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ABSTRACT Recent network research has demonstrated that the performance of convolutional neural
networks can be improved by introducing a learning block that captures spatial correlations. In this paper,
we propose a novel multiple feature reweight DenseNet (MFR-DenseNet) architecture. The MFR-DenseNet
improves the representation power of the DenseNet by adaptively recalibrating the channel-wise feature
responses and explicitly modeling the interdependencies between the features of different convolutional
layers. First, in order to perform dynamic channel-wise feature recalibration, we construct the channel feature
reweight DenseNet (CFR-DenseNet) by introducing the squeeze-and-excitationmodule (SEM) to DenseNet.
Then, to model the interdependencies between the features of different convolutional layers, we propose
the double squeeze-and-excitation module (DSEM) and construct the inter-layer feature reweight DenseNet
(ILFR-DenseNet). In the last step, we designed the MFR-DenseNet by combining the CFR-DenseNet and
the ILFR-DenseNet with an ensemble learning approach. Our experiments demonstrate the effectiveness
of CFR-DenseNet, ILFR-DenseNet, and MFR-DenseNet. More importantly, the MFR-DenseNet drops
the error rate on CIFAR-10 and CIFAR-100 by a large margin with significantly fewer parameters. Our
100-layer MFR-DenseNet (with 7.1M parameters) model achieves competitive results on CIFAR-10 and
CIFAR-100 data sets, with test errors of 3.57% and 18.27% respectively, achieving a 4.5% relative improve-
ment on CIFAR-10 and a 5.09% relative improvement on CIFAR-100 over the best result of DenseNet (with
27.2M parameters).

INDEX TERMS CFR-DenseNet, DenseNet, DSEM, image classification, ILFR-DenseNet,MFR-DenseNet.

I. INTRODUCTION
Traditional image classifications extracted features by
manually-designed or statistical methods [1]–[3]. But the
generalization ability of these methods is weak. In recent
years, Deep learning [4] has been successfully applied in
speech recognition [5], [6] and natural language process-
ing [7], especially computer vision [8], [9]. The DCNNs
have become the dominant machine learning approach for
vision object recognition. More and more DCNNs are being
proposed. A notable trend of these DCNNs is that their archi-
tecture continues to go deeper [10]–[13]. From AlexNet [10]
to the VGG [11] networks as well as the GoogleNet [12], and
the ResNet [13] with more than a thousand layers, both the
accuracy and the depth of CNNs have continued to increase.
To ensure maximum information flow between layers in the

network, DenseNet [14] connects all layers directly with each
other in Dense Block.

DenseNet has compelling advantages: It encourages fea-
ture reuse and alleviates the vanishing gradient problem.
However, it also has obvious shortcomings. First, each layer
simply combines feature maps obtained from preceding lay-
ers by concatenating operation without considering the inter-
dependencies between different channels. We believe that by
improving the model, modeling the feature channel correla-
tion and realizing the channel feature recalibration, the net-
work representation can be further improved. Second, the cor-
relation of the interlayer feature map is not explicitly mod-
eled. It is very helpful to adaptively learn the correlation coef-
ficients by modeling the correlation of feature maps between
the layers.
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FIGURE 1. The two flowcharts represented here give an overview of MFR-DenseNet architecture for classification.
Fig.1(a) is the architecture of CFR-DenseNet. Fig.1(b) is the architecture of ILFR-DenseNet. CFR-DenseNet and
ILFR-DenseNet were combined to form MFR-DenseNet by ensemble learning. The outputs of the last layer of
CFR-DenseNet and ILFR-DenseNet were averaged to obtain the final predicted output.

In order to solve the problems in DenseNet described
in the above paragraph, we presented a novel architec-
ture called Multiple Feature Reweight DenseNet (MFR-
DenseNet), as seen in Fig. 1. First, inspired by SENet [15],
we built the Channel Feature Reweight DenseNet (CFR-
DenseNet) by introducing a Squeeze-and-Excitation Mod-
ule (SEM) after each 3*3 convolutional layer to tackle the
problem of exploiting the channel dependencies, as shown
in Fig. 1(a). In the SEM, each feature map of each layer
obtained a weight through a squeeze and excitation operation.
We improved the representation of the network by explicitly
modeling the interdependencies between channels. Second,
we explicitly performed the interdependencies between the
features of its convolutional layers. We proposed the Dou-
ble Squeeze-and-Excitation Module (DSEM) and built the
Inter-Layer Feature Reweight DenseNet (ILFR-DenseNet)
by adding the DSEM before the 3*3 convolutional layer,
as shown in Fig. 1(b). In DSEM, the output of each layer
generated channel squeeze values and channel weight val-
ues by the first squeeze and excitation operation. Then,
the channel squeeze values and weight values of each layer
were used to generate the feature weight of each layer by
the second squeeze and excitation operation, thereby realiz-
ing the reweight of the interlayer features. Finally, in order
to maximize the advantages of both models, we built the
MFR-DenseNet which combines the CFR-DenseNet and

the ILFR-DenseNet by ensemble learning method. Through
massive experiments on CIFAR-10 and CIFAR-100, our
CFR-DenseNet, ILFR-DenseNet, and MFR-DenseNet
obtained competitive results outperforming DenseNet and
most architecture.

The rest of the paper is organized as follows. Section II
briefly reviews related work for deep convolutional neural
networks. The proposed CFR-DenseNet, ILFR-DenseNet,
and MFR-DenseNet are illustrated in Section III. The opti-
mization of the architecture is described in Section IV. Exper-
imental results and analysis are presented in Section V, which
lead to conclusions presented in Section VI.

II. RELATED WORK
A. DEEPER AND DEEPER CONVOLUTIONAL NEURAL
NETWORKS
A number of deep networks have been proposed.
AlexNet [10] won the 2012 ImageNet competition. This
network represents a major advancement in image classifi-
cation. The VGG-19 [11] network demonstrated the depth
of the network as a key part of improving then architec-
ture performance. GoogleNets [12], [16]–[19] used multiple
scale convolution kernels on a single-layer convolutional
layer to enhance the feature extraction capabilities. With the
deepening of the depth, not all architectures are easy to opti-
mize [20], [21]. In order to ease the training of deep networks,
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Srivastava et al. [22] proposed Highway Networks, which
use a learned gating mechanism to make information flow
across several layers. Subsequently, inspired by Highway
Networks, He et al. proposed ResNets [13], which use a
simple skip connection mechanism to learn the residual
functions.

In order to further explore the representation ability of
DCNNs, more and more variants of residual networks have
been proposed. Targ et al. [23] proposed Resnet in Resnet
(RiR) which combined ResNets and standard CNNs in paral-
lel residual and non-residual streams.Wide residual networks
(WRNs) [24] widened the network by increasing the number
of output channels in the convolutional layer. ResNeXt [25]
improved image classification performance by increasing the
third dimensional–cardinality. To overcome the overfitting
problem, Huang et al. [26] proposed Stochastic Depth resid-
ual networks (SD ResNets), which randomly drop layer sub-
sets and bypass them during training. SD made the training
time drop drastically and the classification performance of the
networkwas significantly improved. Han et al. [27] proposed
pyramid residual network, which gradually increased the
number of channels in order to ensure the continuity of infor-
mation transmission. Zhang et al. [28] proposed the multi-
level residual network (RoR). RoR added level-wise shortcut
connections upon original residual networks to promote the
learning capability of residual networks; then, they built pyra-
mid multi-level residual network (P-RoR) [29] based on the
pyramid residual network.

B. DENSENET FAMILY
To ensure maximum information flow between layers in
the networks, Huang et al. [14] proposed DenseNet which
won the best paper award in CVPR2017. In DenseNet, each
layer obtains additional inputs from all preceding layers and
passes on its own feature maps to all subsequent layers.
Subsequently, for the problem of large memory usage in
DenseNet, Huang et al. [30] proposed CondenseNet. Con-
denseNet reduces memory and speeds up by learning group
convolution operations and pruning during training. ResNets
enable feature re-usage whereas DenseNets enable new-
feature exploration which are both important for learning
good representations. To enjoy the benefits from both net-
works, the dual path network (DPN) [31] family combines
ResNets and DenseNets, which achieves competitive results
in image classification, object detection, and semantic seg-
mentation tasks. Alternately updated clique (CliqueNet) [32]
models incorporate both forward and backward connections
between any two layers in the same block, which maximize
information flow and achieve feature refinement. Each layer
in block is both the input and output of another one, which
means they are more densely connected than DenseNets.

C. ATTENTION MECHANISM
Recently, the attention mechanism has been used to improve
the performance of DCNNs in large-scale classification tasks.
Wang et al. [33] proposed the residual attention network,

which uses multiple attention modules to refine the feature
maps and to improve the learning ability of the network.
Hu et al. [15] proposed a compact module to exploit the inter-
channel relationship. Furthermore, inspired by the squeeze-
and-excitation networks, the Convolutional Block Attention
Module (CBAM) [34] emphasizes meaningful features along
two dimensions: channel and spatial axes. Wang et al. [35]
proposed Non-local Neural Networks which capture long-
range dependencies by non-local operation. Zhang et al. [36]
combinedResNets or RoRmodels with LSTMunits to extract
age-sensitive local regions, which effectively improved age
estimation accuracy. Our MFR-DenseNet recalibrates differ-
ent filters and different layers. It is also a combination of
channel-wise attention and layer-wise attention.

III. METHODOLOGY
In this section, we mainly describe the proposed three
architectures. First, we review DenseNet. then, we detail
the structure of CFR-DenseNet, ILFR-DenseNet, and MFR-
DenseNet.

A. BACKGROUND
To ensure maximum information flow between layers,
the input of each layer is a concatenation of all feature maps
generated by all preceding layers within the same dense block
of DenseNet. Therefore, if the output of the (l − 1)th layer is
recorded as, xl−1; thus, the output of the l th layer is:

xl = Hl([x0, x1, · · · , xl−1]). (1)

where Hl(•) performs a sequence of consecutive transfor-
mations: Batch normalization (BN), followed by a rectified
linear unit (ReLU), and then a convolution(conv). In the rest
of the paper, we use the 3*3 convolutional layer. Each layer
produces 12 features by default.

B. CFR-DENSENET
The input of each convolutional layer in DenseNet is simply
a concatenation of all feature maps generated by all the pre-
ceding layers. We built the CFR-DenseNet by introducing the
SEM, which models the interdependencies between feature
channels. Fig. 2 shows a Dense Block in the CFR-DenseNet
architecture. We added the SEM after each 3*3 convolutional
layer. The network obtains the weight of each feature channel
by automatic learning, and then enhances the useful features
according to the weight, thereby suppressing the features that
are not useful for the current task. The architecture explicitly
models the channel-wise feature recalibration of the convolu-
tional layer.

The output feature maps of each convolutional layer are
first passed through a squeeze operation, which aggregates
the feature maps across the spatial dimensions and turns each
two-dimensional feature map into a channel descriptor. This
is achieved by using global average pooling, where the k th

feature map of the gth layer is recorded as Xg,k and the
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FIGURE 2. A Dense Block in CFR-DenseNet. The image above the big
virtual box is a N-layer dense block. 3*3 denotes the 3*3 convolutional
layer. The image inside the big rectangle shows the input of the N th layer.
The image inside the small rectangle is the squeeze-and-excitation
module (SEM).

squeeze process is calculated by:

X ′g,k = Fsq
(
Xg,k

)
=

1
W × H

W∑
i=1

H∑
j=1

Xg,k (i, j). (2)

where g ∈ {1, 2, · · · ,N − 1} and k ∈ {1, 2, · · · ,C}. This is
followed by an excitation operation, which consists of two
fully connected (FC) layers and generates weight for each
channel. We denote

(
X ′g,1,X ′g,2, · · · ,X ′g,C

)
as the input of

the excitation operation in the gth layer. We can then write the
outputs of the excitation operation in the gth layer:(

X ′′g,1,X ′′g,2, · · · ,X ′′g,C
)

= Fex
(
X ′g,1,X ′g,2, · · · ,X ′g,C

)
= σ (W2δ (W1)). (3)

where X ′′g,k is the weight of the k th channel of the gth layer.
δ is the ReLU function and σ is the Sigmoid function. The
final output is obtained by rescaling the Xg,k with the weight
X ′′g,k , which is calculated by:

X̃g,k = FRe (•) = Xg,k • X ′′g,k . (4)

C. ILFR-DENSENET
The most obvious characteristics of DenseNet is that the
input of the convolutional layer is the output of all the
preceding layers, whereas the structures such as VGGs [4]
and ResNets [6] are stacked by many convolutional layers.
For this particularity, we propose the DSEM, which explic-
itly models the interdependencies of the inter-layer feature.
We built ILFR-DenseNet by adding the DSEM before the
3*3 convolutional layer, as shown in Fig. 3.

In the DSEM, the output features of each layer first
pass through the first squeeze and excitation operation. The
first squeeze and excitation operation method are consis-
tent with the SEM. Each layer will obtain the squeeze
value

(
X ′g,1,X ′g,2, · · · ,X ′g,C

)
and the excitation value

FIGURE 3. A Dense Block in the ILFR-DenseNet architecture. The image
above the rounded rectangular is a N-layer dense block. 3*3 denotes the
3*3 convolutional layer. The image inside the rectangle is the double
squeeze-and-excitation module (DSEM).

(
X ′′g,1,X ′′g,2, · · · ,X ′′g,C

)
of the feature channels. This is

followed by the second squeeze operation. The second
squeeze operation is completely different from the first
one. It squeezes the features of each layer into a layer
descriptor. This is achieved by weighted average the squeeze
value

(
X ′g,1,X ′g,2, · · · ,X ′g,C

)
and the excitation value(

X ′′g,1,X ′′g,2, · · · ,X ′′g,C
)
of the feature channels. We can

calculate it by:

X ′g = Fmw
(
X ′g,k ,X ′′g,k

)
=

C∑
k=1

(
X ′′g,k × X ′g,k

)
C∑
k=1

X ′′g,k

. (5)

where X ′g denotes the squeeze value of the gth layer.
So
(
X ′1,X ′2, · · · ,X ′N−1

)
refers to the squeeze value in lay-

ers 0, . . . ,N − 1. This is followed by the second excitation
operation. The weight value of the 1th, . . . , (N − 1)th layer
can be formulated as:(

X ′′1,X ′′2, · · · ,X ′′N−1
)

= F ′ex
(
X ′1,X ′2, · · · ,X ′N−1

)
= δ (W ). (6)

Then, the final output is obtained by rescaling the feature
maps of each layer with the weights:

X̃g = F ′Re (•) = Xg • X ′′g. (7)

D. MFR-DENSENET
In order to simultaneously explore the correlation of channels
and the interdependencies of inter-layer features, we con-
structed MFR-DenseNet, which integrates CFR-DenseNet
and ILFR-DenseNet by ensemble learning. The MFR-
DenseNet maximizes the advantages of CFR-DenseNet and
ILFR-DenseNet. First, we train and save the CFR-DenseNet
and ILFR-DenseNet models. second, we load the models
and weights. In test, we take an average of predictions (FC)
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FIGURE 4. Two schemes used to integrate the SEM into DenseNet. DB
denotes the Dense Block. Each DB consists of multiple layers.

from two models and use it to make the final prediction
(SoftMax).

IV. OPTIMIZATION OF MODEL
In order to optimize our architecture, we must deter-
mine important principles, such as the training method,
and the most effective position for adding the SEM and
DSEM.

A. HOW TO INTEGRATE SEM INTO DENSENET?
It is important to choose a suitable method to integrate SEM
into DenseNet for a satisfying performance. We propose two
schemes, as shown in Fig. 4. In scheme A, we add SEM to
DenseNet after each convolutional layer, and then concate-
nate the output with feature maps from the preceding layers.
This scheme models the correlation of the channels from
a single convolutional layer and models the correlation of
channels from multi-layers in an implicit manner. In scheme
B, we concatenate the output of a convolutional layer with
the feature maps of all the preceding layers, and then add the
SEM. The scheme models the correlation of channels from
different layers in an explicit way.

Table 1 compares the results (on CIFAR-10) of the two
schemes. As can be observed, scheme A had a 5.01%
(Because all state-of-the-art methods have achieved similarly
small error rates, we used relative percentage to measure
the improvements in this paper.) error and outperformed the
DenseNet by 6% with just 0.9% more parameters. How-
ever, scheme B was only reduced by 0.9% error with five
times more parameters. Therefore, scheme A is more effec-
tive in performing the channel-wise feature recalibration.
In our opinion, the scheme B added too many parameters
on DenseNet, which led to overfitting. On the other hand,
the correlation of channels is relatively weak in different
layers. Learning about the correlation of channels in different
layers does not have much effect on the improvement of
representation power. In the rest of this paper, we use scheme
A in the CFR-DenseNet by default.

TABLE 1. Test error (%) on CIFAR-10 dateset by two channel reweight
schemes.

TABLE 2. Test Error (%) on CIFAR-10 by ILFR-DenseNet with two training
methods.

B. WHAT KIND OF TRAINING METHOD TO TRAIN THE
ILFR-DENSENET?
The choice of training method is critical to the validity of the
models. So we must find a suitable training method for train-
ing the ILFR-DenseNet. We proposed two training methods.
Regarding the first method, we follow the traditional end-
to-end image classification training method. In the second
training method, we need to complete it in three steps. First,
we use the end-to-end method to train the CFR-DenseNet and
save the best model andweights. Second,We load the weights
of the excitation operation saved in the first step into the first
excitation operation of the corresponding convolutional layer
in the ILFR-DenseNet and fix these weights without training.
In the last step, We initialize the weights as in [38] in addition
to the loaded and use the end-to-end method to train the
ILFR-DenseNet.

We conducted experiments on CIFAR-10 with two train-
ing method, and the results are described in Table 2. Both
DenseNet and ILFR-DenseNet are 40-layer networks. In the
ILFR-DenseNet, we only add the DSEM to the last layer
in each Dense Block. ILFR-DenseNet with the second
training method had the best performance. In our opinion,
channel-wise feature recalibration is the premise of inter-
layer feature recalibration. In the second training method, the
ILFR-DenseNet uses the trained parameters of the excita-
tion operation in CFR-DenseNet. Using the second training
method will make the model fit better. So we choose the sec-
ond training method to train the ILFR-DenseNet in the rest of
this paper.

C. WHICH BLOCK OR LAYER TO ADD DSEM?
Table 3 compares a single double squeeze-and-excitation
module (DSEM) added to different layers or blocks of a
40-layer DenseNet. First, in the third row of Table 3,
the DSEM is added to the last layer, the second layer to
last, and the third layer to last in each block of the 40-layer
DenseNet, in that order. Obviously, the test error has achieved
4.83% on CIFAR-10 when we add the DSEM in the last
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TABLE 3. Test error (%) on CIFAR-10 where DSEM is added to different
blocks or layers.

layer. It outperformed the 40-layer DenseNet by 9.4%. There
is a general trend that the models perform worse from the
last layer to the third last layer. One possible explanation is
that the reweight of the features of the preceding layers will
have a negative impact on the subsequent layers in the Dense
Block. Second, in the fourth row of Table 3, we added the
DSEM to three Dense Block. The performance of a DSEM
on Block-1 or Block-2 was worse, but on Block-3, it was
slightly better. Interestingly, it is the most effective method
was determined as a result of the DSEM’s addition to the last
layer. In addition, we found that adding DSEM to different
layers is better than adding to different blocks.We add DESM
to different layers, which means recalibration of inter-layer
features for different size feature maps. And it is sufficient
to provide precise spatial information. In the rest of the tests,
we added the DSEM to the last layer in each block by default.

V. EXPERIMENTS AND ANALYSIS
We empirically demonstrated the effectiveness of
CFR-DenseNet, ILFR-DenseNet, and MFR-DenseNet on
a series of benchmark datasets, CIFAR-10, CIFAR-100.
We then compared them with state-of-the-art network archi-
tectures, especially with DenseNet and its variants.

A. DATASETS AND TRAINING SETTING
The CIFAR datasets consisted of colored natural scene
images, with 32*32 pixels each. The training set and
test set contained 50,000 and 10,000 images, respectively.
CIFAR-10 images are drawn from 10 classes, and the CIFAR-
100 images are drawn from 100 classes. We adopted a stan-
dard data augmentation scheme in our experiments: The
images are first zero-padded with 4 pixels on each side, then
randomly cropped to again produce 32*32 images. Half of
the images are then horizontally mirrored. For data prepro-
cessing, we preprocess the dataset by subtracting the mean
and dividing the standard deviation.

For fair comparison, most of our training strategies fol-
low [10]. The network is trained using stochastic gradient
descent (SGD) for 300 epoches on CIFAR with a mini-
batch size of 64. We use a weight decay of 1e-4, Nesterov
momentum of 0.9. The learning rate starts from 0.1, and is
divided by 10 at 50% and 75% of the training procedure.
We initialized the weights as in [38]. The weights of fully
connected layer were initialized using Xavier initialization.

TABLE 4. Test error (%) on CIFAR-10 and CIFAR-100 by different models.

FIGURE 5. Smoothed test errors on CIFAR-10 and CIFAR-100 by 40-layer
DenseNet and 40-layer CFR-DenseNet during training, corresponding to
results in Table 4. Both the 40-layer CFR-DenseNet on CIFAR-10 (the red
curve) and the 40-layer CFR-DenseNet on CIFAR-100 (the purple curve) is
shown yielding a lower test error than the 40-layer DenseNet.

B. RESULITS
1) CLASSIFICATION RESULTS BY CFR-DENSENET
In this section, we compare the CFR-DenseNet against
the standard DenseNet architecture at different depths. The
performance of the different networks on the test set is
shown in the second row of Table 4 and in Fig. 5. The
40-layer DenseNet resulted in a competitive 5.33% error
on CIFAR-10. The 40-layer CFR-DenseNet had a 5.01%
error and outperformed the 40-layer DenseNet by 6% on
CIFAR-10 with just 0.9% more parameters. The 64-layer
CFR-DenseNet resulted in a 4.51% error on CIFAR-10, and
it outperformed the 64-layer DenseNet by 4.45%. Clearly,
the performance of the 100-layer CFR-DenseNet was similar
to that of the 100-layer DenseNet. We concluded that overfit-
ting will occur if the depth of CFR-DenseNet is increased on
CIFAR-10. On CIFAR-100, the 40-layer CFR-DenseNet, 64-
layer CFR-DenseNet, and 100-layer CFR-DenseNet resulted
in a 24.43%, 22.55%, and 20.27% test error on the test
set, and they outperformed the 40-layer DenseNet, 64-layer
DenseNet, and 100-layer DenseNet by 5.01%, 2.42%, and
2.64%, respectively.
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FIGURE 6. Smoothed test errors on CIFAR-10 and CIFAR-100 by 40-layer
DenseNet and 40-layer ILFR-DenseNet during training, corresponding to
results in Table 4. The 40-layer ILFR-DenseNet on CIFAR-10 (the red curve)
and 40-layer ILFR-DenseNet on CIFAR-100 (the purple curve) are shown
yielding a lower test error than 40-layer DenseNet.

2) CLASSIFICATION RESULTS BY ILFR-DENSENET
The ILFR-DenseNet experimental results on CIFAR-10 and
CIFAR-100 are shown in the third row of Table 4. The
optimization curves for each network are depicted in Fig. 6.
As can be observed, ILFR-DenseNet has a better result
compared with DenseNet on CIFAR-10 and CIFAR-100
with slightly more parameters. Comparing CIFAR-10, with
40-layer DenseNet, the 40-layer ILFR-DenseNet dropped an
error rate of 9.4%. The 64-layer ILFR-DenseNet resulted
in a 4.35% error on the test set, and it outperformed
the 64-layer DenseNet by 7.8%. The performance of the
100-layer ILFR-DenseNet was worse than the 100-layer
DenseNet. We determined that it is easier to get overfitting
when extra parameters are added at the 100-layer DenseNet.
It is gratifying that the 40-layer ILFR-DenseNet, 64-layer
ILFR-DenseNet, and 100-layer ILFR-DenseNet resulted in
a 24.77%, 22.39%, and 20.29% error on the test set, and they
outperformed the 40-layer DenseNet, 64-layer DenseNet, and
100-layer DenseNet by 3.69%, 3.12%, and 2.55%, respec-
tively, on CIFAR-100.

3) CLASSIFICATION RESULTS BY MFR-DENSENET
The CFR-DenseNet and ILFR-DenseNet models extract two
types of features. In order to combine the advantages of
both, we built MFR-DenseNet the network through Ensemble
Learning. The results given in the last row of Table 4 illus-
trate the significant performance improvement induced by
Multiple Feature Reweight when introduced into DenseNet
architectures. The 40-layer MFR-DenseNet had an error
of 4.32% on CIFAR-10, which was superior to the 40-layer
DenseNet, 40-layer CFR-DenseNet, and ILFR-DenseNet
by 18.9%, 13.77%, and 10.56%, respectively. Moreover,
the 40-layer MFR-DenseNet had an error of 21.83% on
CIFAR-100 which was superior to the 40-layer DenseNet,
40-layer CFR-DenseNet, and ILFR-DenseNet by 15.12%,

TABLE 5. Test error (%) on CIFAR-10 and CIFAR-100 by different models.

10.64%, and 11.87%, respectively. Similarly, our 64-layer
MFR-DenseNet model and 100-layer MFR-DenseNet model
dropped the error rate on CIFAR-10 and CIFAR-100 by a
large margin. As the model capacity goes larger, we find that
the performance of MFR-DenseNet improved without over-
fitting. Notably, our 64-layer MFR-DenseNet had a 3.81%
error, which outperformed the 100-layer DenseNet by 7% on
CIFAR-10. And the 64-layer MFR-DenseNet had a 20.54%
error, which outperformed the 100-layer DenseNet by 1.34%
on CIFAR-100. Different models may make mistakes on dif-
ferent training samples. Therefore, combining the twomodels
through an integrated approach will weaken the disadvan-
tages and get a bigger benefit.

4) COMPARISONS WITH STATE-OF-THE-ART RESULTS ON
CIFAR-10/100
Table 5 compares the state-of-the-art methods on
CIFAR-10/100, where we achieved competitive results.
We obtained these results via a simple structure in which no
complicated tricks were used. Notably, MFR-DenseNet out-
perform most previous methods on CIFAR-10 and CIFAR-
100 with significantly fewer parameters. As for our model,
the 100-layer MFR-DenseNet had already achieved a 3.57%
test error on CIFAR-10, which was better than the 3.74%
achieved by DenseNet. Our 100-layer MFR-DenseNet had
an error of 18.27% on CIFAR-100, which was better than
the 19.25% of DenseNet. More importantly, our 100-layer
MFR-DenseNet had only 14.2M parameters, which was
38.5% of DenseNet with 27.2M parameters. It was not only
compatible with DenseNet but also with ResNet and other
kinds of ResNet (Pre-ResNet, ResNet-100 + SD, ResNet in
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ResNet and so on). The performance of our 100-layer MFR-
DenseNet outperformed the Pyramidal RoR + SD(13.3M)
with almost the same parameters on CIFAR-10/100. These
results demonstrate the effectiveness of MFR-DenseNet.

Although some models (Pyramidal RoR + SD, ResNeXt-
29(16×64d), and PyramidSepDrop) can achieve competitive
results and our model accuracy is slightly lower than the
accuracy in Pyramidal RoR + SD, the number of parameters
in these models was too large. Our 64-layer MFR-DenseNet
models with only 5.7M parameters can outperform Pyramid-
SepDrop (28.3M) on CIFAR-10. And our 100-layer MFR-
DenseNet model with only 14.2M parameters can outperform
ResNeXt-29(16× 64d) (more than 68M) on CIFAR-10. Our
100-layer MFR-DenseNet model with 14.2M parameters can
outperform most of the existing methods. Thus, we contend
that a better performance can be achieved by using additional
depths and widths.

VI. CONCLUSION
This paper proposes a new MFR-DenseNet, which improves
the DenseNet performance significantly on CIFAR-10 and
CIFAR-100 for image classification. First, we introduced
the SEM to recalibrate the channel-wise feature responses
and propose the DSEM to model the interdependencies
between the features of convolutional layers. Then, we nat-
urally integrated them through ensemble learning. Through
empirical studies, this work not only significantly advanced
the image classification performance for DenseNet architec-
ture, but also provided information that can challenge other
researchers to improve results for comparable tests in the
future.
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