
Received December 29, 2018, accepted January 7, 2019, date of publication January 14, 2019, date of current version February 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2892797

Modeling Fault Propagation Paths in
Power Systems: A New Framework
Based on Event SNP Systems With
Neurotransmitter Concentration
TAO WANG 1,2, (Member, IEEE), XIAOGUANG WEI 3, TAO HUANG 1,2,4, (Member, IEEE),
JUN WANG 1,2, HONG PENG 5, MARIO J. PÉREZ-JIMÉNEZ 6,
AND LUIS VALENCIA-CABRERA6
1School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
2Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China
3School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610039, China
4Department of Energy, Politecnico di Torino, 10129 Turin, Italy
5School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
6Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, University of Sevilla, 41012 Sevilla, Spain

Corresponding author: Tao Huang (tao.huang@polito.it)

This work was supported in part by the National Natural Science Foundation of China under Grant 61703345, Grant 51877181, and
Grant 51607146, in part by the Key Fund Project of the Sichuan Provincial Education Department under Grant 18ZA0459, in part by the
Key Scientific Research Fund Project of Xihua University under Grant Z17108, and in part by the Young Scholars Reserve Talents Support
Project of Xihua University.

ABSTRACT To reveal fault propagation paths is one of the most critical studies for the analysis of
power system security; however, it is rather difficult. This paper proposes a new framework for the fault
propagation pathmodelingmethod of power systems based onmembrane computing.Wefirst model the fault
propagation paths by proposing the event spiking neural P systems (Ev-SNP systems) with neurotransmitter
concentration, which can intuitively reveal the fault propagation path due to the ability of its graphics models
and parallel knowledge reasoning. The neurotransmitter concentration is used to represent the probability
and gravity degree of fault propagation among synapses. Then, to reduce the dimension of the Ev-SNP
system and make them suitable for large-scale power systems, we propose a model reduction method
for the Ev-SNP system and devise its simplified model by constructing single-input and single-output
neurons, called reduction-SNP system (RSNP system). Moreover, we apply the RSNP system to the IEEE
14- and 118-bus systems to study their fault propagation paths. The proposed approach first extends the
SNP systems to a large-scaled application in critical infrastructures from a single element to a system-wise
investigation as well as from the post-ante fault diagnosis to a new ex-ante fault propagation path prediction,
and the simulation results show a new success and promising approach to the engineering domain.

INDEX TERMS Spiking neural P system, membrane computing, fault propagation path, fault propagation
relationship, power system.

I. INTRODUCTION
Membrane computing (P systems) [1]–[3] is one of the impor-
tant lines of artificial intelligence (AI) and aims at taking
ideas for computing from the structures and the function-
ing of living cells as well as tissues or higher order struc-
tures organized by the cells. There are, basically, three main
types of P systems: cell-like P systems [4], [5], tissue-like
P systems [6]–[8] and neural-like P systems [9]. In the past
decades, the research on neural-like P systems, in the frame-
work of membrane computing, mainly focused on spiking

neural P systems (SNP systems) [10]–[12], where the specific
type of cells from which we took inspiration were the spiking
neurons. Generally speaking, the SNP systems are a kind of
distributed and parallel neural computing devices motivated
by the behavior of neurons transferring information with each
other by identical electric impulse (spikes) [12], [13].

The SNP system aims at incorporating specific ideas from
spiking neurons into membrane computing and are consid-
ered as a combination of spiking neural networks (SNNs) and
P systems. Thus, the SNP systems have the characteristics of
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spiking neurons, P systems and SNNs, which makes the SNP
systems suitable for dealing with practical engineering prob-
lems with desirable performance [14], such as combinatorial
optimization problems [15], image processing [16], intru-
sion detection [17], knowledge representation and reason-
ing [18]–[21], fault diagnosis [22]–[28], etc. Among them,
the research about fault diagnosis has been the hottest topic
with increasing fruitful results, and many variants of the
SNP systems were proposed for designing the SNP system-
based fault diagnosis methods of different power systems,
including the modeling method for electric locomotive sys-
tems [23], the fault section estimation method for traction
power supply systems of high-speed railways [24], the fault
equipment diagnosis method for metro traction power sys-
tems [25] and the fault diagnosis methods for electrical power
systems [26]–[28], especially from a fuzzy perspective [29].

Although these research works advanced the development
of the SNP system-based fault diagnosis methods for power
systems, weak points w.r.t. both the SNP system models and
the related applications have been observed after intensive
studies:

1) Even the models can diagnose faults, but they cannot
reveal the mechanism of the fault propagation and can only
focus on a single element after a failure. The SNP system-
based model is built for each suspicious element, which
cannot macroscopically reveal the failure propagation mech-
anism of the whole power network before a fault.

2) The solution is still derived by manual reasoning pro-
cedure and is difficult to be computerized due to the drasti-
cally increased complexity of the logic relationships among
all power elements and the associated protections with the
growth of the system size.

3) The models have very limited topological flexibility
thus cannot easily be applied to emerging power systems,
characterized by high penetration of renewable and dis-
tributed generation, a large number of connected micro-grids,
highly integrated multi-energy systems, etc., which require
demanding topological flexibility of the models for fault
diagnosis.

Therefore, it is essential to have a new framework that
can take full advantages of the SNP system while extending
its flexibility and applications to a larger and more complex
system.

On the other hand, modeling fault propagation paths is a
vital application which forms the fundamental basis for all
security related analysis and guarantees the secure operation
of the power system, including revealing fault propagation
mechanism, analyzing weaknesses of the system, applying
suitable countermeasures, etc. Methods for analyzing the
dynamic characteristics of power systems, such as oscil-
lations and transients, angular stability, frequency stability,
via some real-time simulation platforms, have been focused
in [30]–[33]. The dynamicmethodsmainly study the transient
propagation process of fault propagation paths and focus on
the fault features of electronic or rotating devices over time.
Therefore, the dynamic methods can accurately reveal the

operational characteristics of components under contingency
within short time, especially under a couple of minutes.

However, the dynamic methods are not suitable for study-
ing the fault propagation paths of complex large-scaled sys-
tems over long time due to the high complexity of calculation.
Therefore, static methods are widely employed to analyze the
fault propagation paths due to its efficiency, simplicity and
scalability [34]–[37]. In general, the static methods use the
power flow results to study the overload in lines of the system
with statistical/probabilistic methods to model the fault prop-
agation paths. The ideas are that the fault characteristics of
components, such as, lines, protections, etc., are regarded as
satisfying some certain distributions and thus the statistical/
probabilistic models such as, Markov chain [38], [39],
Monte Carlo [40], can be adopted to analyze the fault propa-
gation characteristics.

Besides the pure power system analysis methods, the com-
plex network theory, especially suitable for large-scaled
grids, is also one of the popular static methods. For instance,
the OPA [41]–[43] and CASCADE [44], [45] models are
proposed to analyze the self-organized criticality of grids.
In addition, by analyzing some statistical indices of complex
network from the perspective of topological structures of
electrical networks, many electrical networks are proved to
be small-world networks [46], [47]. It indicates that when
one or more components fail, the faults can fast spread to
other components due to the features of high clustering coef-
ficient and short characteristic path of small-world networks.
Further, many studies demonstrate that the electrical net-
works also have scale-free features [48], [49], which indicates
that the networks are vulnerable under deliberate attacks but
robust under random attacks.

Although complex network theory has an advantage to
model large-scale grids, the theory mainly focuses on the
topological structure of girds and many studies neglect the
operational and physical features to some extent. To reveal
features in different fault operations, propagation graphs,
such as, cascading fault graph [49]–[51], risk graph [52],
influence graph [53], [54] and interaction graph [55], [56],
are employed to analyze the fault propagation relationships
among lines and propagation paths of fault. These approaches
investigate the occurrences of different paths involved in the
fault propagations by simulating several cascading events.
Particularly, the propagation graphs not only consider topo-
logical features but also the physical and operational features,
thus provide a valuable research prospect.

However, all of the above-mentioned approaches are deriv-
ing the fault propagation paths from the entire system point
of view without considering many detailed aspects of the
element; therefore, sometimes it cannot reflects the real reac-
tions of each element in the network, especially their response
against the propagated fault. Furthermore, the traditional
methods are based on the reductionism, thus the non-linear
reactions, i.e. the complexity and the self-organizational fea-
tures of the entire system have been lost in the modeling
procedure. In addition, the majority of the methods is lack of
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the visualization of the fault propagation, even though some
give holistic system-wise informationwith graphs. Therefore,
a more sophisticated framework for identifying the propaga-
tion paths is needed to better the analysis per se as well as the
final representation of the results with a more intuitive and
vivid fashion.

Among many different modern methods, the SNP systems,
inspired by the neurophysiological behavior of neurons send-
ing electrical impulses (spikes) along axons, is an apt option
to model the behaviors of the study objects at both the system
and element levels. It conceptualizes and computerizes the
real world problem from a holistic way. As each single com-
ponent can be model as a proposition neuron with dedicated
features and functions, the non-linear and complex response
with its peer and the entire system can be captured.

Inspired by the propagation graphs, the SNP systems are
employed to model fault propagation paths in transmission
electrical networks. In the SNP systems, connective relation-
ships among neurons can reflect temporal adjacent infor-
mation; therefore, we can reveal the fault temporal features
among lines by the aid of neurons. The spike can dynamically
imitate the information transfer process; therefore, we can
employ the spike to draw the fault propagation process among
lines of a transmission network. In addition, the SNP systems
have a strong ability of graphical modeling, knowledge rea-
soning and parallel computing, which can reveal the propa-
gation mechanism among lines intuitively and vividly.

To reformulate a new framework based on the SNP system
for studying the fault propagation paths, we propose the
event-spiking neural P systemswith neurotransmitter concen-
tration (Ev-SNP systems) from the perspective of overload
mechanism in electric networks. After improving the Ev-SNP
systems to RSNP systems to reduce the computational bur-
den, two standard benchmarks are used to verify the effec-
tiveness of the proposed models. This paper mainly focuses
on how to employ the SNP system to model fault propagation
paths; therefore, we adopt a general simplified way to study
the propagation mechanism from the perspective of overload
mechanism. The main contributions of this paper are:

(1) Due to the similarity between the spike transmission
among different neurons through synapses and the fault prop-
agation in the power systems, we innovatively model the fault
propagation in the transmission network through the spike
transmission in the SNP system. The Ev-SNP systems with
neurotransmitter concentration are proposed to achieve such
a goal, where the neurotransmitter concentration is employed
to describe the probability and gravity degree of fault prop-
agation among synapses. The higher the concentration is,
the higher the probability is.

(2) Targeted to the untraceable calculation burden of the
Ev-SNP systems, we devise a reduction-SNP system (RSNP
system) to combat the dimension disaster of such system by
constructing single-input and single-output neurons.

(3)We first extend the application of the SNP systems from
a locality to a holism, from a single element to a system-
wise investigation, from the post-ante application to a new

ex-ante framework. This new framework not only can take
full advantages of the SNP system, but also can model large
and complex system with good topological flexibility.

The remainder of this paper is organized as follows.
Section II introduces the definition and computation con-
figurations of the Ev-SNP systems. The RSNP systems are
proposed to model the fault propagation paths in Section III.
In Section IV, the RSNP system is applied to the IEEE
14- and 118- bus systems with the analysis of their effective-
ness. Conclusions are finally drawn in Section V.

II. EVENT-SPIKING NEURAL P SYSTEMS
The SNP system [18] can be viewed as directed graphs
composed of neurons and synapses, where the neurons are
the vehicle for knowledge (information) representation, stor-
age, and calculation while the synapses are used for knowl-
edge (information) transmission. Three important ingredients
including objects, spiking (firing) rules and forgetting rules
are contained in the neurons which can be viewed as vertexes
of the directed graphs. By contrast, the synapses can be
regarded as edges of the directed graphs.

To make the SNP system suitable for modeling fault prop-
agation of power systems, we propose a new variation of the
SNP system based on the works in [27] and [28], called event
spiking neural P systems with neurotransmitter concentration
(Ev-SNP systems).
Definition 1: An event-spiking neural P system with neu-

rotransmitter concentration (Ev-SNP system, for short) of
degree (s, k) with s, k ≥ 1 is a tuple

5 = (A,Q, syn, I ,O) (1)

where
(1) A = {a} is a singleton alphabet (a is called spike and

represents a fault);
(2) Q = {σ1, . . . , σs, σs+1, . . . , σs+k} is a set whose ele-

ments are called neurons.
Qp = {σ1, . . . , σs} is the proposition neuron set. Each

proposition neuron σi (1 ≤ i ≤ s) represents a transmission
line (the i-th line) and is denoted by σpi (the i-th proposition
neuron). It is of the form (εi, ri), where
(a) εi represents an event that the i-th transmission line

corresponding to σpi faults;
(b) ri denotes its spiking (firing) rule of the form

E/a → aεi , being E a regular expression over {a}. The
firing rule ri can be applied if and only if it receives one
spike. For the fault propagation path modeling, it means that
if a proposition neuron receives one spike, then the ri can
be applied and will produce a new spike. This new spike a
indicates that the event associated with the neuron σpi (i.e., εi)
happens, i.e., the i-th transmission line faults.
Qr = {σs+1, . . . , σs+k} is the rule neuron set. Each rule

neuron σs+j (1 ≤ j ≤ k) is denoted by σrj (the j-th rule
neuron) and it can be of two different types: AND-rule neu-
ron (denoted by ⊗-neuron) and OR-rule neuron (denoted
by ⊕-neuron). The rule neuron σrj is of the form (cj, ηj, rj),
where
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FIGURE 1. Neurotransmitter concentration. (a) Illustration of
neurotransmitter in a biosystem. (b) The neurotransmitter concentration
in a simple Ev- SNP system.

(a) cj is a natural number expressing the number of the
presynaptic neurons of σrj;

(b) ηj is a real number in [0, 1] representing the neuro-
transmitter concentration of σrj. For the fault propagation path
modeling, the ηj is used to express the fault propagation prob-
ability among the synapses that connect to the postsynaptic
neurons of σrj, as shown in Figure 1;
(c) ri denotes its spiking (firing) rule of the form

E/a(ε1, ..., εcj ) → aεcj+1 , where ε1, . . . , εcj represent the cj
presynaptic neurons of σrj, respectively, εcj+1 represents the
postsynaptic neuron of σrj and E is a regular expression
over {a}.

For an AND-rule neuron σrj, its firing condition is E = acj .
It means that the firing rule ri can be applied if and only if
it receives cj spikes from its presynaptic neurons at a same
time. For the fault propagation path modeling, it means that
if a⊗-neuron receives cj spikes, then the ri can be applied and
will produce a new spike. If this new spike a is transmitted to a
postsynaptic proposition neuron, then the new spike indicates
that the event associated with the neuron σp(cj+1) (i.e., εcj+1)
will happen with a probability ηj, i.e., the (cj + 1)-th trans-
mission line will fault with a probability ηj. If the new spike
a is transmitted to a postsynaptic ⊕-neuron, then the new
spike indicates that the event εcj+1 can be easily effected
by spikes transmitted from different synapses with different
probabilities.

For an OR-rule neuron σrj, the firing rule ri can be applied
if and only if it receives at least one spike from its presynaptic
neurons. For the fault propagation path modeling, it means
that if a ⊕-neuron receives at least one spike, then the ri can
be applied and will produce a new spike. This new spike a
indicates that the event associated with the neuron σp(cj+1)
(i.e., εcj+1) happens, i.e., the (cj + 1)-th transmission line
faults. It is noted that the neurotransmitter concentration ηj
of an OR-rule neuron σrj is always equal to 1, which demon-
strates that a fault must be propagated to other lines once the
OR-rule neuron is active.

(3) syn = {1, . . . , s + k} × {1, . . . , s + k} provides the
arcs of a directed synapse graph such that (l, l) /∈ syn,

for 1 ≤ l ≤ s+k , and if (s+ j, s+ j′ ) ∈ syn then (s+ j′, s+ j),
/∈ syn for any 1 ≤ j, j′ ≤ k , that is, there is no cycle only
formed by two rule neurons. If (l, l ′) ∈ syn then we say that
neuron σl is a presynaptic neuron of σl′ and we also say that
neuron σl′ is a postsynaptic neuron of σl ;

(4) I ⊆ Qp and O ⊆ Qp are the input (proposition) neuron
set and the output (proposition) neuron set, respectively.

In the Ev-SNP system, the proposition neurons character-
ize the propositions whose knowledge information is carried
by the spikes in the associated proposition neurons. The
rule neurons are employed to reason the proposition neuron
information and then generate a new spike transferred to
one or more postsynaptic neurons. Each rule neuron has
associated a presynaptic neuron set (whose elements can be
proposition neurons or rule neurons) and a postsynaptic neu-
ron set (whose elements can be proposition neurons or rule
neurons). At any instant, a proposition neuron contains one
spike and a rule neuron can have two different states: active or
inactive.

A configuration Ct of an Ev-SNP system at an instant t
is a s + t-tuple, i.e., n1,t , . . . , ns,t ,m1, . . . .,mk , describing
the number of spikes ni,t associated with proposition neuron
σpi at that moment together with the state mj ∈ {0, 1}
(active/inactive) of each rule neuron σrj at instant t . The initial
configuration C0 is given by the number of spikes initially
associated with each proposition neuron encoding the input
information, and all rule neurons are initially inactive.

Let us consider an AND-rule neuron σrj with α presynaptic
neurons and β presynaptic neurons. If the neuron σrj receives
exactly α spikes from its presynaptic neurons at an instant t ,
and all presynaptic neurons are active at that moment t , then
the state of σrj becomes active. If the state of σrj is active at the
instant t , then it will produce one spike into each postsynaptic
neuron at the instant t+1 and the state of σrj becomes inactive
at that moment.

Let us consider an OR-rule neuron σrj with α presynaptic
neurons and β presynaptic neurons. If the neuron σrj receives
at least one spike from its presynaptic neurons at an instant t ,
then the state of σrj becomes active. If the state of rule neuron
σrj is active at the instant t then it will produce one spike into
each postsynaptic proposition neuron at the instant t + 1 and
the state of σrj becomes inactive at that moment.

Given an Ev-SNP system5, we denote C ⇒ 5C′ meaning
that configuration C yields to configuration C′ in one tran-
sition step by applying the rules in the proposition neurons
and the active rule neurons in C. A configuration is a halting
configuration if no rule of the system is applicable and all rule
neurons are inactive. A computation is a (finite or infinite)
sequence of configurations such that: (1) the first term of the
sequence is the initial configuration of the system; (2) each
non-first term of the sequence is obtained from the previous
configuration by applying spiking rules of the system in a
maximally parallel manner with the restrictions previously
mentioned; and (3) if the sequence is finite (called halting
computation), then the last term of the sequence is a halting
configuration.
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All the computations start from an initial configuration and
proceed as stated above; and only halting computations give
a result, which is encoded by the spikes present in the output
neurons from O associated with the halting configuration.

III. ANALYSIS OF FAULT PROPAGATION
PATHS USING THE SNP SYSTEMS
A. GENERATION OF FAULT PROPAGATION PATHS
In electric transmission networks, the trip of one or more lines
will cause load redistribution in the entire network, which
may lead to other lines overloaded, i.e. the flow over a line
exceeds its capacity. Therefore, a fault propagation path can
be described from the perspective of the overload mechanism
as a set of overloaded lines that are tripped in turn due to the
load redistribution. It should be noted that although the power
flow over the network is complex power; however, the main
transmitted power is the active part and the reactive is more
related with a local problem. Therefore, in this paper, we use
DC model to simplify the over load procedure.

FIGURE 2. Distribution function of an element tripping probability.

1) CANDIDATE LINES
we employ a probabilistic model to represent the tripping
probability of a single element. The selected candidate lines,
according to the tripping probability, are listed into the next
contingency set (failure events), and all the lines inside the
set will be tripped in the next step. The distribution function
of the probabilistic model of a single element is shown in
Figure 2.

(1) If the power flow over the line i under the x-th contin-
gency Pix−fo is less than or equal to its limit PiM , then

p
(
Pix−fo ≤ P

i
M

)
= 0 (2)

(2) If Pix−fo is more than or equal to 1.2 times of PiM , then

p
(
Pix−fo ≥ 1.2PiM

)
= 1 (3)

(3) If Pix−fo is in between the aforementioned (1) and (2),
then

p
(
PiM < Pix−fo < 1.2PiM

)
= 5(

Pix−fo
PiM
− 1) (4)

2) POWER REGULATION
when a network component fails, it may cause a power
imbalance; therefore, some measures need to be taken to
adjust the outputs of generators and loads to re-establish a
new power balance of the system. In this paper, we adjust
both generators’ outputs and loads. We use the minimal load
curtailment as the objective (5) and employ the DC-OPF in
every step to adjust the power injection and withdrawal at
each node in the transmission network, if needed:

fx = min1x (5)

s.t. Px = Bxθx (6)

Pmin
h ≤ Phx ≤ Pmax

h , h = 1, 2, . . . ,NG (7)

where 1x represents the load shedding percentage in the
contingency x; Px is the net active power injection; Bx is the
susceptance matrix; θx is the phase angle of bus voltages;
Pmin
hx and Pmax

hx represent the lower and upper bound of the
output of generator h, respectively; Phx represents the output
of generator h during contingency x; NG represents the total
number of generators.

Based on the above models, the generation of fault propa-
gation paths can be described as algorithm 1.

Algorithm 1 Simulation Process of Fault Propagation Paths
Input: Electrical network information
Output: Load shedding, propagation step, the number

of tripped lines.
Begin
Step 1: Initialization: Choose initial fault lines based on

Monte Carlo method.
Step 2: WHILE
Step 3: Power flow calculation: Calculate the power flow

using DC power flow.
Step 4: Overload line detection: Form a set of overloaded

lines. If exists, go to Step 5; otherwise BREAK.
Step 5: Contingency set generation: Apply equations 3 and

4 to the set in Step 4 to define the next contingency
set.

Step 6: Load shedding calculation: Calculate the minimum
load shedding by DC-OPF.

Step 7: Candidate line tripping: Cut off the candidate lines
in the next contingency set.

Step 8: ENDWHILE
End

B. THE SNP SYSTEM-BASED FAULT PROPAGATION
1) FAULT CHAIN
We employ fault chain theory to describe the fault propaga-
tion paths. A fault propagation can be represented as a fault
chain

EFy =
{
L1→ L2→ · · · → LMy

}
(8)

where Lx (x = 1, 2, . . . ,My) represents the set of tripped
lines in the contingency x. Therefore, the set of contingency
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events can be represented as

F =
{
EF1, EF2, . . . , EFY

}
(9)

2) THE Ev-SNP SYSTEM-BASED FAULT CHAINS
For a temporal fault relationship Lx → Lx+1 (x = 1, 2, . . . ,
My − 1) in EFy, take Lx and Lx+1 as the input proposition
neuron set and output proposition neuron set, respectively.
Denote the temporal fault relationship as rx .
Definition 2: The knowledge representation of the afore-

mentioned relationship can be represented as

Lx+1 = Lx ⊗ rx (10)

Define the neurotransmitter concentration wx of the
⊗-neuron as

wx = |Lx+1| /
(∣∣∣EFy∣∣∣ |Lx | |L1|) (11)

where |Lx | is the quantity of tripped lines in the contin-
gency x. |L1| is the quantity of initial fault lines.

∣∣∣EFy∣∣∣ is
the length of the fault chain y. In equation (11), the less of
both

∣∣∣EFy∣∣∣ and |L1| demonstrates the fault chain can be trigger
with higher possibility. Meanwhile, the less |Lx | with more
|Lx+1| demonstrates fault propagation is more gravity from
the contingency x to x+1. The neurotransmitter concentration
wx can reveal the gravity degree that the tripped lines in
the contingency x propagate faults to candidate lines in the
contingency x + 1.

Therefore EFy is described as

LMy = L1 ⊗ r1 ⊗ r2 · · · ⊗ rMy−1 (12)

Definition 3: If Lx ′ ∈ EF1 ∩ EF2 ∩ · · · ∩ EFY ′ (Y ′ ≤ Y ) and
Lx ′ = Lixi ⊗ rx ′ (i = 1, 2, . . . ,Y ′), ⊕-neurons are employed
to describe as

Lx ′ =
[
L1x1 ⊗ r

1
x1 ,L

2
x2 ⊗ r

2
x2 , · · · ,L

Y ′
xY ′
⊗ rY

′

xY ′

]
⊕ rx ′ (13)

According to the definitions 2 and 3, theF can be described
as an Ev-SNP system consisted of proposition neurons and
rule neurons.
Definition 4: If there exist two knowledge representations

Lx+1 = Lx⊗ rx in
∣∣∣EFy∣∣∣, Lx ′+1 = Lx⊗ rx in

∣∣∣ EF′y∣∣∣ (EFy 6= EF′y),
and L′ = Lx+1 − Lx ′+1(Lx ′+1 ⊂ Lx+1), the two knowledge
representations are merged as

Lx+1 ∩ Lx ′+1 = Lx ⊗ rx (14)

In addition, we employ
∣∣∣ EF′y∣∣∣ and ∣∣L′1∣∣ to define the neu-

rotransmitter concentration w′x of the ⊗-neuron as

w′x =
∣∣Lx ′+1∣∣ / (∣∣∣ EF′y∣∣∣ |Lx | ∣∣L′1∣∣) (15)

where Lx ∈ EFy and L′1 ∈
EF′y. Equation (15) is the same

meaning with equation (11) .
Definition 5 If there exist two knowledge representations

Lx+1 = Lx⊗rx in
∣∣∣EFy∣∣∣, Lx+1 = Lx ′⊗rx ′ in

∣∣∣ EF′y∣∣∣ (EFy 6= EF′y),
and L′ = Lx −Lx ′ (Lx ′ ⊂ Lx), the spikes of the L′ cannot fire
the ⊗-neuron; therefore the two knowledge representations
are merged as Lx+1 = Lx ⊗ rx .

C. REDUCTION OF THE Ev-SNP SYSTEMS
Although the Ev-SNP system can properly describe fault
propagation paths, the dimension will become very large,
leading to a difficulty in describing large-scaled power sys-
tems with increasing faults. To reduce the dimension of the
Ev-SNP systems, a reduction-SNP system (RSNP system) is
proposed by using single-input and single-output AND-rule
neuron (⊗-neuron). Thus, equation 10 can be expressed as:

Li = Lj ⊗ r ijx (16)

where Li ∈ Lx+1(i = 1, 2, . . . , |Lx+1|), Lj ∈ Lx(j =
1, 2, . . . , |Lx |).
The neurotransmitter concentration wx of the ⊗-neuron

remains as equation 11.
Definition 5: If there exist Li1 = Lj1 ⊗ r i1j1x1 in EF1, Li2 =

Lj2 ⊗ r i2j2x2 in EF2, . . . ,LiY ′ = LjY ′ ⊗ r
iY ′ jY ′
xY ′ in EFY ′ (Y ′ ≤ Y ,

EF1 6= EF2 6= · · · 6= EFy) and Li1 = Li2 = · · · = LiY ′ and
Lj1 = Lj2 = · · · = LjY ′ , the knowledge representations are
merged as

Li = Lj ⊗ r ij (17)

where Li = Li1 and Lj = Lj1 . The neurotransmitter concen-
tration wij of the ⊗-neuron is

wij = wi1j1x1 + w
i2j2
x2 + · · · + w

iY ′ jY ′
xY ′ (18)

According to the above simplification, the RSNP system
has advantageous characteristics as follows.

(1) The RSNP system avoids employing the OR-rule neu-
ron (⊕-neurons) and its dimension can effectively be reduced,
which enhances the ability of visual modeling and reduces
neurons of the system.

(2) By representing the Ev-SNP system by single-input and
single-output rule neurons, the fault propagation relationship
between single lines in an RSNP system can be highlighted,
which helps to reveal the fault propagation mechanism of
power systems.

(3) Through the simplified yet neat graph generated
by the RSNP system, the modeling process can be more
straightforward.

IV. CASE STUDY
In this section, the proposed model is applied to the IEEE
14-bus and 118-bus systems. The computational work is
conducted in MATLAB, running on a laptop. The laptop
(Compaq, v3646TU) is with Intel R© CoreTM 2 Duo CPU
T7250 @ 2.00GHz CPU, 2.00G RAM, and 64bit windows 7
operating system. We employ the Monte Carlo method to
generate the set of initial contingent events. For each fault
propagation path, no more than three lines are randomly
selected as the initial triggering lines.

A. IEEE 14-BUS SYSTEM
We first employ the Ev-SNP system

∏
1 to model the fault

propagation paths of 20 chains to show modeling mechanism
of the proposed method, as shown in Figure 3. It is noted
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FIGURE 3. Ev-SNP system of 20 fault propagation chains.

that Figure 3 is used to simply show how the Ev-SNP system
would look like in detail with a lower number of simulation,
i.e. Figure 3 is not a ‘‘converged’’ graph with stable propaga-
tion paths. ∏

= (A,Q, syn, I,O)

where
(1) A = {a} is a singleton alphabet (a is called spike and

represent a fault);
(2) Q = {Q1,Q2} is a neuron set, where proposition

neuron set isQ1 = {σ1, . . . , σ13} =
{
σp1, . . . , σp13

}
and rule

neuron set is Q2 = {σ14, . . . , σ30} = {σr1, . . . , σr17}, where
σ14, . . . , σ25 are ⊗-neurons and σ26, . . . , σ30 are ⊕- neuron;
i.e. s = 13, t = 17, m = 30;
(3) syn={(1,23), (2,20), (3,19), (4,21), (4,23), (5,20),

(5,21), (5,25), (6,16), (6,18), (6,19), (7,15), (8,14), (8,23),
(8,24), (9,25), (10,19), (10,20), (10,21), (11,17), (11,22),
(11,24), (14,7), (15,26), (16,26), (17,29), (18,28), (19,30),
(20,30), (21,29), (22,27), (22,28), (23,27), (24,28), (25,12),
(25,13), (26,8), (26,130), (27,5), (28,9), (29,6), (30,11)};

(4) I=
{
σp1, σp2, σp3, σp10

}
, O=

{
σp12, σp13

}
.

It is manifest that the Ev-SNP system can reveal the
fault propagation paths and the ⊗-neuron can indicate the
condition of triggering line faults in the next contingency.
For instance, when lines 5 and 9 (i.e., proposition neurons
σ5 and σ9) are tripped, they emit a spike individually to the
⊗-neuron σ25, leading to the triggering of lines 12 and 13
(i.e., proposition neurons σ12 and σ13). Therefore the tempo-
ral fault propagation relationship among lines can be simply
traced by the Ev-SNP system. In addition, the neurotransmit-
ter concentrations of ⊗-neurons can reflect the possibility of
activating ⊗-neurons. The propagation path σ7 → σ15 →

σ26 → σ8 can be triggered more easily and seriously than
others due to the higher neurotransmitter concentration in
⊗-neuron σ15. Meanwhile, line 11 (i.e., proposition neu-
ron σ11) is more easily affected by a fault because it can

receive spikes from more ⊗- or ⊕- neurons than others. In
addition, it is noted that when a ⊕- neuron has multiple
presynaptic ⊗-neurons, it demonstrates that the event asso-
ciated with the postsynaptic neurons of the ⊕- neuron can
be effected by the faults from different propagated paths. For
example, the line 6 (i.e., proposition neuron σ6) has a presy-
naptic ⊕-neuron (i.e., rule neuron σ16), which demonstrates
the line 6 can be affected by a propagated fault from two dif-
ferent combinations: a) line 11 (i.e., proposition neuron σ11)
and b) lines 4, 5 and 10 (i.e., proposition neuron σ4, σ5, σ10).

Although the Ev-SNP system can reveal the fault propaga-
tion paths, the dimension of the Ev-SNP system becomes very
highwith the increasing of simulated events (i.e. fault chains);
therefore, themodeling of the Ev-SNP system is very difficult
for large-scaled networks. On the other hand, if we reduce
the number of triggering contingent events, the model can-
not comprehensively investigate fault propagation paths and
reveal fault propagation relationships among lines. Therefore,
we further proposed the RSNP system to analyze the fault
propagation paths.

FIGURE 4. RSNP system with 1000 cascading chains.

Figures 4 and 5 give the results of the RSNP system with
1000 and 2000 fault chains, respectively, with ⊗- neurons
omitted for the sake of space. Based on the neurotransmitter
concentration w of ⊗- neurons, the fault propagation rela-
tionships among lines can be divided into four levels: very
high risk (w ≥ 0.5), high risk (0.3 ≤ w < 0.5), moderate
risk (0.1 ≤ w < 0.3) and low risk (w < 0.1). The fault
propagation relationships for the very high risk, high risk and
moderate risk, except 4-5 and 4-10, are the same with 1000
and 2000 fault chains. Therefore, we can assert that when the
simulation reaches 1000 cascading fault chains, themain fault
propagation paths are credibly discovered.

In addition, the fault propagation paths 1-2 and 1-7 are very
high risk, which indicates lines 2 and 7 will fail with high
probability once line 1 fails; therefore line 1 is very high vul-
nerable line that needs prioritized protection. Similarly, line 4
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FIGURE 5. RSNP system with 2000 fault chains.

TABLE 1. Vulnerable lines and fault propagation path in 2000
contingency events.

is also a vulnerable line due to the propagation relationships
among line 4 and other lines. Line 3 is a moderate vulnerable
line, comparedwith lines 1 and 4. Although its risk level is not
very high, it appears in many moderate risk propagation path,
whichmakes it difficult to forecast the propagation in the next
contingency; therefore line 3 should also be closely moni-
tored during the normal operation. In summary, the results
are shown in Table 1.

B. IEEE 118-BUS SYSTEM
To demonstrate the ability of the RSNP system on a large
system, we employ the IEEE 118-bus system to simulate
2000 fault propagation paths, as shown in Figure 6. For the
sake of clarity, only the paths over high risk are given.

There are mainly two groups of paths: small group with
line 71 as the origin of faults and a large group with lines 3, 8,
36, 54, 96, 104, 107 and 108 as the sources of faults. In the
small group, lines 70, 75, 76 and 81 fail with high probability
once line 71 trips. In the large group, lines 36, 54 and 96 can
only spread fault but are not easily affected by a propagated
fault. By contrast, lines 3, 8, 104, 107 and 108 can spread
faults as well as be affected by a fault. In addition, there
are two main propagation paths in the large group: 36-3 and
36-8-(104, 107, 108). Therefore, strengthening the protection
of the lines in the main propagation paths can effectively
reduce or even avoid the fault propagation paths.

FIGURE 6. Fault propagation relationship over moderate risk with
2000 fault chains.

In summary, the Ev-SNP system and its simplified one
(i.e., RSNP system) can reveal the fault propagation mecha-
nism and fault temporal relationships among lines efficiently
and intuitively due to the advantages of the SNP in terms of
graphical modeling and parallel knowledge representations
and logic reasoning.

V. CONCLUSIONS
The fault propagation path identification is fundamental to
the power system analysis and secure operation of it as it
forms the basis of all following countermeasures. To make
the SNP system suitable for modeling fault propagation paths
of power systems, this paper proposes an Ev-SNP system
with neurotransmitter concentration representing the firing
possibility of rule neurons. The Ev-SNP systems can reveal
the fault propagation mechanism of fault propagation paths
and temporal relationship among lines. In addition, the neu-
rotransmitter concentrations of ⊗-neurons are introduced to
reflect the possibility and gravity degree of fault propaga-
tion among lines. Moreover, the RSNP system is proposed
because the original Ev-SNP systems is only suitable for the
set of less contingency events. The proposed RSNP system
can intuitively and effectively identify fault propagation paths
and vulnerable lines.

In this paper, we extended the membrane computing appli-
cation in power systems from a static single local element
fault diagnosis to the dynamic relationship among multiple
elements in a system wide scale. The proposed method has
been successfully applied the SNP system to a large power
system application in terms of investigating the fault propaga-
tion paths through a reasonable abstraction of the protection
scheme of the element in the power systems.

The proposed method has the following advantages over
the previous tools: 1) modeling the problem in such a holistic
and systematic way that the complexity and non-linear feature
can be captured, i.e. the self-organizational and butterfly
effects can be naturally considered in the model; 2) modeling
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the fault propagation through a visualization fashion and
an analogy between the fault propagation in the electricity
grid and the spike transmission in the neuron networks. This
analogy allows us to use the synaptic connections among neu-
rons to describe the logical and temporal relationship among
power equipment, thus the fault propagation can be modeled
as the natural response of a biological system. So, the pro-
posed method has an intuitive illustration based on a strictly
mathematical expression, a good description for the adjacent
fault relationships between branches, and an understandable
graphical model-building process.

In the future, our work is further to develop the software of
SNP systems to analyze the fault propagation characteristics
online of real power networks. In addition, SNP systems
can be improved to model fault propagation paths of large
complex power systems, such as smart grids with distributed
generations, microgrids, etc.
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