤ v = 32), which is
represented as a J -bit binary sequence s. The J -bit sequence
s, called the hash state sequence, is regarded as the check bits,
thus the codeword given by the hash encoder in systematic
form is uA = (d, s) with length K + J . The attached
sequence uA is then fed into the polar encoder. Therefore,
for polar encoder, |A| = K + J . Hash-polar codes are a
kind of concatenated codes, in which the hash encoder and
polar encoder act as the outer encoder and inner encoder,
respectively. Moreover, the number of check bits J from the
hash encoder ismore flexible than that from the CRC encoder,
in which preferred J -bit check sequences can be obtained by
clamping and converting the output state SI from the hash
encoder.

2) DECODING OF HASH-POLAR CODES
With the use of the hash encoder, hash-aided SCL decoding
method is proposed. Instead of selecting the path which can
pass CRC as the output in SCL with CRC-aided decoder,
hash-aided SCL decoder outputs the most likely decod-
ing path with the smallest path metric among the paths
whose states equal the output of the hash encoder. The main
hash-aided SCL algorithm is described using pseudo-code
in Algorithm 1, where A[i] represents the i-th index in the
information set A.

B. PROPERTIES OF HASH-ENCODER
Proposition 1: The undetected error probability of the

hash-encoder is lower than 2−J , which is independent of the
number of segments, i.e., the value of I .

Proof: Let two messages d1 and d2 (d1 6= d2) be
encoded by a hash-encoder, resulting in the J -bit sequence s1
and s2, respectively. By the definition of the hash function,
the collision probability is lower than 2−v for each segment i
(1 ≤ i ≤ I − 1), and is lower than 2−J for the last segment.
Thus, the undetected error probability of the hash-encoder is
given by

Pud = Pr{s1 = s2|d1 6= d2}

≤

I−1∑
i=0

C i
I−1(1− 2−v)i(2−v)I−1−i2−J

= (1− 2−v + 2−v)I−12−J = 2−J . (8)

�

Algorithm 1 Hash-Aided SCL Decoder
Input: Received channel probabilities.
Output: Estimated source sequence.

1 Flag← 0.
2 for i = 1 to N do
3 • Calculate the path metric PMi[·] by (4) and (7).
4 if i ∈ Ac then
5 Set ûi[`] = 0 for all `, and keep all paths.

6 else
7 Sort the path metrics, and reserve the L most

probable paths with PMi[1] < PMi[2] < · · · <
PMi[L] < PMi[·] ∈ {PMi[`], ` ≥ L}.

8 for ` = 1 to L do
9 •Map

{ûi[`], i ∈ {A[1], . . . ,A[K ]}} → {k̂j, 1 ≤ j ≤ I },
and {ûi[`], i ∈ {A[K + 1], . . . ,A[|A|]}} → Ŝ.

10 • Compute S̃I with S̃j = h(S̃j−1, k̂j) (1 ≤ j ≤ I ) and
S̃0 = 0 .

11 if 2(S̃I ) == Ŝ then
12 d̂← {ûi[`], i ∈ {A[1], . . . ,A[K ]}}.
13 Flag← 1.
14 Break.

15 if Flag== 0 then
16 d̂← {ûi[1], i ∈ {A[1], . . . ,A[K ]}}.

The hash function can also be viewed as a mapping from
the input to a J -bit hash sequence. When K > J and
I = 1, there are 2K−J data sequences corresponding to
the same check sequence (i.e., 2K−J collisions for each
check sequence), which may introduce errors when using
the check sequence to select the path for polar decoder.
Consider I ≥ 2 and K

I > v, then the number of collisions
is 2K/I−J

∏I−1
i=1 2K/I−v = 2K−(I−1)v−J . We can see that

with the increase of I , the number of collisions decreases.
However, the I segments correspond to the I uses of the hash
function, which indicates that the larger I will lead to the
higher computational complexity. Thus, for low complexity
and less collisions, I = 2 segments and r0 = r1 = K/2 are
used for hash-polar codes in this paper. Note that for large ri,
we clamp each segment as a 32-bit unsigned integer ki, where
the clamping method is shown in Appendix-B.

Up to the present, the choice of the optimal value of J is
also an open problem, due to a trade-off between the outer
code length and the FER performance for a given SNR.
In [28], the approximate upper-bound on the decoding error
probability for the J -bit CRC concatenated system is given,
but the bound only holds under the assumption that the
estimation of CRC bits is correct. However, at the receiver,
both information bits and check bits are decoded as unfrozen
bits, leading to the potential decoding errors of check bits.
Motivated by [28], the improved bound is discussed as
follows.
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Assume that the maximum L decoding paths are kept
at each stage, and L = {1, 2, . . . ,L} represents the path
index set. Consider a systematic concatenated polar code and
denote the check sequence s from the outer encoder with
input d by s = 9(d), then the output of the generalized sys-
tematic outer encoder can be written as uA = (d, 9(d)). Let
ûA = (d̂, ŝ) denote the estimate of uA, generated by the polar
decoder. Note that9(d̂) is not necessarily equal to ŝ. Suppose
that `∗ represents the decoding path index corresponding to
the correct data, i.e., d̂[`∗] = d, and γ represents the SNR
over the AWGN channel. Then, let P`∗ (J , γ, `) = Pr{`∗ =
` ∈ L | J , γ } denote the distribution of `∗ for a given
SNR γ and length J , and P9 (J , γ, `) = Pr{ŝ[`] 6= 9(d) |
J , γ, `∗ = ` ∈ L} denote the probability that the check bits
are decoded by polar codes incorrectly when the information
bits are decoded correctly for a given SNR γ and length J .
Proposition 2: For a systematic concatenated polar code

with the undetected error probability 2−J of the outer code,
the probability of decoding error Pe(J , γ ) for a given γ
and J with list size L is bounded by

1−
L∑
`=1

P`∗ (J , γ, `) ≤ Pe(J , γ )

≤ 1−
L∑
`=1

P`∗ (J , γ, `)(1− P9

× (J , γ, `))(1− 2−J )(`−1). (9)

Proof: We prove the left-hand side of (9) first. The
perfect decoding for a finite list algorithm means that the
correct path `∗ ∈ L can always be found correctly for
a given γ . Then, the decoding error probability is equal
to Pr{`∗ /∈ L | J , γ } = 1 −

∑L
`=1P`∗ (J , γ, `). Thus,

1−
∑L
`=1 P`∗ (J , γ, `) ≤ Pe(J , γ ). Nowwe prove the right-

hand side of (9). Assume that the `-th path is the correct path
(i.e., `∗ = `), then it as a correct output requires the correct
decoding of ŝ[`] (for selection) and the perfect error-detection
of the previous ` − 1 paths, simultaneously. Suppose that
`′ ≤ (`−1), which implies that the `′-th path is not the correct
path, i.e., `∗ 6= `′. Let (d̂[`′], ŝ[`′]) denote the estimate from
the `′-th path. We can see that if the check sequence9(d̂[`′])
obtained by the estimate d̂[`′] is not equal to the estimated
check sequence ŝ[`′], then the `′-th pathwill not be selected as
the output, which means that it is a perfect error-detection of
the `′-th path. Thus, consider the error-detection probability
of the `′-th path, we have

Pr{9(d̂[`′])

6= ŝ[`′] | J , γ, `∗ 6= `′}

≥ Pr{9(d̂[`′]) 6= ŝ[`′] | ŝ[`′] = 9(d), J , γ, `∗ 6= `′}

= Pr{9(d̂[`′]) 6= 9(d) | ŝ[`′] = 9(d), J , γ, `∗ 6= `′}

= 1− Pr{9(d̂[`′]) = 9(d) | ŝ[`′] = 9(d), J , γ, `∗ 6= `′}

≥ 1− Pr{9(d̂[`′]) = 9(d) | J , γ, `∗ 6= `′}

≥ 1− 2−J .

Then, according to the two requirements above, the correct
decoding probability of uA is given by

L∑
`=1

Pr
{(

d̂[`], ŝ[`]
)
=
(
d, 9(d)

)
,

`−1⋃
`′=1

{
9(d̂[`′])

6= ŝ[`′])
}
| J , γ

}
≥

L∑
`=1

Pr{`∗ = ` ∈ L | J , γ
}
Pr{ŝ[`] = 9(d) | J ,

γ, `∗ = ` ∈ L}
`−1∏
`′=1

(1− 2−J )

≥

L∑
`=1

P`∗ (J , γ, `)(1− P9 (J , γ, `))(1− 2−J )(`−1).

Thus, the decoding error probability is upper-bounded by

Pe(J , γ )≤1−
L∑
`=1

P`∗ (J , γ, `)(1−P9 (J , γ, `))(1−2−J )( −̀1).

�
Note that the bound holds for any systematic concatenated

polar codes, in which the undetected error probability of
the outer code is 2−J . The distribution of P`∗ (J , γ, `) and
P9 (J , γ, `) can be obtained via the Monte-Carlo method
(without concatenating the outer encoder, due to the assump-
tion that the undetected error probability of the outer code
is 2−J , when the estimation of check bits is correct),
in which the effective code rate of the single polar code
is K+J

N , i.e., K + J bits are decoded as unfrozen bits at the
receiver. Taking into account the advantage of hash-polar
codes with flexible numbers of check bits, the adaptive hash-
polar codes can be obtained according to the upper-bound
in Proposition 2, where J can vary with different SNRs. It is
worth noting that all check sequences with the varied J
are obtained from the same output state SI . In this paper,
we assume that the varied J for each SNR is known for both
the transmitter and the receiver.

C. EXAMPLES OF HASH-POLAR CODES
Two examples of hash-polar codes are provided in this
section. In all simulations, BPSK signaling over the
AWGN channel is assumed. All codes are constructed by the
GA method at −1.59 dB.
Example 1: Consider hash-polar codes with code rates

R = 1/2 and R = 1/4 for K = 32. Fig. 3 shows the
FER performance of hash-polar codes along with compara-
ble CRC-polar codes, where the performance with different
numbers of check bits are also compared. For all schemes,
the decoding list size L = 8. Let gJ (x) denote the generator
polynomial of J -bit CRC. Then, g4(x) = x4 + x + 1 and
g6(x) = x6 + x5 + x2 + x + 1 are used corresponding
to CRC-4 and CRC-6, respectively. In addition, the pro-
posed upper-bounds for different numbers of check bits J are
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FIGURE 3. Performance comparison between hash-polar codes and
CRC-aided polar codes with K = 32 over the AWGN channel.

also given. The P`∗ (J , γ, `) and P9 (J , γ, `) are obtained by
the Monte-Carlo method for each SNR.

It can be seen that whatever the number of check bits
is 4 or 6, the simulated FER performance of both hash-polar
codes and CRC-polar codes can match the upper-bounds as
shown in Fig. 3. From the upper-bound, it can also be seen
that, for the same K , the optimal number of check bits is
different for the different R. Furthermore, for the case of
R = 1/4, we can see that the optimal number of check bits
is 4 at low SNR, whereas the optimal number of check bits
is 6 at high SNR. Thus, for further improvement of the error-
correcting performance, it is necessary to apply an adaptive
outer coding scheme.
Example 2: In Fig. 4, the performances of hash-polar codes

and CRC-aided polar codes with R = 1/2 are compared,
where the number of check bits is selected according to the
upper-bound. For K = 128, the performance of CRC-aided
polar codes with 8 check bits taking fromCRC-32 is also con-
sidered and labeled by ‘‘CRC-8(32)’’ in Fig. 4. Furthermore,
the performance of adaptive hash-polar codes with R = 1/2
is also given, where the maximum numbers of check bits are
8 and 12 for K = 128 and K = 512, respectively. Moreover,
as a reference, the performance of randomized polar subcodes
proposed in [26] with L = 32 is also given, where the
number of check bits (i.e., the number of type-A dynamic
freezing constraints in [26]) is 10. The related parameters for
the remainder of those schemes are exhibited in Table 1.

Although the undetected error probability of both the
J -bit hash-polar code and CRC-polar code are lower
than 2−J [35], we can see from Fig. 4 that the hash-polar
codes outperform CRC-polar codes when L = 128, which
indicates that hash-polar codes have better check ability
than CRC-polar codes and can perform well for the path
selection. It is worth noting that the traditional CRC-32
check sum cannot be used to CRC-aided polar codes with
‘‘CRC-8(32)’’ at the receiver. Instead, for selecting paths,
the estimated information sequence should be encoded
by CRC-32, resulting in a 8-bit computed check sequence,

FIGURE 4. Performance comparison among hash-polar codes, adaptive
hash-polar codes, polar subcodes and CRC-aided polar codes with
R = 1/2 over the AWGN channel.

TABLE 1. Related parameters for example 2.

which will be compared with the estimated check sequence,
requiring 8 operations for a comparison. However, hash-polar
codes only need to compare a clamped output state 2(SI )
with low computational complexity. In addition, the adaptive
hash-polar code with K = 512,L = 32 can provide up
to 0.12 dB gain for Eb/N0 < 2 dB and 0.2 dB gain for
Eb/N0 > 2 dB with respect to the optimal outer code length-
based CRC-polar code, and 0.15 dB gain compared to the
polar subcode at FER=10−5, which reflects the necessity
of flexible outer code lengths for finite-length concatenated
polar codes.
Remarks: From the above examples, we can see that,

compared with CRC-polar codes, hash-polar codes have the
following advantages:
• For the same number of check bits, similar performance
can be exhibited with a small list size, and better perfor-
mance can be obtained with a large list size.

• More flexible numbers of check bits (corresponding
to flexible outer code lengths) can be obtained, where
only one hash encoder is required, while for CRC-polar
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codes, different generator polynomials, i.e., different
encoders, are required.

• With the advantage of clamping, the number of addi-
tions, shifts, and XOR operations of the hash encoder
are only related to the number of segments and not
related to the input length, while for CRC-polar codes,
those operations of CRC encoder are related to the input
length.

IV. PARTIAL HASH-POLAR CODES
It is known that outer codes play two roles in improving
the performance of polar codes. For one thing, outer codes,
such as CRC codes, can increase the minimum Hamming
distance or improve the code-weight distribution [36] (unfor-
tunately, for nonlinear hash-polar codes, it is hard to analyze
the minimum Hamming distance); for another thing, they
help the list decoder to select the most likely estimate from
decoding candidates. At high SNRs, the correct path is always
contained with a large probability in the candidate-list, and it
will be found by the outer code among the paths who pass
the check. If the estimations of check codes are correct, low
collisions should be ensured to find the correct path success-
fully. In this section, partial hash-polar codes are proposed to
improve the FER performance at high SNRs, where partial
information bits are fed into the hash function to reduce the
collisions.

A. ENCODING AND DECODING OF PARTIAL
HASH-POLAR CODES
The partial hash-polar encoder is shown in Fig. 5. Assume
that Ã ⊆ A′ denotes the index set of partial information
bits, where A′ ⊆ A with |A′| = K denotes the information
set excluding the indexes of check bits. Partial information
bits d′ are chosen from the source sequence d according to
the subset Ã. Similar to the use of termination processing
for convolutional structure codes to improve the reliability,
partial information bits d′ are encoded successively twice by
the hash function, where the other input for the first hash
function is a known hash state S0, and for the second hash
function is the output of the first hash function. Similarly,
the output of the second hash function S2 is converted into
a J -bit hash state sequence s as the check of the (partial)
information sequence d. We regard the sequence u = (d, s) as
the output of the partial hash encoder, and then it is encoded
by a polar encoder. The key point of the partial hash encoder
is to construct the subset Ã appropriately, i.e., to ensure that
all estimated information bits on the selected path are correct,
when the path is selected among the paths whose estimated
bits belong to the subset can pass the check.

Consider polar codes without outer codes. It is well known
that the minimum Hamming weight of polar codes is equal
to the minimum row-weight ofGNA′ , whereGNA′ consists of
the rows, the index of which belongs to the setA′. We can see
that if the information set changes, the matrix GNA′ and the
minimum row-weight Wr will also change. Li et al. [6], [37]
and Bioglio et al. [38] found that the performance of

FIGURE 5. Partial hash-polar encoder.

finite-length polar codes was dominated by the minimum
Hamming distance, and the performance could be improved
by improving the minimum Hamming distance to 2Wr
via constructing the GNA′ based on Reed-Muller codes.
The improvement suggests that both code construction
(i.e., bit-channel reliabilities) and row-weights (which equal
Wr or 2Wr ) can be considered for the set Ã. The specific
construction of the set Ã can be obtained as follows.
Step 1:Compute the i-th row-weight ofGNA′ by Lemma 1,

where i ∈ A′.
Step 2: Find the minimum row-weight Wr among |A′|

row-weights.
Step 3: If the i-th (i ∈ A′) row-weight equals Wr or 2Wr ,

let the i belong to the set Ã.
Lemma 1: The i-th (1 6 i 6 N = 2n) row-weight of

the generator matrix GN is 2x(ĩ), where x(ĩ) =
∑n

j=1 xj, and
{xj ∈ {0, 1}, 1 ≤ j ≤ n} represents the binary expansion
of ĩ = i− 1.

Proof: This lemma has been proved in [39]. �
According to the Ã, the partial hash encoder works.

We note that the number of collisions for partial hash-polar
codes is 2|Ã|−v−J , where |Ã| ≤ |A′| = K (generally,
|Ã| < |A′|). Thus, the coding gain may be obtained at
high SNRs. Similar to the hash-aided SCL decoder, the partial
hash-aided SCL algorithm can be used, where the decoder
outputs the most likely decoding path with the smallest path
metric by (7) among the paths whose states equal the output
of the partial hash encoder.

B. EXAMPLES OF PARTIAL HASH-POLAR CODES
Two examples of partial hash-polar codes are provided in
this section. In all simulations, BPSK signaling over the
AWGN channel is assumed. All codes are constructed by the
GA method at −1.59 dB. The number of check bits J = 8 is
applied to all schemes and the generator polynomial
of CRC-8 is the same as that in Fig. 3.
Example 3: Error-correcting performance comparison

among partial hash-polar codes, hash-polar codes, and
CRC-polar codes with different code rates are shown
in Fig. 6, where the code length N = 256 and the list size
L = 8. From Fig. 6, it can be seen that partial hash-polar
codes outperform both the hash-polar codes, and CRC-polar
codes, especially at high SNRs. Although the coding gain
decreases as the code rate increases, the proposed partial
hash-polar code with R = 2/3 also provides about 0.13 dB
gain compared to the CRC-polar code at high SNRs.
Example 4: In Fig. 7, as a reference, the construc-

tion of the index set Ã based on the lowest bit-channel
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FIGURE 6. Performance comparison among partial hash-polar codes,
hash-polar codes and CRC-polar codes with N = 256 over the
AWGN channel.

FIGURE 7. Performance comparison among partial hash-polar codes, LR
partial hash-polar codes and CRC-polar codes with N = 512 and R = 1/2
over the AWGN channel.

reliabilities (LR) in A′ is considered, where the bit-channel
reliabilities are evaluated by the GA method, and the sub-
set size |Ã| is equal to that in the proposed partial hash-
polar codes. For all schemes, the code length N = 512
and the code rate R = 1/2. From Fig. 7, we can see that
the proposed partial hash-polar codes outperform both the
CRC-polar codes and LR partial hash-polar codes with the
same list size, which indicates that the construction of the
subset Ã based on the low row-weights is more efficient than
that based on the low reliabilities. Fig. 7 also shows that the
coding gain can increase as the list size increases.

V. DESIGN OF HASH-POLAR CODES FOR 5G
As the coding scheme for control information, the codes
are also required to exhibit lower FAR performance and
support ET (for downlink channel) apart from the outstanding
FER performance. In this section, we discuss the design
of hash-polar codes for the eMBB control channel.
It is worth noting that the analysis and results can be
extended to other channels (e.g. ultra-reliable low latency

FIGURE 8. Structure of hash-concatenated polar codes for the blind
detection.

communication (uRLLC) control channel, where only the
FAR target is different [40]).

A. DESIGN OF HASH-POLAR CODES FOR 5G FAR TARGET
In 3GPP LTE and 5G standards, blind detection is used
by the user equipment (UE) to receive control information,
where the UE, by attempting at decoding a set of candidate
locations, identifies if one of the candidates holds its control
information. Typical blind detection solutions for polar codes
can be found in [41]–[43]. Due to the use of blind detection,
low FAR performance is required for coding schemes over the
control channel. According to LTE standard Release 8 [44],
a 16-bit CRC is always applied to protect the information
sequence and masked by a 16-bit radio network temporary
identifier (RNTI). Thus, the scheme that a CRC code is
used in conjunction with a concatenated polar codes are also
considered for 5G control channel. The FAR is defined as

FAR =
Ecrc
Etotal

, (10)

where Ecrc represents the number of the incorrectly decoded
frames which pass the CRC, and Etotal denotes the total
number of the incorrectly decoded frames.

For hash-polar codes, it is not necessary to use a 16-bit
CRC, and we showed that hash-polar codes with a 12-bit
CRC can also work well and satisfy the FAR target in [10].
Assume that a J ′-bit CRC encoder is inserted in front of the
J -bit hash-polar encoder for the blind detection as shown
in Fig. 8. Since the output of the hash function can also
be viewed as a check word, the false alarm rate of hash-
concatenated polar codes can be redefined as

FAR =
Ehash&crc

Etotal
, (11)

where Ehash&crc represents the number of the incorrectly
decoded frames which satisfy the check of the hash function
and the CRC simultaneously.
Lemma 2: The FAR target Pt can be satisfied, if a J ′-bit

CRC encoder is applied for hash-concatenated polar codes
with J ′ ≥ (log2 L − log2 Pt − J ), where J denotes the check
length from the hash encoder.

Proof: The undetected error probability of a J ′-bit CRC
and a J -bit hash sequence are lower than 2−J

′

[35] and 2−J ,
respectively. Thus, the undetected error probability of one
path is lower than 2−(J+J

′), i.e., Pud ≤ 2−(J+J
′). According to

the definition, the false alarm rate Pfar equals the undetected
error probability of L paths, thus, we have

Pfar = 1− (1− Pud)L

≤ L · Pud
≤ L · 2−(J+J

′), (12)
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FIGURE 9. FER and FAR performance of hash-concatenated polar codes
with different list sizes over the AWGN channel.

where Pfar tends to L · 2−(J+J
′), when Pud = 2−(J+J

′) with
2−(J+J

′) tending to 0. Assume that L · 2−(J+J
′)
≤ Pt , then

we have Pfar ≤ Pt and J ′ ≥ (log2 L − log2 Pt − J ). Hence,
the lemma is proved. �
It is worth noting that when J = 0, the code is degraded
to a long CRC-polar code. Furthermore, before the error
detection, only one path is reserved for PC-polar codes [8].
Therefore, the FAR of PC-polar codes is lower than 2−J

′

,
where only CRC is employed for the error detection.
From (12), it can also be seen that the FAR increases with the
increase of L. For lower FAR, it is also an efficient method
that only the Lmax ≤ L most likely paths at the last level are
checked by the hash function and CRC. With the decrease
of Lmax, the FAR will decrease, but the FER will increase.
In order to avoid the loss of error-correcting performance,
we assume that Lmax equals L in this paper.
Example 5: According to LTE standard, for eMBB control

channel, FER target is 10−2, and FAR target is less than
2 × 10−5. For high spectral efficiency, QPSK modulation is
considered for the AWGN channel. In both Fig. 9 and Fig. 10,
the codes are constructed by the GA method at 2.89 dB.

Fig. 9 shows the FER and FAR performance of hash-
concatenated polar codes with different list sizes, where K =
32, J = 9 for codes with L = 8, and J = 10 for codes with
L = 16. For the FAR target, according to Lemma 2, CRC-10
(with g10(x)) is used. It can be seen that all codes can meet
the FAR target with the designed CRC code length J ′.

In Fig. 10, the FER and FAR performance of hash-
concatenated polar codes along with comparable CRC-polar
codes and PC-polar codes are exhibited. Both K = 32 and
K = 80 with R = 1/3 are considered, and the quasi-uniform
puncturing (QUP) scheme presented in [45] is used for rate
matching. The SCL decoding with L = 8 is employed for all
schemes. Thus, for hash-concatenated polar codes, J = 9 and
J ′ = 10 (with g10(x)) are applied. For CRC-polar codes and
PC-polar codes, the CRC-19 (with g19(x) = x19+x18+x16+
x15+ x14+ x13+ x12+ x10+ x9+ x7+ x5+ x3+ x2+ x+1)
and CRC-16 (with g16(x) = x16+x15+x2+1) are employed,

FIGURE 10. Performance comparison among hash-concatenated polar
codes, CRC-polar codes and PC-polar codes with R = 1/3 over the
AWGN channel.

FIGURE 11. Performance comparison between hash-concatenated polar
codes and CRC-polar codes with the parameters in the 5G standards.

respectively. Fig. 10 shows that all codes are able to meet the
FAR target with their critical numbers of check bits, and hash-
concatenated polar codes have similar FER performance to
CRC-polar codes, but outperform PC-polar codes, especially,
when K = 32, about 0.35 dB coding gain can be obtained
at FER=10−2.
Example 6: Recently, the agreement for 5G eMBB uplink

control channel is reached, where the FAR target is 1.5 ×
2−8 for K ≥ 20 and L = 8. In Fig. 11, we compared
our proposed hash-concatenated polar codes with CRC-polar
codes in three code rates, i.e., 1/2, 1/3, 1/6 with K from 20
to 100. All codes are constructed by the sequence required
in [40] with QPSK modulation. The puncturing and shorten
methods proposed in [46] are used for rate matching, and
the interleaver required in [46] is also applied. For the FAR
target, CRC-11 (with g11(x) = x11 + x10 + x9 + x5 + 1)
is applied to the CRC-polar codes, and J = 5 and J ′ = 6
(with g6(x)) are applied to the hash-concatenated polar codes.
Fig. 11 shows that hash-concatenated polar codes also exhibit
outstanding FER performance with the parameters in the
5G standards.
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FIGURE 12. Segmented-hash-polar encoder.

B. SEGMENTED HASH-POLAR CODES FOR 5G
EARLY-TERMINATION REQUIREMENT
In order to reduce the energy consumption per decoding
attempt, the ability of ET is required in the control chan-
nel [30], especially for the downlink channel. For concate-
nated polar codes, the list decoder delivers the message in the
path which satisfies the outer-check. However, if all the paths
in the list fail to pass the check, the decoding is failed, where
the all computations result in energy consumptions. Thus,
the path test can be advanced to terminate the unnecessary
decoding and reduce the computations, when the correct path
is not in the list. To support ET, the check bits should be
scattered within information bits.

1) ENCODING OF SEGMENTED HASH-POLAR CODES
Fig. 12 exhibits the segmented-hash-polar encoder. Similar
to hash-polar codes, the sequence (K + J ′)-bit m is divided
into I non-overlapped segments, i.e.,m = (m1,m2, . . . ,mI).
Suppose that the length of sequencemi is ri, thus,

∑I
i=1 ri =

K + J ′. Then, each segment is delivered into a hash function
h, outputting a Ji-bit sequence si (1 ≤ i ≤ I ), the integer
form of which is denoted by2(Si). Then, each Ji-bit sequence
will be attached to its corresponding segment mi and form a
(K + J ′ +

∑I
i=1 Ji)-bit sequence uA. The obtained sequence

uA is fed into the polar encoder, where the index order of
the information set A is natural, which is different from the
general polar encoder where the order based on reliabilities.
Assume that ai represents the end index of the i-th hash-
sequence in A, and Â denotes the set of ai (1 ≤ i ≤ I ).

2) DECODING OF SEGMENTED HASH-POLAR CODES
Due to the scattered check bits, each decoded segment can
be detected by the hash-sequence for each path. Once the
decoded segment is failed to pass the check, the current path
will be marked. If all paths are marked, the decoding termi-
nation exists. The main segmented hash-aided SCL algorithm
presented by pseudo-code is shown in Algorithm 2.

The error-correcting performance comparison among the
segmented hash-polar codes and the segmentation schemes,
i.e., PSCL-CRC-polar codes, proposed in [47] and [48] with
different numbers of segments I over the AWGN channel is
shown in Fig. 13, where N = 1024, R = 1/2, L = 8,

Algorithm 2 Segmented Hash-Aided SCL Decoder
Input: Received channel probabilities.
Output: Estimated source sequence.

1 Flag← 0, j← 1, ĵ← 1.
2 for i = 1 to N do
3 • Calculate the path metric PMi[·] by (4) and (7).
4 if i ∈ Ac then
5 Set ûi[`] = 0 for all `, and keep all paths.

6 else
7 Sort the path metrics, and reserve the L most

probable paths with PMi[1] < PMi[2] < · · · <
PMi[L] < PMi[·] ∈ {PMi[`], ` ≥ L}.

8 if i ∈ Â then
9 for ` = 1 to L do
10 •Map

{ût [`], t ∈ {A[ĵ], . . . ,A[ĵ+ ri]}} → {k̂j},
and
{ût [`], t ∈ {A[ĵ+ ri], . . . , Â[j]}} → Ŝ.

11 • Compute S̃j with S̃j = h(S̃j−1, k̂j) and
S̃0 = 0.

12 if j == I then
13 if 2(S̃j) == Ŝ then
14 d̂← {ût [`], t ∈

{A[1], . . . ,A[K ]}}.
15 Flag← 1.
16 Break.

17 else
18 if (2(S̃j)) 6= Ŝ then
19 The `-th path is marked.

20 if all paths are marked then
21 The decoding terminates.

22 ĵ← ĵ+ ri + Jj.
23 j← j+ 1.

24 if Flag== 0 then
25 d̂← {ût [1], t ∈ {A[1], . . . ,A[K ]}}.

and the codes constructed by Monte-Carlo method at 2.0 dB.
It can be seen that our proposed segmented hash-polar codes
outperform PSCL-polar codes. Especially, when I = 4, about
0.15 dB and 0.1 dB gain can be obtained by the segmented
hash-polar codes at FER = 10−4 compared with the compa-
rable PSCL-CRC-polar codes in [47] and [48], respectively.

3) ET GAIN
Based on the definition of ET, the ET gain representing the
total saved computation ratio, can be given by [49]

ET gain = Pr{EET} · ηET,

where Pr{EET} and ηET represent the probability of the ET
event and the saved computation ratio from ET, respectively.
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FIGURE 13. Performance comparison among segmented hash-polar
codes and PSCL-CRC-polar codes with different numbers of segments
over the AWGN channel, where J ′ = 0 for all segmented hash-polar codes.

Specifically, let EET represent the number of frames occur-
ring ET, and Efail denote the number of the incorrectly
decoded frames. Then, the probability of the ET can be
computed by

Pr{EET} =
EET
Efail

.

Assume thatNl represents the number of undecoded unfrozen
bits (include check bits) in l-th path. Then, the saved compu-
tation ratio from ET for segmented hash-polar codes is

ηET =
min{Nl, 0 ≤ l ≤ L}

K +
∑I

i=1 Ji + J
′
.

4) SELECTION OF SEGMENT LENGTH FOR FAR TARGET
Except for the supporting of the ET, segmented hash-polar
codes also should achieve the FAR target for the con-
trol channel. For the blind detection and FAR requirement,
a J ′-bit CRC code is also employed to the segmented hash-
polar codes to fulfill the detection. Then, the FAR of seg-
mented hash-polar codes is defined as

FAR =
Ehashs&crc

Etotal
, (13)

where Ehashs&crc represents the number of the incorrectly
decoded frames which satisfy the check of all hash functions
and the CRC simultaneously.
Lemma 3: Assume that the sequence is divided into two

segments. Then,

FAR ≈
L · {Pr{E1} · 2−(J1+J2+J

′)
+ Pr{E2} · 2−(J2+J

′)
}

Pr{E1} + Pr{E2}
,

(14)

where Pr{E1} represents the probability of the error occurring
in the first segment, and Pr{E2} represents the probability of
the error only occurring in the second segment.

Proof: Consider one path. With the definition of Pr{E1}
and Pr{E2}, the probability of frame error is Pr{E1}+Pr{E2}.
There are three cases, when error occurs.

The first one, the error occurs in the first segment
(no matter whether the error exists in the second seg-
ment or not). Then, the error can be detected by all check
bits, thus

FAR(E1) =
Pr{E1} · 2−(J1+J2+J

′)

Pr{E1} + Pr{E2}
.

The second case is that the error occurs only in the second
segment. Since the first hash-function doesn’t work, and the
error can be detected by both the second hash-function and
the CRC. Thus,

FAR(E2) =
Pr{E2} · 2−(J2+J

′)

Pr{E1} + Pr{E2}
.

The last one is that the error occurs among the check bits.
which can also be subdivided into two cases, where the one
is that error only exists in check bits, and another is that error
exists in both the information bits and check bits. For the
case one, the FAR is zero, and for the case two, the FAR is
approximately zero, due to the low probability of passing the
check.

Based on the above, we can obtain that

FAR ≈
Pr{E1} · 2−(J1+J2+J

′)
+ Pr{E2} · 2−(J2+J

′)

Pr{E1} + Pr{E2}
.

Then consider L paths, the lemma is proved. �
Corollary 4: The case can also be extended to I segments,

then

FAR ≈
L ·
∑I

i=1{Pr{Ei} · 2
−(
∑I

k=i Jk+J
′)
}∑I

i=1 Pr{Ei}
, (15)

where Pr{Ei} (1 ≤ i ≤ I ) represents the error occurs in the
i-th segment and no error exists in the previous segments.

In practice, Ji and J ′ are fixed for all rates and code lengths.
The above probabilities are associated with the segment
lengths for

∑I
i=1 ri = K + J ′. Without a proper selection of

each segment length, the FAR requirement may not be satis-
fied for specific SNRs. An off-line length search algorithm is
given by pseudo-code in Algorithm 3, where theMonte-Carlo
method is used to compute Pr{Ei} (1 ≤ i ≤ I ) for (14). Note
that both the initialization algorithm and the search rule are
not unique. For different search rules, the length allocations
are also different. According to the undetected probability
and Corollary 4, the segment length ri may be proportional
to the

∑I
k=i Jk . However, the undecoded unfrozen bits will

decrease as the code rate decreases, which implies that rI
can be small. Thus the coefficient (1+ A− R) is used in the
initialization process, where A is an offset to ensure that the
initialization process works.
Proposition 3: The initialization process in Algorithm 3

works, where all segment lengths ri are always greater than
zero.

Proof: The proof is given in Appendix-C. �
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Algorithm 3 Length-Search Algorithm

1 //Initial the length of I segments

2 J∗←
I∑
i=1

I∑
k=i

Jk , A←
JI
J∗ .

3 for i = 1 to I − 1 do

4 ri← b(K + J ′) ·
∑I

k=i Jk
J∗ · (1+ A− R)c.

5 rI ← K + J ′ −
∑I−1

i=1 ri.
6 Flag← 0, j← I , Count ← 1, t ← 0.
7 //main loop
8 while Flag==0 do
9 •Monte-Carlo method is used to compute all Pr{E}

defined in (15) at specific SNRs, where the source
sequence is encoded by a J ′-bit CRC and I hash
functions, and segmented hash-aided SCL decoder is
also employed.

10 • Calculate the FARs by (15) at specific SNRs.
11 if one of the FARs fails to satify the target then
12 Flag← 0.

13 else
14 Flag← 1.

15 if Flag==0 then
16 if rj > 1 then
17 rj← rj − 1.
18 rj−1← rj−1 + 1.

19 if j > 2 then
20 j← j− 1.

21 else
22 for k = 1 to I − 1 do
23 t ←

∑I−1
k 1.

24 if (Count mod t) == 0 then
25 j← I + 1− k .
26 break.

27 Count ← Count+1.

28 if
∑I

i=2 ri == (I − 1) then
29 Flag← 1.

Consider Lemma 3, we note that if the Pr{E2} is small
enough, the FARwill approach to L ·2−(J1+J2+J

′). This means
that, for given Ji and J ′, the FAR will decrease intensively
with the decrease of Pr{EI }, which suggests that rI should
be small, but smaller rI leads to lower ET gain. Therefore,
in Algorithm 3, the segment lengths rI , rI−1, . . . , r2 decrease
successively until meet the FAR target.
Example 7: Assume that the FAR target is 2 × 10−5, and

QPSK signaling is transmitted over the AWGN channel. The
FER and FAR performance of the proposed segmented hash-
polar (seg-hash-polar) codes with different rates are shown
in Fig. 14, where I = 2, L = 8, J1 = 3, J2 = 7, J ′ = 9
(with g9(x) = x9 + x5 + x4 + x + 1), and K = 80. For

FIGURE 14. Performance comparison between segmented hash-polar
codes and CRC-polar codes and K = 80 over the AWGN channel.

FIGURE 15. Performance comparison among segmented hash-polar
codes with different numbers of segments and DCRC-polar codes with
K = 80 and R = 1/3 over the AWGN channel.

R = 1/2, 1/3, 1/6, the first segment length is determined
by Algorithm 3 as 51, 57, 66, respectively. For comparison,
the FER performance of CRC-polar codes is also given. All
codes are also constructed by the GA method at 2.89 dB and
the QUP scheme is used for rate matching. It can be seen
that, under the FAR requirement, the segmented hash-polar
codes have similar performance to CRC-polar codes, while
supporting ET. We can also see that the computed FARc by
(15) is very close to the simulated FAR as shown in Fig. 14.
Example 8:
In [40], the agreement for eMBB downlink control channel

is also given, where the FAR target is 1.5 × 2−21 for L = 8.
In Fig. 15 and Fig. 16, the error-correcting performance and
ET gain of segmented polar codes and DCRC-polar codes
are compared, respectively, where K = 80, R = 1/3,
and different I and Ji for segment hash-polar codes are also
considered. For the FAR target, CRC-24 (with g24(x) = x24+
x23+x21+x20+x17+x15+x13+x12+x8+x4+x2+x+1)
is applied to the DCRC-polar codes, and J ′ = 12 (with
g12(x)) is applied to the segment hash-polar codes. All codes
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TABLE 2. Computed FAR of Seg-hash-polar in Example 8.

FIGURE 16. ET gain comparison among segmented hash-polar codes with
different numbers of segments and DCRC-polar codes with K = 80 and
R = 1/3 over the AWGN channel.

are constructed by the required sequence in [40] with QPSK
modulation, and the method in [46] is used for rate matching.

From Fig. 15 and Fig. 16, we can see that, similar per-
formance can be approached among segmented hash-polar
codes with different I and Ji and DCRC-polar codes. For
segmented hash-polar codes, the ET gain increases as the
number of segments I increases. In addition, more ET gain
can be obtained for segmented hash-polar codes compared
with DCRC-polar codes. Due to the fact that the FAR is too
low that cannot be simulated, the computed FARc is shown
in Table 2. From Table 2, we can also see that segmented
hash-polar codes by the given length allocations can meet the
FAR requirement.

VI. CONCLUSION
A kind of concatenated polar codes named hash-polar codes
has been proposed, where a hash encoder is used as an outer
encoder for the flexible outer code length. It has illustrated
that, under the 5G FAR requirement, the proposed hash-
polar codes can obtain similar error-correcting performance
to CRC-polar codes and outperform the PC-polar codes.
By considering the collisions, partial hash-polar codes have
been constructed based on low row-weights to improve the
error-correcting performance at high SNRs. Furthermore,
in order to support ET for 5G control channel, segmented
hash-polar codes have been presented, where the ET gain
can increase with the increase of the number of segments.
Simulation results show that the proposed hash-polar codes

and their variations can satisfy the requirements for the trans-
mission of 5G control information, i.e., low FER and FAR
performance and supporting ET.

A. ‘‘ONE-AT-A-TIME’’ HASH FUNCTION
The improved ‘‘one-at-a-time’’ hash function presented by
pseudo-code is shown in Algorithm 4, where the parameters
a, b, and hs are 32-bit unsigned integers. The operations
‘‘<<’’ and ‘‘>>’’ represent left and right shifts, respectively.

Algorithm 4 Hash_Function
Input: a, b (two 32-bit unsigned integers)
Output: hs (a 32-bit unsigned integer)

1 hs← 3321836253 XOR b
2 for i = 1 to 4 do
3 hs← hs + a
4 hs← hs + (h << 10)
5 hs← hs XOR (hs >> 6)
6 a← a >> 8

7 hs← hs + (hs << 3)
8 hs← hs XOR (hs >> 11)
9 hs← hs + (hs << 15)

Algorithm 5 Clamping
Input: di, ri
Output: ki (a 32-bit unsigned integer)

1 t1← (ri − 1)/32+ 1, t2← 31, t3← 232 − 1,
count ← 1, ki← 0.

2 for i = 1 to t1 do
3 if i == t1 then
4 t2← (ri − 1) mod 32.

5 for j = 0 to t2 do
6 if di[count] 6= 0 then
7 ki← (ki + (1 << j)) mod t3.

8 count ← count + 1.

B. CLAMPING METHOD
Let the binary sequence di correspond to the i-th seg-
ment, and di[j] (1 ≤ j ≤ ri) represent the j-th element
in di. The clamping method is described using pseudo-code
in Algorithm 5.
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C. PROOF OF PROPOSITION 3
When R tends to 1, 0 < ri = b(K + J ′) ·

∑I
k=i Jk
J∗ · Ac for all

1 ≤ r ≤ I − 1. Due to the fact that

I−1∑
i=1

I∑
k=i

Jk

J∗ =
J∗−JI
J∗ < 1 and

A = JI
J∗ < 1, then it is obvious that rI > 0.

When R tends to 0, 0 < ri = (K+J ′) ·
∑I

k=i Jk
J∗ · (1+A)c for

all 1 ≤ r ≤ I−1. Then, rI = (K+J ′)(1−

I−1∑
i=1

I∑
k=i

Jk

J∗ ·(1+A)) =
(K + J ′)(1− J∗−JI

J∗ ·
J∗+JI
J∗ ) = (K + J ′)( JIJ∗ )

2 > 0.
Thus, the initialization process works. �
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