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ABSTRACT Model predictive control (MPC) is advantageous for designing an electrical vehicle
path-tracking controller, but the high computational complexity, mathematical problem, and parameteriza-
tion challenge adversely affect the control performance. Hence, based on a fully actuated-by-wire electrical
vehicle (FAW-EV), a novel path-tracking controller based on improved MPC with a Laguerre function and
exponential weight (LEMPC) is designed. The massive optimization control parameters of MPC with a long
control horizon are reduced by introducing a fitting orthogonal sequence consisting of Laguerre functions,
thereby substantially reducing the computational complexity without sacrificing the tracking accuracy.
An exponential weight with decreasing characteristic is introduced to MPC to solve the mathematical
problem, thereby improving the robustness of the path tracking controller. In addition, the parameterization
access for online adjusting path tracking control performance can be provided by the proposed method. The
path tracking motion realization for FAW-EV is subsequently illustrated. Finally, several simulations are
implemented to verify the advantages of the proposed method.

INDEX TERMS Path track, electrical vehicle, model predictive control (MPC), Laguerre function,
exponential weight.

I. INTRODUCTION
In the development of sensing, wire-control, and electricity-
storage capacities, the autonomous electrical vehicle has
attracted considerable attention because of its convenience,
intelligence and environmental protection [1]– [3], and an
increasing number of researchers are focusing on this
advanced device. The driving control method is the core of
the autonomous electric vehicle; its control task can often be
functionally divided into path planning and path tracking [4],
with the relationship shown in Fig. 1. Path tracking control
is very significant since it is the cornerstone for realizing
autonomous driving of electrical vehicles [5]– [8].

The primary target of a path tracking control system is
to control the vehicle to accurately follow a reference path
given by path planning. This process is not easy due to the
requirement of simultaneously ensuring tracking accuracy
and vehicle dynamic stability [9]– [11]. For this function,
many control methods have been applied, such as slide mode
control (SMC) [12]– [14], robust control [15], [16], model

FIGURE 1. Relationship between autonomous driving control tasks.

predictive control (MPC) [17], [18], linear quadratic regula-
tor (LQR) optimal control [19], and output constraint con-
trol [20]. Each of these technologies can converge the vehicle
trajectory to the expectations, especially, MPC is more suit-
able since the constrained mechanism can take the vehicle
dynamic limit into consideration, and the control input for
path tracking can be achieved concerning overall situation
during prediction horizon [21], [22].
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FIGURE 2. Complete control structure for autonomous driving of the FAW-EV.

The essential idea of MPC is to achieve control input by
solving the optimization problem of minimizing the error
between the future system output and reference output,
although this is only a basic control framework, and many
researchers revise it to meet different path tracking control
requirements. For tracking the planned collision-avoiding
path, multiple constraints are introduced to the MPC frame-
work in [4] to track a reference path that minimizes the possi-
bility of collision. In [23], an electrical vehicle path tracking
controller based on the MPC framework is proposed in which
the steering angle and wheel slip ratio are the control inputs.
Reference [24] combines theMPC and SMC to robustly track
a reference path; this study mainly addresses the micro-
vehicle, and the tire stability limit is considered to harmonize
the path tracking accuracy and vehicle robustness. For path
tracking control of wheeled robots, reference [25] proposes
a backstepping kinematic controller based MPC with dual
heuristic programming.

However, the basic framework of aboveMPC path tracking
controllers encounters its limits in practical applications of
electrical vehicle path tracking. First, the long control horizon
is always introduced to ensure the favorable tracking con-
trol performance. Consequently, the optimization problem
of MPC possesses massive optimization control parameters
defined as future control inputs or future control input incre-
ments. Therefore, a high computational complexity arises
and can be made worse under multiple dimensions of con-
trol inputs and constraints. Second, there is a mathematical
problem in MPC in that the instability of the predictive plant
is cumulated during predicting future system outputs, which
leads to high sensitivity even to slight disturbances. Such
unexpected sensitivity will be deteriorated by setting a long
prediction horizon, however, which is always necessary for
the dynamic-unstable driving conditions of electrical vehicle
path tracking. Finally, the control requirement for path track-
ing control performance is varied as different driving condi-
tions; unfortunately, the MPC parameters that significantly

influence the path tracking control performance are very
difficult to adjust finely online.

The previous studies show that the MPC controller with
Laguerre fitting can reduce the computational complexity
of MPC optimization problem [26], and the unexpected
sensitivity of MPC can be improved by introducing expo-
nential weight [27], therefore, motivated by the problems
exited in MPC path tracking controller, a novel path tracking
controller based on improved MPC with a Laguerre func-
tion and exponential weight (LEMPC) is designed for the
fully actuated-by-wire electrical vehicle (FAW-EV), in which
the four wheels can be independently steered, driven and
braked [28]. The main contributions of this paper are listed
as follows:

(1) In the prediction of future system outputs within
MPC path tracking controller, a Laguerre function orthogonal
sequence is employed to fit the long control input trajectory
by a linearized combination; therefore, the computational
complexity can be reduced without sacrificing the tracking
performance by transforming the optimization control param-
eters from massive control input increments to a few fitting
coefficients.

(2) The mathematical problem inherent in MPC is ana-
lyzed and solved by introducing an exponential weight to
the cost function of the MPC path tracking controller; there-
fore, the unexpected sensitivity of the MPC path tracking
controller with a long prediction horizon can be ame-
liorated, and the path tracking control robustness can be
improved.

(3) We propose an LEMPC path tracking control method
in which the attenuating property diversity of a Laguerre
function orthogonal sequence with different parameters pro-
vides parameterization for finely online-adjusting path track-
ing control performance to varied path tracking requirements;
the prediction horizon can be adjusted online to variations in
the vehicle dynamic stability since the mathematical prob-
lem is improved. Moreover, the parameterized path tracking
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controller basing LEMPC can be adjusted to compensate the
linearized error.

For convenient and flexible control, the autonomous driv-
ing control system of an FAW-EV is based on a modularized
structure, as shown as Fig. 2. This paper emphasizes the
LEMPC path tracking controller design, which is illustrated
as follows: Section II gives both the predictive plant for
LEMPC path tracking control and the model capturing the
FAW-EV dynamic characteristics. Section III illustrates the
improved path tracking control method based on LEMPC,
and the realization of path tracking motion with the FAW-EV
is briefly discussed. Section IV validates the availabilities of
the proposed method by several simulations, and the main
ideas for adjusting the parameters are given in this section.
Finally, a succinct conclusion is given in section V.

II. PREDICTIVE PLANT AND DYNAMIC MODEL
A. PREDICTIVE PLANT FOR LEMPC PATH TRACKING
For LEMPC, a predictive plant is employed to predict future
system outputs [29], [30]. In this paper, the single-track
vehicle model is introduced to build the predictive plant.
As shown in Fig. 3, the model ignores the vertical, pitch
and roll motions, and the sideslip angles of the left wheels
are assumed to be equal to those of right [31]. For general-
ity, the model is considered under the condition of a small
front steering angle. The desired tracking motion is described
by front steering angle, therefore the rear steering angle is
assumed to be 0, with the given initial value of Vx set to
desired longitudinal velocity. Combining with the stiffness
tire model, and according to Newton law, the predictive plant
is described as

mV̇y = −mVxψ̇ + 2[Ccf (δfd −
Vy+lf ψ̇
Vx

)

+Ccr
lr ψ̇−Vy
Vx

]
mV̇x = mVyψ̇ + 2[Clf sf + Ccf (δfd

−
Vy+lf ψ̇
Vx

)δfd + Clrsr ]

Izψ̈ = 2 [lf Ccf (δfd −
Vy+lf ψ̇
Vx

)− lrCcr
lr ψ̇−Vy
Vx

]
Ẏ = Vx sinψ + Vy cosψ
Ẋ = Vx cosψ − Vy sinψ

(1)

FIGURE 3. Predictive plant based single-track vehicle model.

where X and Y denote the vehicle longitudinal position and
lateral position, respectively, Clf and Clr denote the front and
rear equivalent longitudinal cornering stiffness, respectively,
Ccf and Ccr denote the front and rear equivalent lateral
cornering stiffness, respectively, sf and sr denote the front
and rear longitudinal slip rates, respectively, ψ denotes the
yaw angle, and Vx and Vy denote the longitudinal and lateral
vehicle velocities, respectively. δfd denotes the desired front
steering angle.

MPCmethod is computationally complicated, and the non-
linearity of the predictive plant aggravates the computational
burden. Previous studies show that formulating the vehicle
dynamic linearly combining with a quadratic cost function
can reduce the computational effort and improve the effi-
ciency [32], [33]. Therefore, the plant (1) is linearized around
current vehicle states x(t) and previous control input u(t − 1)
with assumption that the control input is unchangeable
within prediction horizon [33], and the achieved time-varied
form as {

ẋ = Atx(t)+ Btu(t)
y = Ctx(t)

(2)

with the vehicle state vector x =
[
Vx ,Vy, ψ, ψ̇,Y ,X

]T ,
choosing the control input u as δfd , which is used to describe
the desired tracking motion, and the brake and propulsion
are not concerned in path tracking controller. At and Bt are
system matrices. In the path tracking system, we divide the
path tracking control issue into yaw angle tracking and lateral
position tracking; the system output is y = [ψ,Y ]T , and the
system output matrix Ct is therefore

C t =

[
0 0 1 0 0 0

0 0 0 0 1 0

]

Predictive plant is used to predict future vehicle states
as well as future system outputs, for reducing the lin-
earized error, a simple compensation is given in formula-
tion of MPC optimal problem described in part A of next
section.

Significantly, the predictive plant is used only to describe
the future tracking error between the vehicle motion and the
desired motion according reference path. Since the wheel
steering angels of FAW-EV are controlled independently,
the control input δfd of (2) is used only to describe the desired
path tracking motion and subsequently transformed to tire
forces of four wheels.

B. DYNAMIC MODEL FOR FAW-EV MOTION REALIZATION
For realizing path trackingmotion with the FAW-EV, the rela-
tionships among the vehicle integral motions, total efforts,
and tire forces are captured by the double-track model with
3 degrees of freedom (DOFs), which takes only the planar
motion into consideration. As shown in Fig. 4(a), the dynamic
characteristics for the longitudinal, lateral and yaw directions
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FIGURE 4. Schematic of the FAW-EV dynamic model: (a) Integral vehicle
dynamic. (b) Single wheel dynamic.

are described as

ax = V̇x − ψ̇Vy = 1
mFxd =

1
m

r∑
i=l

r∑
j=f

Xw_ij

ay = V̇y + ψ̇Vx = 1
mFyd =

1
m

r∑
i=l

r∑
j=f

Yw_ij

Mzd = Izψ̈ =
tf
2

(
Xw_rf − Xw_lf

)
+

tr
2

(
Xw_rr − Xw_lr

)
+lf

(
Yw_lf + Yw_rf

)
− lr

(
Yw_lr + Yw_rr

)
(3)

where the total efforts of Fxd , Fyd , and Mzd are the vehi-
cle longitudinal force, lateral force, and vehicle yaw torque,
respectively. Iz denotes the rotary inertia of the vehicle around
the vehicle vertical axle. Xw_ij and Yw_ij denote the longitudi-
nal and lateral tire forces, respectively, acting on the point
between the tire and ground in the vehicle-body coordinate
system, and they can be described as{
Xw_ij = Fx_ij cos δij − Fy_ij sin δij
Yw_ij = Fx_ij sin δij + Fy_ij cos δij

∀i ∈ {l, r} ,∀j ∈ {f , r}

(4)

where Fx_ij and Fy_ij denote the longitudinal and lateral tire
forces, respectively, acting on the center of the tire and δij
denotes the wheel steering angle, as shown in Fig. 4(b).

For realizing the desired lateral tire force, the empirical
relation curve between the tire sideslip angle αij and the
lateral tire force Fy_ij is fitted by the arctangent function [34]:

Fy_ij = −Cα_ij

√
1−

(
Fx_ij
µijFz_ij

)2µij

kij
tan−1

(
kij
µij
αij

)
(5)

where kij = Cα_ijπ
/
pFz_ij and the value of curve-fitting

constant p is set as 2.9 to improve the fitting accuracy under
a relatively large sideslip angle. µij denotes the tire-road
friction factor of each wheel, and a largeµij often gives a high
dynamic stability margin. Fz_ij denotes the tire vertical load,
which can be achieved by referencing [35]. Angle σij between
the velocity of the wheel center and the longitudinal axle of
the vehicle body is defined as σij = αij+δij and computed by{

σlf ,rf = tan−1
((
Vy + lf ψ̇

)/(
Vx ∓ tf ψ̇

/
2
))

σlr,rr = tan−1
((
Vy − lr ψ̇

)/(
Vx ∓ tr ψ̇

/
2
)) (6)

where the sign ‘‘∓’’ refers to the left/right wheel.

III. PARTH TRACKING CONTROL BASED LEMPC
The basic idea of the LEMPC path tracking controller is that a
Laguerre function orthogonal sequence is employed to fit the
trajectory of future control input increments within the MPC
path tracking optimization problem. In addition, an exponen-
tial weight is introduced to the path tracking cost function
to solve the mathematical problem. The control principle is
shown in Fig. 5. This improved method is based on the MPC
path tracking control framework, whose illustration is shown
at the beginning of this section.

A. BASIC MPC FRAMEWORK FOR PATH TRACKING
An integrator is introduced to converge the steady-state error
to zero, and the control input of the MPC path tracking
controller is therefore changed to the incremental form 1u.
With a discrete time step of T , plant (2) can be discretized as
follows:{

ξ (k + 1| t) = Ãk,tξ (k| t)+ B̃k, t1u(k| t)
y(k| t) = C̃k,tξ (k| t)

(7)

where augmented state matrix

ξ (k| t) =
[
x(k| t) u(k − 1| t )

]T
and

Ãk, t =
[
I + TAt TBt
Om×n Im

]
B̃k, t =

[
TBt
Im

]
C̃k, t =

[
0 0 1 0 0 0 0
0 0 0 0 1 0 0

]
With (7), the predicted future system outputs within the

prediction horizon can be achieved by

Ysys(k) = 9kξ (k| t)+2k1U (k| t) (8)
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FIGURE 5. Schematic diagram of the LEMPC path tracking controller.

where

Ysys(k)(Np×1) =


y(k + 1| t)
y(k + 2| t)
· · ·

y(k + Nc| t)
· · ·

y(k + Np
∣∣ t)

9k(Np×1) =



C̃k,t Ãk,t
C̃k,t Ã2k,t
· · ·

C̃k,t Ã
Nc
k,t

· · ·

C̃k,t Ã
Np
k,t


2 k(Np×Nc)

=



C̃k,t B̃k,t 0 0 0
C̃k,t Ãk,t B̃k,t C̃k,t B̃k,t 0 0

· · · · · ·
. . . · · ·

C̃k,t Ã
Nc−1
k,t B̃k,t C̃k,t Ã

Nc−2
k,t B̃k,t · · · C̃k,t B̃k,t

C̃k,t Ã
Nc
k,t B̃k,t C̃k,t Ã

Nc−1
k,t B̃k,t · · · C̃k,t Ãk,t B̃k,t

...
...

. . .
...

C̃k,t Ã
Np−1
k,t B̃k,t C̃k,t Ã

Np−2
k,t B̃k,t · · · C̃k,t Ã

Np−Nc−1
k,t B̃k,t



1U (k)(Nc×1) =


1u(k| t)

1u(k + 1| t)
· · ·

1u(k + Nc − 1| t)


where Np and Nc represent the lengths of the prediction
horizon and control horizon, respectively.

The control objective for path tracking can be expressed
as the followed optimization control problem with a receding
horizon.

min J =
Np∑
i=1

∥∥yref (k + i)− y(k + i)∥∥2Q (9a)

+

Nc−1∑
i=0

‖1u(k + i)‖2R + ρ ε
2

s.t. 1Umin ≤ 1U (k) ≤ 1Umax (9b)

Umin ≤ U ≤ Umax (9c)

Ymin ≤ Ysys ≤ Ymax (9d)

where yref is the reference output and consists of the reference
yaw angleψref and reference lateral position Yref .Q andR are
weights for the system outputs and control input increments,
respectively. With the first term in the cost function (9a),
the predictive errors between the predicted system outputs
and future reference outputs are penalized through a weighted
norm. This approach ensures that the vehicle tracks the refer-
ence path as accurately as possible. The second term of (9a)
is a weighted norm on the input increments, which aims to
minimize the control effort. The final term of (9a) is a penalty
on the slack variable added to avoid the infeasibility under the
strict constraints. Large weight of slack variable gives more
relaxation to the optimization control problem, however, with
sacrificing the path tracking performance; therefore, the slack
variable weight can be chosen as a large value only under
condition that the optimization control problem is insolu-
ble [36]. Equations (9b)-(9d) describe the constraints for the
control input increments according to the tolerances of the
path tracking control system outputs and FAW-EV actuators.

In this paper, we omit the constant term of the cost func-
tion; the optimization control problem (9) for path tracking
is equivalently arranged into quadratic programming (QP)
form as

min J = V THkV + GkV (10a)

s.t. 1Ũmin ≤ 1U ≤ 1Ũmax (10b)
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where (10b) is the integration of (9b)-(9d) and the optimiza-
tion control parameters defined as V = [1U , ε] are obtained
by solving theQP problem as in (10). The coefficientmatrices
are defined as

Hk =
[
2T
k Q 2t 0
0 ρ

]
Gk =

[
2ETk Q 2k 0

]
where Ek is the matrix consisting of predicted errors between
the predicted system outputs and future reference outputs
within the prediction horizon. For further ensuring the track-
ing accuracy, during predicting future system outputs, the lin-
earized error for achieving predictive plant (2) are considered
in Ek , which can be described as

Ek = YREF − Ysys − Eline

where YREF is the matrix consisting of future reference out-
puts within prediction horizon, Eline is the linearized error
matrix of system outputs within prediction horizon and can
be achieved by

Eline = MDk

with the Dk is the matrix about the linearized error dk0 at the
next time. According to [37], dimension of matrixM depends
on the length of prediction horizon, and its elements can be
described as

M (i, j) =

{
C̃k,t Ã

i−j
k,t , j ≤ i

0, j > i

The dimension of 1U within V is Nc, and only the first
element can be used as a control input by integral action as
in (11).

u(k) = u(k − 1)+1u(k |t ) (11)

B. LAGUERRE FUNCTION INTRODUCTION
The principle of reducing theMPC computational complexity
is to approximately represent the trajectory of future control
input increments 1U (k) by linearly combining a sequence
of orthogonal functions with few fitting coefficients. Conse-
quently, the whole control horizon can be covered without the
need for massive optimization control parameters.

Because of its programming simplicity and favorable
approximation ability for variances of the control plant,
a Laguerre function orthogonal sequence is chosen as the
appropriate fitting agent for FAW-EV path tracking con-
troller [38]. The sequence is discretely described using the
following z-transformed expression.

01(z) =

√
1− a2

1− az−1

02(z) =

√
1− a2

1− az−1
z−1 − a
1− az−1

...

0NL (z) =

√
1− a2

1− az−1
(
z−1 − a
1− az−1

)NL−1 (12)

where a and NL denote the scale factor and term number,
respectively, of the discrete-time Laguerre function sequence,
which possesses orthogonality as

1
2π

∫ π
−π
0m(ejω)0m(ejω)dω = 1 , m = n

1
2π

∫ π
−π
0m(ejω)dω0n(ejω) = 0 , m 6= n

(13)

Since the inverse z-transform of the Laguerre function
does not become more concise, the discrete-time Laguerre
function sequence is simply expressed in vector form as

L(i) = [l1(i) l2(i) · · · lNL (i)]
T (14)

where li(k) represents the inverse z-transform of 0k (z, a),
whose difference equation can be described as

0k (z) = 0k−1(z)
z−1 − a
1− az−1

k = 1, 2, · · ·NL (15)

Thus, the inverse z-transform discrete-time Laguerre func-
tion sequence satisfies the difference equation as

L(k + 1) = AlL(k) (16)

with

Al(NL×NL )

=


a 0 0 · · · 0
β a 0 · · · 0
−aβ β a · · · 0
...

...
. . .

. . .
...

(−1)NL−2aNL−2β (−1)NL−3aNL−3β · · · β a


where β = (1− a2). Since a system H (i) can be fit as

H (i) = c1l1(i)+ c2l2(i)+ · · · + cNL lNL (i) (17)

the control input increment at an arbitrary future time step
within the control horizon can be represented as

1u(k + i) = L(i)T η =
NL∑
j=1

cj(k)lj(i), i = 0, 2, · · ·Nc (18)

where η = [c1 c2 · · · cNL ]
T and cj is the fitting coefficient.

Therefore, (8) can be approximately transformed as

Ysys(k) = 9kξ (k| t)+2kKLη (19)

where the augmented matrix

KL(Nc×NL ) =


L(0)T

L(1)T
...

L(Nc − 1)T

 (20)

With the orthogonality described with (13), the QP
problem (10) can be simply rewritten as

min JL = V T
L HLVL + GLVL (21a)

s.t. 1Ũmin ≤ KLη ≤ 1Ũmax (21b)
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where the vector of optimization control parameter is changed
into VL = [η, ε], in which the dimension of η is NL .
The coefficient matrices of (21) are arranged as

HL =
[
KL2T

k Q 2kKT
L 0

0 ρ

]
GL =

[
2ETk Q 2kKT

L 0
]
(22)

Paper [26] gives the stability proof of the MPC with
Laguerre function, and the control input increment at the
current time can be achieved by

1u(k |t ) = L(0)T η (23)

Remark 1: The scale factor a is closely related to the term
number that is primarily required to fit1U (k). While a = 0,
traditional MPC path tracking performance can be uniformly
realized by setting NL equal to Nc [38]. For reducing the
dimension of VL , we set 0 < a < 1; therefore, the similar
path tracking control performance can be achieved with the
optimization control parameter dimension of NL + 1, which
is far less than Nc + 1 within traditional MPC of (10). This
advantage reduces the computational complexity without sac-
rificing the path tracking control performance.

C. SOLVING MATHEMATICAL PROBLEM
WITH EXPONENTIAL WEIGHT
Actually, the mathematical problem is inherent in MPC tech-
nology. The first derivative of the cost function JL described
in (21a) is achieved by

∂JL
∂VL
= 2HLVL + GL (24)

Without considering constraints, the equation

∂JL
∂VL
= 0 (25)

is necessary for minimizing JL ; thus, the optimal solution is

VL = −H
−1
L GL

/
2 (26)

with the assumption of existing H−1L , which is called the
Hessian matrix of the MPC algorithm.

When predicting future system outputs within (21a), we set
the convolution sum matrix φ = 2kKL , and the difference
relationship between the convolution matrix elements is

φ(m) =
{
Ãk,tφ(m− 1)+ φ(1)(Am−1l )T , 0 ≤ m < Nc
Ãk,tφ(m− 1) ,Nc ≤ m ≤ Np

(27)

Because of the integral action in the MPC framework,
norms of the matrix powers

∥∥∥Ãmk,t∥∥∥ and ‖φ‖ do not decay

to zero as Np increases; thus, the Hessian matrix H−1L pos-
sesses a large magnitude. For vehicle path tracking control
based on MPC, a long Np is always chosen to ensure vehicle
dynamic stability during severe driving conditions, but the
large magnitude of H−1L accumulates strongly to the insta-
bility of the predictive plant and thereby leads to system

ill-conditioning, resulting in high sensitivity to even slight
disturbances [39], [40].

The condition number, a quantization index for system
ill-conditioning, can be computed by

γc(HL) =
∣∣λmax(HL)∣∣/∣∣λmin(HL)∣∣ (28)

where λmax(HL) and λmin(HL) are maximal and minimal
characteristic values, respectively. γc can be considered a
magnified degree of the unexpected sensitivity caused by
the ill-conditioning. As Np elongates, γc(H

−1
L ) dramatically

increases to a value that is far greater than ‘‘1’’ and tends to
infinity. This large value represents a high level of numeri-
cal sensitivity to disturbances and consequently reduces the
robustness of the path tracking control system.

To address this issue, the exponential weight α−2j with
decreasing characteristic is introduced to the cost function of
the MPC path tracking controller. The introduction of α−2j

aims to restore a stability margin by placing less weighting
on future tracking errors and control input increments, and
the cost functions (9a) can be changed to

J =
Np∑
i=1

α−2i
∥∥yref (k + i |k )− y(k + i |k )∥∥2Q

+

Nc−1∑
i=0

α−2i ‖1u(k + i| k)‖
2
R + ρ ε

2 (29)

Both λmax(HL) and λmin(HL) can be converged into a
bounded region, significantly reducing the condition number
and therefore ameliorating the ill-conditioning of the path
tracking system with MPC, and paper [27] gives the feasi-
bility proof of the exponential weight introduction.

Actually, the exponential weighted cost function acts
through the transformed control input increments and state
variables instead of cost function design; consequently,
1U and ξ change to

1Û = [1û(k) 1û(k + 1) 1û(k + 2) · · ·1û(k + Nc − 1)]T

and

ξ̂ = [ξ̂ (k + 1)T ξ̂ (k + 2)T · · · ξ̂ (k + Np)T ]T

where

1û(k + i) = α−i1u(k + i)T = α−iL(i)T η

ξ̂ (k + i) = α−iξ (k + i)T

This transformation is achieved by changing the predictive
plant in (7) to

ξ̂ (k + 1 |t ) = Âk,t ξ̂ (k)+ B̂k,t1û(k) (30)

with

Âk,t = Ãk,t
/
α, B̂k,t = B̃k,t

/
α (31)

In summary, the LEMPC path tracking control can be
formulated as an optimization control problem as

min ĴL = V T
L ĤLVL + ĜLVL (32a)

s.t. 1Ũmin ≤ 3KLη ≤ 1Ũmax (32b)
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where ĤL and ĜL are achieved by introducing (31) into (7)
and (22), respectively. The transformation matrix in (32b) is
defined as

3 =



I 0 · · · 0

0 α1I · · · 0

...
...

. . .
...

0 0 · · · αNc−1I


(33)

Remark 2: To ensure closed-loop stability, α should be
chosen to be slightly larger than ‘‘1’’.

The current control input of the LEMPC path tracking
controller can be achieved by (11), with the current control
input increment computed by (23).

D. PARAMETERIZATION ILLUSTRATION
Actually, the path tracking controller should adjust its per-
formance to the variable driving condition. For the MPC
path tracking controller with a basic framework, the value
of Nc significantly affects the control performance, such as
the tracking accuracy. The influence of Np also cannot be
ignored. For example, an MPC path tracking controller with
long Np controls the vehicle with greater stability; however,
tracking accuracy is sacrificed. In contrast, a controller with
short Np often encounters challenges in ensuring dynamic
stability during severe driving conditions.

Unfortunately for the path tracking controller based on the
traditional MPC, it is challenging to finely adjust the control
performance because Nc and Np must be integers. Moreover,
in addition to the severe system ill-conditioning, the system
ill-condition gap between different Np is very large. These
mathematical problems lead to violent fluctuation in the con-
trol input during Np adjustment, therefore largely reducing
the path tracking control performances of both the tracking
accuracy and vehicle dynamic stability.

Within the LEMPC path tracking controller, the parame-
terization ability is mainly summarized as follows:

First, the Laguerre function possesses an attenuating prop-
erty whose extent depends on the value of the scale factor a.
Such a Laguerre function with larger a needs more sample
points to decay to 0 [26]. The difference of the attenuating
property determined by a becomes the key to finely regu-
late the control performance of the LEMPC path tracking
controller.

Second, the system ill-conditioning is largely improved
by introducing the exponential weight α−2j; the system
ill-condition gap between different Np values can also be
reduced considerably, so the Np can be adjusted online to
different driving conditions without large fluctuation.

The regulation principles are illustrated through several
simulations in part C of Section IV

E. MOTION REALIZATION FOR FAW-EV
As the foundation of actualizing path tracking, a motion real-
ization method with FAW-EV was presented and studied in
our previous paper [41]. To aid in understanding, the motion
realization process is illustrated briefly here.

The path tracking motion with FAW-EV is realized by a
hierarchical structure that is functionally divided into three
tasks: desired motion computation, tire force distribution, and
actuator implementation.

The desired motion computation transforms the desired
front steering angle and desired vehicle velocities to total
vehicle efforts, which includes Fxd , Fyd , and Mzd . For sta-
bility, the desired lateral vehicle velocity Vyd is set as 0. With
the desired longitudinal velocity Vxd preset and the desired
front steering angle δfd achieved by the LEMPC path tracking
controller, the desired motions are defined as

ψ̇d =
(
Vx
/(
lf + lr

))
· δfd

/(
1+ KgV 2

x
)

Vxd = Vxd
Vyd = 0

(34)

where Kg is the understeering degree. For decoupling the
nonlinear relationship between motions on those three direc-
tions, SMC technology is employed to achieve the desired
total efforts as (35), as shown at the bottom of this page.
In addition, p3 and q3 denote positive odd numbers, and
1 < p3

/
q3 < 2, s1, s2, and s3 are the sliding mode sur-

faces defined as minimizing differences away from desired
motions on those three directions, and the function sat is
defined as

sat
(
sk
φk

)
=

{
sk
/
φk , if |sk | < φk

sgn
(
sk
/
φk
)
, if |sk | ≥ φk

(36)

For the tire force distribution, the desired total efforts
achieved by (35) are divided into eight tire forces by solving

Fxd = m
(
−Vyψ̇ + V̇xd − η1nsat

(
s1
/
φ1
))
, {Fxd | |Fxd | ≤ µmg} (35a)

Fyd = m
(
Vxψ̇ − η2nsat

(
s2
/
φ2
))
,
{
Fyd |

∣∣Fyd ∣∣ ≤ µmg} (35b)

Mzd = Iz

((
ax + Vyψ̇

) (δfd/(lf + lr)
1+ KgV 2

x
−

2KgV 2
x δfd

/(
lf + lr

)(
1+ KgV 2

x
)2

)

+
Vx δ̇fd

/(
lf + lr

)
1+ KgV 2

x
+
α3q3
β3p3

(
ψ̇ − ψ̇d

)2−p3/q3 (−α3ns3 − β3nsq3n/p3n3

α3
(
ψ̇ − ψ̇d

) − 1

))
(35c)
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the following QP problem:

min JCA =
r∑
i=l

r∑
j=f

X2
w_ij + Y

2
w_ij

µ2
ijF

2
z_ij

(37a)

s.t. AequCA = beq (37b)

AlimuCA ≤ blim (37c)

where the vector of optimization control parameters is
defined as

uCA =
[
Xw_lf Xw_rf Xw_lr Xw_rr Yw_lf Yw_rf Yw_lr Yw_rr

]T
which consists of eight tire forces as shown in Fig. 4. (37a) is
the cost function defined as the sum of the tire workloads to
maximize the stable margin. According to the relationships
between the tire forces and total efforts described by (3),
the equivalent constraints are introduced as (37b). To ensure
tire stability, the linearized tire stability limit is introduced
as (37c), corresponding to

−µijFz_ij < Xw_ij < µijFz_ij,

−µijFz_ij < Yw_ij < µijFz_ij,

−
√
2µijFz_ij < Xw_ij + Yw_ij <

√
2µijFz_ij,

−
√
2µijFz_ij < Yw_ij − Xw_ij <

√
2µijFz_ij (38)

Actuator implementation translates the tire forces to wheel
driving torques and steering angles, which can be directly
realized by the actuators. First, δij ≈ σij is assumed according
to the infinitesimal sideslip angle; with (4), it can be obtained
that {

Fy_ij ≈ −Xw_ij sin σij + Yw_ij cos σij
F∗x_ij = Xw_ij cos σij + Yw_ij sin σij

(39)

whereF∗x_ij denotes the estimated longitudinal tire force.With
the inversion of the tire model as (5), the sideslip angle of the
tire can be computed by

αij = −
µij

kij
tan

 kij
µij
·

Fy_ij

Cα_ij

√
1−

(
F∗x_ij cos 22.5

◦

µijFz_ij

)2

 (40)

The wheel steering angle is computed by

δij = σij − αij (41)

with σij achieved by (6). The wheel driving torque is
computed by

Tw_ij = Jw_ijω̇ij + Fx_ijRw_ij + Tb_ij (42)

where ω̇ij,Rw_ij,Tb_ij and Jw_ij denote the wheel rotation rate,
effective rolling radius, friction braking torque and wheel
rolling inertia, respectively. The longitudinal tire force Fx_ij
is computed according to equation (4).

IV. SIMULATION RESULTS AND ILLUSTRATION
The simulations are carried out using the software of
Simulink combined with Carsim, in which a high-fidelity
model of the FAW-EV is built. The major simulation param-
eters are listed in Table 1. The FAW-EV is controlled to
track a double-change lane (DLC), with the desired outputs
defined by

Yref (X ) =
dy1
2

(1+ tanh(z1))−
dy2
2

(1+ tanh(z2))

ψref (X ) = tan−1(dy1(
1

cosh(z1)
)2(

1.2
dx1

)

− dy2(
1

cosh(z1)
)2(

1.2
dx2

)) (43)

TABLE 1. Simulation parameters.

where

z1 = 2.4(X − 27.19)
/
25− 1.2

z2 = 2.4(X − 56.46)
/
21.95− 1.2

and dx1, dx2, dy1, and dy2 are set as 25, 21.59, 4.05, and
5.7, respectively. The reason for choosing the DLC as the
reference lane is that the multiple-curvature characteristic of
it can feature different driving conditions by combing with
different vehicle velocities and road conditions.

The initial values for the QP problems of (32) and (37) are
set as zero in this paper, and the Matlab function of ‘‘quad-
prog’’ is used to solving the QP problems. The simulation
verification is mainly divided into three parts: first, control
performance and advantage of MPC path tracking controller
with the incorporated Laguerre function are interpreted and
verified in part A, and then part B proves the availability
for improving the path tracking control robustness by solv-
ing the mathematical problem with introduction of exponen-
tial weight. Finally, the parameterization ability and main
adjusted ideas for path tracking control with LEMPC are
interpreted by combining with several simulation results in
part C.

A. INTRODUCTION OF THE LAGUERRE FUNCTION
For ensuring the close-loop stability and to consider practical
feasibility, we set a long Np as 36. With the constant friction
factor µij as 0.75, the simulations with different longitudinal
velocities of 15 m/s and 30 m/s are implemented.
Set the term numberNL as 4 and scale factor a as 0.9; theNc

of MPC introduced Laguerre function (LMPC) is set as 36.
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FIGURE 6. Path tracking errors for Vxd = 15 m/s, µij = 0.75. (a) Lateral position tracking error (b) Yaw angle tracking error.

FIGURE 7. Path tracking errors for Vxd = 30 m/s, µij = 0.75. (a) Lateral position tracking error. (b) Yaw angle tracking error.

FIGURE 8. Path tracking control inputs. (a) Vxd = 15 m/s, µij = 0.75. (b) Vxd = 30 m/s, µij = 0.75.

For outstanding performance of the proposed path tracking
controller, the traditional MPC controllers with control hori-
zon length of 4 (TMPC-4) and 36 (TMPC-36) are introduced
as comparisons. The results are shown in Fig. 6 to Fig. 8. For
in-depth researching of the tracking performance of different
controllers, an index that quantifies the tracking performance
is given as

Qtrack_i =

√√√√√√
tsim/Tq∑
j=1

(
yref (j)− ysys(j)

)2
tsim
/
Tq − 1

, ∀i ∈ {ψ,Y } (44)

where tsim is the simulation duration time and Tq is the con-
troller sampling step. The tracking performance indexes of
simulations for the three controllers are given in Table 2 and
Table 3, in which the dimension of the optimization control
parameter matrix V or VL is denoted as n.

Fig. 6 and part of the Fig. 7 show that vehicles controlled by
the twoMPC controllers with longNc (LMPC and TMPC-36)
possess higher path tracking accuracy than that controlled
by the traditional MPC controller with short Nc (TMPC-4).
Notably, Fig. 7 shows a lower tracking accuracy of LMPC and
TMPC-36 during simulation duration from 2nd to 4th second.
Fig. 8(b) indicates the reason that the radical control motions
used to achieve high tracking accuracy reach the constraint
boundary during severe driving conditions. Such control sat-
uration leads to unexpected control performances [40], which
influences the tracking index in Table 3 but can be mitigated
by adjustment of the Laguerre function parameters. Addition-
ally, the large tracking error mostly influenced by the long
prediction horizon can be shrank by adjusting Np, which is
illustrated in the last part of this section.

Discarding the control saturation, the higher tracking
accuracy can be achieved by controllers with a long
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TABLE 2. Indexes for condition of Vxd = 15 m/s, µij = 0.75.

TABLE 3. Indexes for the condition of Vxd = 30 m/s, µij = 0.75.

control horizon. Notably, Table 2 and Table 3 indicate that
relative to TMPC-36, the LMPC path tracking controller
can realize similar path tracking control performance with
only 5 (computed by NL + 1) optimization control param-
eters, which is far less than that of TMPC-36 (with an
optimization control parameter quantity of 37 computed by
Nc + 1). This result indicates that the proposed MPC con-
troller with an incorporated Laguerre function can substan-
tially reduce the computational complexity.

Moreover, it is observed that the LMPC can control the
vehicle to track the reference path with more accuracy than
that controlled by TMPC-36. The reason is because as NL
increases, the control trajectory of LEMPC can be converged
to an underlying trajectory instead of the control trajectory of
the traditional MPC; this trajectory is interpreted in the last
part of this section.

B. MATHEMATICAL PROBLEM IMPROVEMENT
WITH EXPONENTIAL WEIGHT
For the MPC path tracking controller, the robustness deteri-
oration by mathematical problems is closely related to Np,
so this part sets the driving condition of the middle desired
longitudinal velocity (Vxd = 17 m/s) and friction factor
(µij = 0.5), and the control performance of MPC controller
with Laguerre function and exponential weight (LEMPC)
is compared with that of the controller without exponential
weight (LMPC).

Since the mathematical problem becomes severe along
with Np elongating, first, for quantifying the ability to
solve the mathematical problem, we vary Np to increase
from 20 to 36, and the curves of condition number are shown
in Fig. 9.

It is observed that the condition number is significantly
reduced by the proposed method (with 95.11% reduction at
Np = 36), which means that the ill-conditioning has been
largely ameliorated with LEMPC.

Then, for further proving the path tracking robustness
improvement according to the relationship between Np and
the tracking system ill-conditioning, two sets of simulations
withNp set to constants of 25 and 30 are implemented, and the

FIGURE 9. Condition number of different prediction horizons.

disturbances with different amplitudes are typically imposed
to yaw angle signal at different simulation times (3 ψ at the
3rd second and 50 ψ at the 10th second). The results are
shown as Fig. 10 to Fig. 12.

Fig. 12 comparably shows that for LMPC with a longer
prediction horizon, the control input influence caused by
disturbances is much more severe than that with shorter Np.
This finding illustrates the incremental progression of sys-
tem ill-conditioning as Np elongates, which conforms to the
results shown in Fig. 9. The large scale of vibration of the
control input indicates high sensitivity and weak robustness
of LMPC to the disturbance.

Relative to LMPC, it can be found in Fig. 10 and
Fig. 11 that with two prediction horizon lengths, the LEMPC
path tracking controller with exponential weight possesses
stronger robustness, which is embodied mainly in the slighter
shake caused by the disturbance and in a faster return to the
stable state.

Additionally, with the two prediction horizon lengths,
the introduction of exponential weight can improve the
robustness without sacrificing tracking accuracy.

C. PARAMETERIZATION ABILITY FOR ONLINE ADAPTION
An important advantage of the proposedmethod is the param-
eterization of the LEMPC path tracking controller, which
provides access for fine online adjustment of the control
performance to driving conditions with different dynamic
and path tracking requirements. The parameterized variables
are the Laguerre function parameters (NL , a) and prediction
horizon Np.
First, we set different longitudinal velocities and friction

factors; with the reference path aforementioned, several sim-
ulations are implemented with different NL and a. Part A of
this section indicates that the constraints dynamically affect
the control motion; for studying the influence of Laguerre
function parameters without confusion, the constraints are
ignored, and the results are shown as Fig. 13 to Fig. 15, with
the curve label form of ‘‘NL− a’’.
Fig. 13 shows that with the same value of NL , a larger a is

associated with a higher tracking accuracy. Fig. 14 indicates,
however, that for the FAW-EV path tracking during severe
conditions, the LEMPC path tracking controller with larger
a leads to a radical control input of the desired front steering
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FIGURE 10. Path tracking control performance for Np = 25, Vxd = 17 m/s, µij = 0.5, with introduced disturbances. (a) Lateral position tracking.
(b) Yaw angle tracking.

FIGURE 11. Path tracking control performance for Np = 30, Vxd = 17 m/s, µij = 0.5, with introduced disturbances. (a) Lateral position tracking.
(b) Yaw angle tracking.

FIGURE 12. Path tracking control inputs with introduced disturbances. (a) Control inputs for Np = 25. (b) Control inputs for Np = 30.

angle, which produces a very dangerous large yaw overshoot.
Therefore, online adjustment of a to different driving condi-
tions is recommended for maximizing the control advantage
of the LEMPC path tracking controller.

Additionally, Fig. 15 shows that with the constant scale
factor a, as NL increases, the control performance converges
to an underlying trajectory that is uniquely decided by the
DLQR as soon as Q and R are identified; this is the reason
for the higher tracking accuracy with LMPC than that with
TMPC-36 as discussed in part A of this section. Fig. 13 and
Fig. 15 indicate that with large NL , adjustment of a cannot
efficiently affect the path tracking control performance.

As discussed above, for realizing online adapting control
performance to the varied driving conditions, a regulated
principle for Laguerre parameters is simply given as follows:

set a low term number (NL ≤ 4); therefore the scale factor a
can be regarded as a fine-tuning knob, which can be adjusted
online to the current dynamic stability and tracking accuracy
requirements.

Then, it can be found in Fig. 9 that both the condition
number and the condition number gaps between different Np
are significantly reduced by LEMPC. Considering constant
Laguerre parameters (a = 0.9,NL = 2), switching Np at the
3rd second; the control inputs and control input increments of
LEMPC and traditional MPC are shown as Fig. 16. It shows
that the fluctuation of control input during switching Np can
be largely reduced by employing LEMPC.

For illustrating the impact of Np on LEMPC path tracking
control performance, set a severe driving condition (Vxd =
20 m/s,µij = 0.4), the compared results of controllers with
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FIGURE 13. Path tracking control performances for different NL and a under conditions of Vxd = 15 m/s, µij = 0.5. (a) Lateral position tracking.
(b) Yaw angle tracking. (c) Lateral position tracking. (d) Yaw angle tracking.

FIGURE 14. Path tracking control performances for different a under severe conditions of Vxd = 22 m/s, µij = 0.3. (a) Control inputs of path
tracking controllers. (b) Yaw angle tracking.

FIGURE 15. Path tracking control performances for different NL under conditions of Vxd = 15 m/s, µij = 0.5. (a) Lateral position tracking.
(b) Yaw angle tracking.

different prediction horizon settings are shown in Fig.17,
in which the LEMPC controllers both with fixedNp of 20 and
36 are set as the comparisons to highlight the advantage

of controller with varied Np. It can be found that vehicle
manoeuvred by controller with fixed short Np experiences
serious dynamic unstability during severe driving condition;
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FIGURE 16. Control input of the path tracking controller during switching Np. (a) Control input increments of the path tracking controllers.
(b) Control inputs of the path tracking controllers.

FIGURE 17. Path tracking control performances for different Np settings. (a) Lateral position tracking. (b) Yaw angle tracking.

controller with fixed longNp can ensure the dynamic stability
of the vehicle, but during dynamic stable driving conditions,
the tracking accuracy makes concession for the conservative
dynamic stability; for controller with variable Np, the rela-
tively high tracking accuracy is ensured by online choosing
a short Np, which is elongated online to a long length to
enlarge stable margin only during dynamic unstable con-
ditions, therefore the vehicle dynamic stability can also be
guaranteed.

In the last simulation, the Np is online adjusted at given
simulation times, actually, which should be adjusted accord-
ing to current or predicted future vehicle states and control
requirements. The advanced adjustment method should be
studied in future work, and the main idea can be summarized
as follows: First, build the stability boundary in the stability
phase plane, and judge whether the current or future vehicle
dynamic stability exceeds dynamic stable region. Then, if the
vehicle be manoeuvred within the dynamic stable region,
the prediction horizon can be set as a minimum value; oth-
erwise, the prediction horizon should be online adjusted to a
relative long length to ensure the vehicle dynamic stability.

V. CONCLUSION AND FUTURE WORK
An improved path tracking controller based on LEMPC
for a FAW-EV is proposed. A parsimonious description for
the future control input increment trajectory is achieved by
Laguerre function fitting, and an exponential weight is intro-
duced to solve themathematical problem inherent in theMPC

path tracking controller. The proposed method significantly
reduces the computational complexity without sacrificing
path tracking control performance (the dimension of the opti-
mization control parameter matrix is reduced from 37 to 5),
and the robustness of FAW-EV path tracking control sys-
tem is enhanced by solving the mathematical problem (with
95.11% reduction of ill-conditioning at Np = 36). Moreover,
the proposed method provides parameterization, which is key
to adjust the path tracking control performance online for
diverse driving conditions.

The main idea for adjusting parameters of LEMPC path
tracking controller in this paper is only a preliminary work.
For fully taking advantage of the adjustability of the LEMPC
path tracking controller, the relation between the vehicle per-
formances (such as tracking accuracy and dynamic stability)
and parameters of LEMPC (NL , a, and Np) should be finely
quantized, and a more refined online-regulated method for
adaptive path tracking control should be developed in future
work.
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