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ABSTRACT We consider the problem of comparing two complex multivariate random signal realizations,
possibly contaminated with additive outliers, to ascertain whether they have identical power spectral
densities. For clean data (i.e., known to be outlier free), a binary hypothesis testing formulation in frequency-
domain, utilizing the estimated power spectral density matrices, has been proposed in the literature, and it
results in a generalized likelihood ratio test (GLRT). In this paper, we first present an alternative, principled
derivation of the existing GLRT using the asymptotic distribution of a frequency-domain sufficient statistic,
based on the discrete Fourier transform of the two signal realizations. In order to robustify this GLRT in the
presence of additive outliers, we first exploit an existing robust estimator of multivariate scatter to detect
the outliers, and subsequently, to clean the data. The existing GLRT is then applied to the cleaned signal
realizations. The approach is illustrated through simulations. The considered problem has applications in
diverse areas, including user authentication in wireless networks with multi-antenna receivers.

INDEX TERMS Generalized likelihood ratio test, hypothesis testing, multichannel signal detection, multiple
antennas, spectral analysis, wireless user authentication.

I. INTRODUCTION
We consider the problem of comparison of two realizations
(sample functions) of some random signals (time series) to
ascertain if they are realizations of the same random signal.
This is formulated as a binary hypothesis testing problem.
The following applications motivate consideration of this
problem: (i) user authentication for wireless network security
enhancement at the physical layer [1], [2], and (ii) spectrum
sensing (looking for presence/absence of primary users (PUs)
in spectral bands) in cognitive radio (CR) networks (based
on the two-window approach of [3]) [4]. Recent general arti-
cles on comparison of random signals include [5]–[7], and
references therein, where a variety of other applications have
been mentioned: earthquake-explosion discrimination [8],
financial portfolio management, clustering of environmental
data [7], analysis of photometry data [5], and development of
climate reference stations [6]. In [5] and [6], only real-valued
scalar time series is investigated, and in [7] and [8],
real-valued multivariate processes are addressed. In wireless
user authentication at the physical layer [1], [2] and spectrum
sensing based on the two-window approach [3], [4], the data
are complex-valued.

Comparison of complex-valued multivariate random sig-
nals using their power spectral densities (PSDs) has been

investigated in [9] to derive a generalized likelihood ratio
test (GLRT), since the PSDs of the two signals are unknown.
In [10] real-valued scalar signals of unequal lengths have
been considered. In [11] the theory of [9] has been extended
to complex random signals of unequal lengths (sample sizes).

In this paper we robustify the approach of [9] to allow
additive outliers in the data. None of the prior works on com-
paring random signals, including [5]–[7], [9], consider the
case of data contaminated with outliers. It is well known (see,
e.g., [12]–[14]) that a small fraction of outliers (i.e., gross
errors in a small fraction of the observations) when unac-
counted for or not modeled, can dramatically affect the final
result in any statistical inference (estimation or detection)
problem. In the context of comparison of random signals for-
mulated as a binary hypothesis testing problem, outliers can
have a deleterious effect on the power of the test (probability
of detection).

Another contribution of this paper is to derive the GLRT
of [9] in a principled way. Our derivation of the GLRT in
this paper is significantly different from that in [9], where
the starting point is the estimated PSDs of the two signals,
and the frequencies at which the PSDs are estimated, are
picked in an ad hoc fashion. In this paper, we first develop
a frequency-domain sufficient statistic (Sec. II-C), and then
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under certain sufficient conditions ((A1)-(A3) in Sec. II-D),
we derive the GLRT based on the frequency-domain suffi-
cient statistic, in a principled way. The estimates of the two
PSDs follow from the frequency-domain sufficient statistic as
maximum likelihood (ML) estimates, as in (22) of Sec. III.

The paper is organized as follows. In Sec. II, we introduce
notation and state the binary hypothesis testing problem of
interest in this paper. We also develop a frequency-domain
sufficient statistic (Sec. II-C), introduce certain sufficient
conditions ((A1)-(A3) in Sec. II-D) needed later, and review
asymptotic distribution of the sufficient statistic as number
of measurement samples become large. We derive the GLRT
in Sec. III based on the frequency-domain sufficient statistic
and its asymptotic distribution, under the assumption that
data are free of any outliers. Since the GLRT statistic is
the same in this paper and in [9], all other details, such as
analytical threshold calculation via [9, Th. 1] and corrobora-
tion of the theory via simulations, given in [9] apply here as
well. In Sec. IV-A we first introduce the widely used addi-
tive outlier model for the measurements. This model is not
essential to robust processing, but is one of the useful models
frequently used in the literature [12], [13], and is used in our
simulations. Then we review the method of [14] for robust
estimation of multivariate scatter in Sec. IV-B. It is used in
Sec. IV-C for detection of outliers in the two realizations of
the random signals. In Sec. IV-D the detected outliers are
‘‘cleaned’’ via median filtering, or simply clipped. So cleaned
datasets are then used for random signal comparison using
the method of [9], as if the cleaned datasets are the original
datasets. Simulation examples are presented in Sec. V in
support of the proposed approach.

II. PRELIMINARIES AND SYSTEM MODEL
Here we first introduce notation in Sec. II-A, and state the
binary hypothesis testing problem of interest in this paper in
Sec. II-B. Then we motivate a frequency-domain sufficient
statistic in Sec. II-C. Certain reasonable sufficient conditions
are presented in Sec. II-D, for use later in the derivation of
the GLRT. In Sec. II-E we review asymptotic distribution
of the sufficient statistic as number of measurement samples
become large.

A. NOTATION
We use S � 0 and S � 0 to denote that Hermitian (or
symmetric) matrix S is positive semi-definite and positive
definite, respectively. For a square matrix A, |A| and etr(A)
denote the determinant and the exponential of the trace of A,
respectively, i.e., etr(A) = exp(tr(A)), Bij is the ijth element
of matrix B, and Ip is the p × p identity matrix. The super-
scripts ∗, > and H denote the complex conjugate, transpose
and Hermitian (conjugate transpose) operations, respectively,
and E denotes the expectation operation. The set of integers 0
through n is denoted by [0, n]. The sets of real and complex
numbers are denoted by R and C, respectively. The notation
y = O(g(x)) means that there exists some finite real number

b > 0 such that limx→∞ |y/g(x)| ≤ b. For x ∈ Cp,
Re{x} ∈ Rp and Im{x} ∈ Rp denote the real and the
imaginary parts of x.
The notation χ2

n represents central chi-square distribution
with n degrees of freedom. The notation x ∼ Nc(m,6)
denotes a random vector x that is proper complex Gaussian
with mean m and covariance 6, and x

a
∼ Nc(m,6) implies

that x is asymptotically Nc(m,6) as number of measure-
ments tend to∞. The notation

a
∼ applies to other distributions

(χ2, Wishart, etc) as well. Also, for real x, x ∼ Nr (m,6)
denotes a real random vector x that is Gaussian with mean m
and covariance 6. The abbreviations w.p.1. and i.i.d. stand
for with probability one, and independent and identically
distributed, respectively.

B. BINARY HYPOTHESES
We consider two zero-mean, proper, complex multivariate
(dimension p) stationary random signals {x(t)} and {y(t)}with
p× p PSD matrices Sx(f ) and Sy(f ), respectively. Recall that
{x(t)} is proper if E{x(t)x>(t + τ )} ≡ 0 [15]. We observe
{x(t)} and {y(t)} for t = 0, 1, · · · ,N − 1 (N samples each),
and the two signals are assumed to be independent. Let
H0 denote the null hypothesis that the PSDs of {x(t)} and
{y(t)} are identical, and let H1 denote the alternative that
Sx(f ) 6≡ Sy(f ). Then we have the following binary hypothesis
testing problem

H0 : Sx(f ) = Sy(f ), 0 ≤ f ≤ 1.0

H1 : Hc
0 = complement ofH0. (1)

C. FREQUENCY-DOMAIN SUFFICIENT STATISTIC
Consider the (normalized) discrete Fourier transform (DFT)
dx(fn) of proper complex-valued x(t), t = 1, 2, · · · ,N − 1,
given by

dx(fn) :=
1
√
N

N−1∑
t=0

x(t)e−j2π fnt (2)

where fn = n/N , n = 0, 1, · · · ,N − 1. Note that dx(fn) is
periodic in n with period N , and is periodic in normalized
frequency fn with period 1. Hence dx(fn) for n = 0, 1, · · · ,
N − 1, completely determines dx(fn) for all integers n. Simi-
larly define

dy(fn) :=
1
√
N

N−1∑
t=0

y(t)e−j2π fnt . (3)

Here too dy(fn) for n = 0, 1, · · · ,N − 1, completely deter-
mines dy(fn) for all integers n.
As proved in [16, p. 280, Sec. 6.2], for any statistical

inference problem, the complete sample is a sufficient statis-
tic, and so is any one-to-one function of a sufficient statistic.
Since the inverse DFT yields (one-to-one transformation)

x(t) =
1
√
N

N−1∑
n=0

dx(fn)ej2π fnt , (4)
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(and similarly for y(t)), the set {dx(fn), dy(fn)}N−1n=0 is a suffi-
cient statistic for our binary hypothesis testing problem.

D. MODEL ASSUMPTIONS
Here we state assumptions on x(t) and y(t) used later in the
paper.

(A1) Assumption 2.6.1 [17]. Random sequences {x(t)} and
{y(t)} ∈ Cp are stationary with components za(t),
a = 1, 2, · · · , p, z ∈ {x, y}, such that E{|za(t)|k} <∞,
satisfying

∞∑
τ1,τ2,··· ,τk−1=−∞

|cz:a1,a2,··· ,ak (τ1, τ2, · · · , τk−1)| <∞

(5)

for a1, a2, · · · , ak = 1, 2, · · · , p, and k = 2, 3, · · · ,
where cz:a1,a2,··· ,ak (τ1, τ2, · · · , τk−1) is the joint cumu-
lant function of order k of stationary {z(t)}, z ∈ {x, y}.

(A2) The PSD matrices Sx(f ) � 0 and Sy(f ) � 0 for any
0 ≤ f ≤ 1.

(A3) The PSD matrices Sx(fn) and Sy(fn) are locally smooth
such that they are constant over K (≥ p) consecutive
frequency points, where fn = n/N , n ∈ [0,N − 1].

See [15, Appendix A] (also [9, Appendix A]) for more
details regarding satisfaction of Assumption 2.6.1 of [17] for
a class of stationary sequences. If {x(t)} is Gaussian, then
it is sufficient to verify (5) only for k = 2. Regarding
assumption (A2), one can always add artificial proper white
Gaussian noise to x(t) to achieve Sx(f ) � 0; similarly for
{y(t)}. Assumption (A3) is a standard assumption in PSD
estimation literature [17].

E. ASYMPTOTIC DISTRIBUTION OF SUFFICIENT STATISTIC
Under (A1), exploiting [17, Th. 4.4.1], it has been
shown in [9, Appendix A-C] that asymptotically, dx(fn),
n = 0, 1, · · · ,N − 1, are independent proper complex
Gaussian Nc(0,Sx(fn)) random vectors, respectively, and
similarly, dy(fn), n = 0, 1, · · · ,N−1, are independent proper
complex Gaussian Nc(0,Sy(fn)) random vectors, respec-
tively. Since {x(t)} and {y(t)} are assumed to be independent,
their DFTs dx(fn) and dy(fn) are also independent.

III. GENERALIZED LIKELIHOOD RATIO TEST
In this section we re-derive the GLRT of [9] in a principled
way, using the sufficient statistic {dx(fn), dy(fn)}N−1n=0 . In con-
trast, the starting point [9] is the estimated PSDs of {x(t)}
and {y(t)}.
Define

Dx = [dx(f0) dx(f1) · · · dx(fN−1)]> ∈ CN×p, (6)

Dy = [dy(f0) dy(f1) · · · dy(fN−1)]> ∈ CN×p, (7)

and

D = [Dx Dy] ∈ CN×(2p). (8)

The asymptotic joint probability density function (pdf) of D
is given by

fD(D) =
N−1∏
n=0

[exp (−dHx (fn)S−1x (fn)dx(fn)
)

πp |Sx(fn)|

×

exp
(
−dHy (fn)S

−1
y (fn)dy(fn)

)
πp |Sy(fn)|

]
(9)

where we do not distinguish between a random vector/matrix
and the values taken by them in our notation (for simplicity).
The PSD matrices Sx(fn) and Sy(fn) are unknown. UnderH0,
Sx(fn) = Sy(fn) ∀n. Testing for equality of the two PSDs is
then reformulated as the problem

H0 : Sx(fn) = Sy(fn) ∀n ∈ [0,N − 1]

H1 : Sx(fn) 6≡ Sy(fn) for n ∈ [0,N − 1]. (10)

Now assume that Sx(fn) and Sy(fn) are locally smooth
(assumption (A3) of Sec. II-D), so that Sx(fn) and Sy(fn)
are (approximately) constant over K = 2mt + 1 ≥ p
consecutive frequency points for some mt > 0. Pick

f̃k =
(k − 1)K + mt

N
, k = 1, 2, · · · ,M , (11)

M =
⌊
N − mt
K

⌋
, (12)

leading to M equally spaced frequencies f̃k in the interval
[0, 1], at intervals ofK/N . It is assumed that for each f̃k (local
smoothness), and ` = −mt ,−mt + 1, · · · ,mt ,

Sx(f̃k,`) = Sx(f̃k ) and Sy(f̃k,`) = Sy(f̃k ) (13)

where

f̃k,` =
(k − 1)K + mt + `

N
. (14)

Using (13) in (9), we have

fD(D) =
M∏
k=1

etr
(
−S−1x (f̃k )D̃x(f̃k )− S−1y (f̃k )D̃y(f̃k )

)
π2Kp |Sx(f̃k )|K |Sy(f̃k )|K

=

M∏
k=1

fĎ(f̃k )(Ď(f̃k )) (15)

where K × (2p) Ď(f̃k ) is

Ď(f̃k ) =
[
Ďx(f̃k ) Ďy(f̃k )

]
, (16)

K × p Ďz(f̃k ), z ∈ {x, y}, is

Ďz(f̃k ) =
[
dz(f̃k,−mt ) dz(f̃k,−mt+1) · · · dz(f̃k,mt )

]>
, (17)

and p× p D̃z(f̃k ), z ∈ {x, y}, is

D̃z(f̃k ) =
mt∑

`=−mt

dz(f̃k,`)dHz (f̃k,`). (18)

Note that
(
D̃z(f̃k )

)−1
exists w.p.1 for K ≥ p.

VOLUME 7, 2019 12523



J. K. Tugnait: Robust Spectrum-Based Comparison of Multivariate Complex Random Signals

Explicitly indicating the dependence on the underlying
hypothesis Hi, i = 0, 1, the pdf of D under Hi is expressed
as

fD|Hi (D|Hi) =
M∏
k=1

fĎ(f̃k )|Hi
(Ď(f̃k )|Hi) (19)

where

fĎ(f̃k )|Hi
(Ď(f̃k )|Hi) =

etr
(
−S−1x (f̃k )D̃x(f̃k

)
πKp |Sx(f̃k )|K

×

etr
(
−S−1y (f̃k )D̃y(f̃k )

)
πKp |Sy(f̃k )|K

. (20)

Under H1 where there is no specific structure to the PSD
matrices, the unknowns in (19)-(20) are Hermitian positive
definite matrices Sz(f̃k ), z ∈ {x, y}, k = 1, 2, · · · ,M .
By [18, Th. 1.10.4], for any positive definite m×m matrices
A and B, and for any scalars a > 0 and b > 0, one has

|A|−betr
(
−aA−1B

)
≤ |aB/b|−b exp(−mb), (21)

with equality if and only if A = aB/b. Applying (21) to (20)
with a = 1, b = K , A = Sz(f̃k ), B = D̃z(f̃k ), z ∈ {x, y}, and
m = p, it follows that the maximum likelihood (ML) estimate
Ŝz(f̃k ) of Sz(f̃k ), under H1, is given by

Ŝz(f̃k ) =
1
K
D̃z(f̃k ) =

1
K

mt∑
l=−mt

dz(f̃k,`)dHz (f̃k,`). (22)

Setting Sx(f̃k ) = Ŝx(f̃k ) and Sy(f̃k ) = Ŝy(f̃k ) in (19) and (20)
yields

sup
Sx (f̃k ),Sy(f̃k )

fD|H1 (D|H1)

=
e−2MKp

π2MKp

M∏
k=1

|Ŝx(f̃k )|−K |Ŝy(f̃k )|−K . (23)

Under H0, we have Sx(f̃k ) = Sy(f̃k ). Setting S0(f̃k ) =
Sx(f̃k ) = Sy(f̃k ), the pdf of Ď(f̃k ) under H0 can be simplified
as

fĎ(f̃k )|H0
(Ď(f̃k )|H0) =

etr
(
−S−10 (f̃k )

(
D̃x(f̃k )+ D̃y(f̃k )

))
π2Kp |S0(f̃k )|2K

.

(24)

Applying (21) to (24) with a = 1, b = 2K , A = S0(f̃k ),
B = D̃x(f̃k ) + D̃y(f̃k ) and m = 2, it follows that the ML
estimate Ŝ0(f̃k ) of S0(f̃k ) is given by

Ŝ0(f̃k ) =
1
2K

(
D̃x(f̃k )+ D̃y(f̃k )

)
=

(
Ŝx(f̃k )+ Ŝy(f̃k )

)
/2 . (25)

Setting S0(f̃k ) = Ŝ0(f̃k ) in (19) and (24) leads to

sup
Sx (f̃k )=Sy(f̃k )

fD|H0 (D|H0)

=
e−2MKp

π2MKp

M∏
k=1

|
1
2

(
Ŝx(f̃k )+ Ŝy(f̃k )

)
|
−2K . (26)

Using (23) and (26) we obtain the GLRT

L :=
supSx (f̃k ),Sy(f̃k ) fD|H1 (D|H1)

supSx (f̃k )=Sy(f̃k ) fD|H0 (D|H0)
(27)

=

M∏
k=1

|
1
2

(
Ŝx(f̃k )+ Ŝy(f̃k )

)
|
2K

|Ŝx(f̃k )|K |Ŝy(f̃k )|K

H1

R
H0

τ1 (28)

where the threshold τ1 is picked to achieve a pre-specified
probability of false alarm Pfa = P{L ≥ τ1 |H0}. This
requires pdf of L under H0. A solution to this problem is
offered in [9, Th. 1], and it works well. We recall [9, Th. 1]
in the Appendix. Further remarks related to [9] are in
Remark 1.

Note that Ŝz(f̃k ) in (22) is an estimator of the PSD of z(t),
z ∈ {x, y}, at frequency f̃k , based on unweighted smoothing
in frequency-domain, as given in [17, eq. (7.3.2)]. Based
on [17, Th. 7.3.3], it is shown in [9, Appendix A-C] that
as N → ∞, Ŝz(f̃k ) is distributed as WC

(
p,K ,K−1Sz(f̃k )

)
(denoted as Ŝz(f̃k )

a
∼ WC (p,K ,K−1Sz(f̃k ))) where

WC

(
p,K ,K−1Sz(f̃k )

)
denotes the complex Wishart distri-

bution of dimension p, degrees of freedom K , and mean
value Sz(f̃k ). If a random matrix X ∼ WC (m,K ,S(f )),
then by [17, Sec. 4.2], E{X} = KS(f ), cov

{
X jk ,X rs

}
=

KSjr (f )S∗ks(f ), and for K ≥ m, the pdf of X is given by

fX (X) =
1

0m(K )
1

|S(f )|K
|X |K−m etr{−S−1(f )X} (29)

where the pdf (29) is defined for S(f ) � 0 and X � 0, and is
otherwise zero, and

0m(K ) := πm(m−1)/2
m∏
j=1

0(K − j+ 1) (30)

where 0(n) denotes the (complete) Gamma function 0(z) :=∫
∞

0 tz−1e−t dt .
Remark 1: The GLRT (28) was first derived in [9]. Our

derivation of the GLRT in this paper is significantly different
from that in [9], where the starting point is the estimated
PSDs of signals x(t) and y(t). In this paper, we first developed
a frequency-domain sufficient statistic (Sec. II-C), and then
under certain sufficient conditions ((A1)-(A3) in Sec. II-D),
we derived the GLRT based on the frequency-domain suffi-
cient statistic, in a principled way. The estimates of the two
PSDs follow from the frequency-domain sufficient statistic as
ML estimates, as in (22). Since the GLRT statistic is the same
in this paper and in [9], all other details, such as analytical
threshold calculation via [9, Th. 1] and corroboration of the
theory via simulations, given in [9] apply here as well.
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IV. ROBUSTIFICATION
The GLRT of Sec. III is based on clean data (i.e., no outliers).
We now turn to robustifying this GLRT against a class of
outliers.

In Sec. IV-A we first introduce the widely used additive
outlier model for measurements. This model is not essen-
tial to robust processing, but is one of the useful models
frequently used in the literature [12], [13], and is used in
our simulations. The method of [14] for robust estimation of
multivariate scatter is reviewed in Sec. IV-B. It is used in
Sec. IV-C for detection of outliers in the two sets of measure-
ments. In Sec. IV-D the detected outliers are ‘‘cleaned’’ via
median filtering. So cleaned datasets are then used for random
signal comparison using the method of [9], as summarized
in Sec. IV-E.

A. ADDITIVE OUTLIERS
Now {x(t)} and {y(t)} are assumed to be corrupted by additive
outliers [12, p. 253], to yield corrupted signals {x̃(t)} and
{ỹ(t)}:

x̃(t) = x(t)+ vx(t), ỹ(t) = y(t)+ vy(t), (31)

where, with a ‘‘small’’ probability po,

vx(t) ∼ Nc(0, σ 2
vxIp), vy(t) ∼ Nc(0, σ 2

vyIp), (32)

σ 2
vx � E{|x(t)|2}, σ 2

vy � E{|y(t)|2}, (33)

the outliers are i.i.d. mutually independent, and independent
of the clean signals, and with probability 1− po,

x̃(t) = x(t), ỹ(t) = y(t). (34)

Recall that Nc(m,6) denotes proper, complex Gaussian dis-
tribution with mean m and covariance 6. The model (31) is
not essential to robust processing, but is one of the useful
models frequently used in the literature [12], [13], and is used
in our simulations.

B. ROBUST ESTIMATION OF MULTIVARIATE SCATTER
There is a large body of work on robust statistics and robust
signal processing [12], [13]. We will use the computationally
efficient algorithm DetS of [14]. The approach of [14] is
described below.

Given a sample z1, · · · , zn ∈ Rq of real-valued random
vectors, a multivariate S-estimator of location (mean) m and
scatter (covariance matrix) S is defined as the couple (µ̂, 6̂)
which minimizes |S| under the constraint

1
n

n∑
t=1

ρ

(√
(zt −m)TS−1(zt −m)

)
= b (35)

over all (m,S), where m ∈ Rq, S is a q × q symmetric pos-
itive definite matrix, ρ is a smooth bounded ‘‘ρ−function,’’
typically picked to be Tukey’s bisquare ρ−function, and the
constant b ∈ (0, 1) influences the ‘‘breakdown’’ value of
the estimator under the nominal (Gaussian) model [12], [14].
Thus, an S-estimator of multivariate location and scale min-
imizes the determinant of the covariance matrix, subject to

a constraint on the magnitudes of the corresponding Maha-
lanobis distances. Tukey’s bisquare function is given by

ρ(x) =


x2

2
−

x4

2c2
+

x6

4c4
for |x| ≤ c

c2

6
for |x| > c

(36)

where c is a tuning constant that, together with b in (35),
influences the breakdown point (BP). The BP of an estimator
characterizes its quantitative robustness. It is the maximal
fraction of outliers in the observations which an estimate
can handle without breaking down [13]. The BP takes val-
ues between 0 and 50%, with higher value indicating larger
quantitative robustness. The BP of a multivariate S-estimator
is b/ρ(c) [14]. If the nominal (i.e., outlier free) model for the
data generates Gaussian vectors, then [19]

b =
q
2
χ̄2
q+2(c

2)−
q(q+ 2)

2c2
χ̄2
q+4(c

2)

+
q(q+ 2)(q+ 4)

6c4
χ̄2
q+6(c

2)+
c2

6
(1− χ̄2

q (c
2)) (37)

where χ̄2
ν denotes the cumulative distribution function (CDF)

of a χ2
ν random variable. For a given BP between 0 and

50%, one can derive the value of the corresponding tuning
parameter c in (36) [14].
Tukey’s bisquare ρ−function is a non-convex function,

hence, to obtain a global minimum that satisfies (35), ran-
dom subsampling methods are used to obtain a good ini-
tial guess [14]. The end result is a robust scatter estimate
6̂ of 6 that is ‘‘close’’ to the true value under no out-
liers, but is ‘‘robust’’ to outliers. Software in MATLAB for
computationally efficient algorithm DetS of [14] is available
from the author’s website (http://wis.kuleuven.
be/stat/robust/LIBRA), andwas usedwith the default
BP b/ρ(c) = 0.5.

C. OUTLIER DETECTION
In our case, we have complex-valued data. Therefore,
to invoke [14], we represent x̃(t) as two real-valued random
vectors Re{x̃(t)} and Im{x̃(t)}; similarly for ỹ(t). We have

zx(t) =
[
Re{x̃(t)}
Im{x̃(t)}

]
∈ R2p, (38)

zy(t) =
[
Re{ỹ(t)}
Im{ỹ(t)}

]
∈ R2p (39)

and q = 2p. Now apply DetS algorithm of [14] to zx(t)
and zy(t) (separately) to obtain (2p) × (2p) robust scatter
S-estimates 6̂zx and 6̂zy, respectively.
Having obtained outlier-resistant estimates of the covari-

ances matrices of {x̃(t)} and {ỹ(t)}, we now consider detection
of outliers. Note that, by assumption, clean data are zero-
mean. Hence, our nominal models for the data are zx(t) ∼
Nr (0, 6̂zx) and zy(t) ∼ Nr (0, 6̂zy). Define

wzx(t) = z>x (t)6̂
−1
zx zx(t), wzy(t) = z>y (t)6̂

−1
zy zy(t). (40)
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Under the nominal Gaussian models, both wzx(t) ∼ χ2
2p and

wzy(t) ∼ χ2
2p. For a significance level (probability of false

alarm) α, we set the threshold τ at τ = (χ2
2p)
−1(1 − α),

i.e., 1 − α = χ̄2
2p(τ ), and declare x̃(t) to be an outlier if the

corresponding wzx(t) > τ . For our simulations, we picked
α = 0.025. The same procedure is applied to ỹ(t). This
method is robust since the estimates of the covariance matri-
ces are robust.

D. DATA CLEANING
Once an outlier is detected, it has to be ‘‘replaced.’’ We first
replace it with the median over a 5-point window, centered
at the location of the detected outlier unless one is at the
edge of the data block, in which case the window is ‘‘unbal-
anced.’’ In the unbalanced case, we still consider a 5-point
window which includes the detected outlier and four addi-
tional contiguous data points. This is done for x̃(t), at t =
0, 1, · · · ,N − 1, one sample at a time. In the final step,
the selectively median filtered data is again checked for out-
liers to guard against ‘‘patchy’’ outliers. Any outlier detected
at this stage is clipped (i.e., scaled with a positive scalar) to
yield z>x (t)6̂

−1
zx zx(t) = τ . The sequence obtained at the end

of this stage is our cleaned x̃(t), labeled x̌(t). We obtain y̌(t)
from ỹ(t) similarly. While the median filtered sequences in
the first step are well-motivated, the clipping step (if needed)
is heuristic.

E. ROBUST COMPARISON
Given two contaminated realizations {x̃(t)} and {ỹ(t)} for
t = 0, 1, · · · ,N−1, our proposed robust comparison method
is as follows.
(i) Obtain robust scatter S-estimates 6̂zx and 6̂zy

using the DetS algorithms of [14], as discussed in
Secs. IV-B and IV-C.

(ii) Detect outliers in {x̃(t)} and {ỹ(t)} using 6̂zx and 6̂zy,
as discussed in Sec. IV-C.

(iii) Clean {x̃(t)} and {ỹ(t)} of the detected outliers by a
combination of selective median filtering and clipping,
as discussed in Sec. IV-D. Denote the respective cleaned
sequences as x̌(t) and y̌(t).

(iv) Now compare x̌(t) and y̌(t) via the PSD-based approach
discussed in Sec. III.

Remark 2: The robustification approach outlined in
this section, based on robust estimation of multivariate
scatter, is novel, even though the various components
(Secs. IV-B or IV-C) have been used before in vari-
ous contexts. Data cleaning via dynamic modeling of
the underlying signals (time series) has a long history;
see, e.g., [12, Ch. 8], [20], and references therein. Robust
dynamic modeling (autoregressive, autoregressive moving
average, or state-space models) of vector time series is sig-
nificantly more complicated and computationally demanding
than the relatively simple robust estimation of multivariate
scatter. Our attempt to use [20] to robustly fit vector autore-
gressive models and to clean contaminated data based on the

fitted model (as noted on [20, p. 72]) has been unsuccessful
for the simulation examples presented later in Sec. V.

V. SIMULATION EXAMPLES
We now present some computer simulation examples to illus-
trate application of the proposed approach to wireless user
authentication when the data may be corrupted with outliers.

We generate stationary x(t) and y(t) ∈ C p, p = 2,
as x(t) = s0(t) + n(t), y(t) = s0(t) + n(t) under H0, and
x(t) = s0(t)+n(t), y(t) = s1(t)+n(t) underH1, where {n(t)}
is spatially uncorrelated, colored, proper complex Gaussian
noise, and {si(t)}, i = 0, 1, are the signal sequences. Noise
sequences {n(t)} under H0 and H1 are independent of each
other, but identically distributed. The noise sequence {n(t)} is
generated as

n(t) = nc(t)+ nw(t), (41)

where nw(t) ∼ Nc(0, σ 2
wI) is i.i.d., and nc(t) is gen-

erated as follows. The various components of nc(t) are
i.i.d., and each component is generated by filtering an i.i.d.
scalar sequence, distributed as Nc(0, σ 2

c ), through a lin-
ear filter with impulse response {0.4575, 0.7625, 0.4575},
where

√
(0.4575)2 + (0.7625)2 + (0.4575)2 = 1. Therefore,

E{‖nc(t)‖2} = pσ 2
c , leading to E{‖n(t)‖2} = p(σ 2

c +

σ 2
w) = pσ 2

n . We pick σ 2
w = 0.2σ 2

n for a given value of σ 2
n .

The signal {s(t)} is a filtered digital communications signal
generated by passing an information sequence through a
frequency-selective Rayleigh fading channel as follows:

si(t) =
4∑
l=0

hi(l)d(t − l), i = 0, 1, (42)

where d(t) is a scalar i.i.d. QPSK sequence, filtered through
a random time-invariant, frequency-selective Rayleigh fading
p × 1 vector channel hi(l) with 5 taps, equal power delay
profile, mutually independent components, which are identi-
cally distributed zero-mean proper complexGaussian random
variables. For different ls, hi (l)s are mutually independent
and identically distributed as hi(l) ∼ Nc(0, σ 2

h I); they are
also independent for i = 0 and 1. The signal si(t) was scaled
to achieve a given SNR E{‖si(t)‖2}/E{‖n(t)‖2}.
Additive outliers were added as in (31) with σ 2

vx =

100E{|x(t)|2}/p and σ 2
vy = 100E{|y(t)|2}/p.

We pickedN=256withK=11 (mt = 5), and the probability
of outlier addition po = 0 or 0.1 (10% contamination). The
approach of [9] (also Sec. III) was applied after detecting
outliers and cleaning the data, where the threshold (τ in (43))
was picked for a false alarm rate of 0.005 (0.5%). Figs. 1-3
show the ‘‘authentication’’ results based on 1000 runs, under
various scenarios. In user authentication in wireless networks
with multi-antenna receivers, we suppose that x(t)} originates
from an authenticated user, and the problem is to ascertain
if y(t)} also originates from the same user with identical
channel, hence, identical PSD, or if it is from a ‘‘spoofer’’ at
a different location, hence with a different channel, therefore,
different PSD.
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FIGURE 1. Authentication probability results based on 1000 runs, p = 2,
design Pfa = 0.005, N = 256, K = 11, no outliers (po = 0). (The curves for
‘‘authentic: robust’’ and ‘‘authentic: non-robust’’ are very close with no
discernible difference.) Authentication probability refers to fraction of
runs (out of 1000) in which the user was declared to be authentic. The
curve labeled ‘‘authentic’’ refers to the case where the second message
ỹ(t) originated from the author of the first message x̃(t). The curve labeled
‘‘spoofer’’ refers to the case where the second message originated from a
spoofer. For curves labeled ‘‘non-robust,’’ the method of [9] was applied
without looking for any outliers, and curves labeled ‘‘robust’’ refer to the
case where the method of [9] was applied after detecting outliers (if any)
and cleaning the data.

FIGURE 2. Authentication probability results based on 1000 runs, p = 2,
design Pfa = 0.005, N = 256, K = 11, 10% outliers in both x(t) and y(t)
(po = 0.1).

Figs. 1-3 show our authentic user detection probability
results where authentic user detection probability refers to
fraction of runs (out of 1000) in which the authentic user was
selected by the proposed test, i.e., {x̃(t)} and {ỹ(t)} both have
the same signal s0(t). Two cases are depicted in Figs. 1-3: the
curves labeled ‘‘authentic’’ is obtained when {ỹ(t)} originates
from the authentic user; the curves labeled ‘‘spoofer’’ are
obtained when {ỹ(t)} originates from a spoofer. If H0 is
accepted, then one declares that the second message ({ỹ(t)})
originates from the author of the first message ({x̃(t)}).
If H0 is rejected, then one declares that the second message

FIGURE 3. Authentication probability results based on 1000 runs, p = 2,
design Pfa = 0.005, N = 256, K = 11, 10% outliers in x(t) only and no
outliers in y(t) (po = 0.1 for x(t) and po = 0 for y(t)). The two curves for
non-robust case are very close with no discernible difference.

originates from other than the author of the first message (we
have a potential spoofer). Two approaches were considered:
We applied themethod of [9] without looking for any outliers,
this is the ‘‘non-robust’’ case, and we applied the method
of [9] after detecting outliers (if any) and cleaning the data
(as in Sec. IV), this is the ‘‘robust’’ case.

It is seen from Fig. 1 that when there are no outliers, our
proposed method yields results very close to the ‘‘optimal’’
results of [9]. When 10% outliers are added to the two noisy
signals (Fig. 2), the non-robust method of [9] is unable to
distinguish between the authentic and spoofer signals as they
ware buried in outliers, whereas the proposed robust approach
yields results that are not significantly different from the
results for the outlier-free case shown in Fig. 1. Finally,
we show the ‘‘asymmetric’’ case in Fig. 3 where outliers are
present only in x̃(t). Here too the proposed approach works
well whereas the non-robust method always finds the two
signals to be distinct, resulting in close-to-zero authentication
probability.

VI. CONCLUSIONS
We considered the problem of comparing two complex mul-
tivariate random signal realizations, possibly contaminated
with additive outliers, to ascertain whether they have identical
power spectral densities. We exploited an existing robust
estimator of multivariate scatter to detect the outliers, and
subsequently to clean the data. An existing GLRT of [9]
was then applied to the cleaned signal realizations. We also
derived the GLRT of [9] in a principled way. The approach
was illustrated via simulations in the context of user authen-
tication in wireless networks with multi-antenna receivers.

APPENDIX
Here we recall the result from [9] needed to compute the
threshold for the hypothesis testing problem (10).
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Theorem 1: [9, Th. 1]. The GLRT for the binary hypothe-
sis testing problem (10) is given by

2ρ ln(L)
H1

R
H0

τ (43)

where

ρ = 1−
2p2 − 1
4pK

, (44)

ln(L) = K
(
− 2pM ln(2)+

M∑
k=1

{
2 ln(|Ŝx(f̃k )+ Ŝy(f̃k )|

− ln(|Ŝx(f̃k )| − ln(|Ŝy(f̃k )|
})
. (45)

The threshold τ is picked to achieve a pre-specified proba-
bility of false alarm Pfa = P{2ρ ln(L) > τ |H0} = 1 −
P{2ρ ln(L) ≤ τ |H0}. The probability P{2ρ ln(L) ≤ τ |H0}

is given by

P{2ρ ln(L) ≤ z |H0}

= P{χ2
ν ≤ z} + ω2

[
P{χ2

ν+4 ≤ z}

−P{χ2
ν ≤ z}

]
+ ω3

[
P{χ2

ν+6 ≤ z} − P{χ
2
ν ≤ z}

]
+
{
ω4

[
P{χ2

ν+8 ≤ z}−P{χ
2
ν ≤ z}

]
+

1
2
ω2
2

[
P{χ2

ν+8 ≤ z}

− 2P{χ2
ν+4 ≤ z} + P{χ

2
ν ≤ z}

] }
+O(K−5) (46)

where

ωr =
(−1)r+1M

r(r + 1)(ρK )r

p∑
l=1

{
2Br+1((1− ρ)K + 1− l)

−
1
2r
Br+1(2(1− ρ)K + 1− l)

}
, (47)

Br (h) denotes the Bernoulli polynomial of degree r and order
unity,

ν = p2M , (48)

and χ2
n denoting a random variable with central chi-square

distribution with n degrees of freedom (as well as the distri-
bution itself). •

For details, please see [9].
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