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ABSTRACT Left ventricle (LV) segmentation is essential to clinical quantification and diagnosis of cardiac
images. While most existing LV segmentation methods focus on cardiac images of single modality or multi-
modality, few have been devoted to images of mixed-modality. By Mixed-Modality, we mean that different
modalities exist in the database, while for every subject, there is only one modality. In this paper, we pro-
pose a newly invented LV segmentation method from mixed-modality images: modality adaptation shape
regression (MA-Shape). Compared to single-modality or multi-modality methods, the proposed MA-Shape
can 1) be applied to images of new modality during the test phase, which improves the generalization of
the learned methods, and 2) take advantage of existing samples of different modalities, which alleviates
the high demand for multi-modality data. To achieve this, we propose a modality adaptation module to
enhance the shape consistency between the MR and CT, and therefore improve the generalization of the
model learned in one modality to new modalities. The experiments on a dataset with MR sequences
of 145 subjects and CT scans of 96 subjects validate that the proposed MA-shape can achieve excel-
lent performance by learning common shape information from images of mixed modality and improve
the cross-modality generalization of shape regression model learned on images of one modality. These
advantages not only provide an efficient way of utilizing mix-modalities data during model learning but
also enables an effective and flexible way of applying automated cardiac function assessment in clinical
practice.

INDEX TERMS Left ventricle segmentation, mixed-modality images, modality adaptation shape regression.

I. INTRODUCTION
Cardiovascular disease (CVDS) is one of the Asia-pacific
region’s biggest non-communicable diseases challenges
[1], [2]. For clinical practice, diverse medical imaging tech-
nologies ( MRI, CT, PET) are crucial support technologies
for cardiovascular diseases diagnosis. Left ventricle (LV) seg-
mentation in short-axis sequences is one of the prerequisites
and essential steps to clinical cardiac contractile function
quantification, which includes estimation of ejection fraction
and the calculation of left ventricle (LV) end-diastolic and
end-systolic volumes.

Manual segmentation by radiologists is a sterile, time-
consuming and inefficient work which spend about
20 minutes for the MR sequence of one subject, according
to the statistics. Meanwhile, there exist high variabilities
intra- and inter-observers due to clinical experience and the
interpretation of the myocardium. Automated left ventricle
segmentation captures researchers’ attention because it can
free radiologists from the predicament of tedious, ineffi-
ciency, and inconsistency work caused by the enormous
amounts of medical images from different modalities [3]–[6].
However, obtaining exact and correct boundary of epicardium
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(epi) and endocardium (endo) is still an extremely challeng-
ing ambition due to the flow of blood, the variability of
shape triggered by expansion and contraction of the heart,
the overlap of intensity, the difference between subjects,
the impact of disease, papillary muscles and inherent noise,
etc.

Existing research regarding LV segmentation in short-axis
sequences can generally be categorized as two groups:
• Single-modality based methods. Single-modality based
methods are mainly consist of MR-based methods and
CT-based methods. For the MR-based methods, differ-
ent intensity thresholding basedmodel [7], pixel or voxel
classification [8], [9] and active contours based mod-
els [10]–[17] are employed for cardiac MR images.
Then the strong prior information has consisted in
automated LV segmentation for best effect on MR
images. Reference [18] introduced the early appli-
cation of the global shape to LV segmentation on
MR images. Lekadir et al. [19] proposed a framework
for LV segmentation that is based on shape extrac-
tion and interpretation in 4-D CMR images. A novel
alternate bottom-up modeling method was presented
to segment LV on MR images [20]. A partial sparse
shape framework was proposed in [21] that express
the shape of the left ventricle on MR images. In the
work of Avendi et al. [22], a combined deep-learning
and deformable-model approach were implemented to
segment the LV in short axis MR images. The research
proposed by Romaguera et al. [23] tackle the problem
of automated LV segmentation through fully convolu-
tional neural networks which are trained end to end
on MR images. Tran [24] employ the deep FCN to
perform left ventricle segmentation on MR images.
Meanwhile, many researchers pay attention to cardiac
CT images. Reference [25] propose an active contours
based method which combining the localizing region
and edge-based intensity to segment left ventricle in
cardiac CT images. Ecabert et al. [26] propose a model-
based approach by progressively increasing the degrees-
of-freedom of the allowed deformations for the fully
automatic segmentation in 3-D CT images. Marginal
space learning and steerable features are employed on
the four-chamber heart segmentation from 3-D CT vol-
umes [27]. Dahiya et al. [28] proposed aa highly cus-
tomized parametric model to segment myocardial in
CT images. Zhuang et al. [29] propose a multi-atlas
whole heart segmentation on CT images. Besides, there
are many other methods which are designed on the
single modality images. However, unlike the previous
methods, they can apply to different modality images
through a new training stage on the images of new
modality images. For instance, Weng et al. [30] pro-
posed a threshold based method on a likelihood measure
for ventricle detection application to cardiac MR and
CT images. Reference [31] describes a segmentation
technique which contains the global localization step

and local deformation step, and then it has been tested
on the cardiac MR and CT images. Bernier et al. [32]
employ graph cut to segment left ventricle on the MR
and echocardiographic images. Reference [33] propose
a snake model based on the MR images, CT images
and ultrasound images. Li et al. [34] present a semi-
automated segmentation method which performs well
on CT and MR images.

• Multi-modality based methods. Unlike the above single-
modality based methods, some researchers propose the
multi-modality based methods. These methods need the
different modality images which collected on the same
patients. For instance, Bertone et al. [35] use the cine-
MR segmentation on the same patient to assist the seg-
mentation of ultrasound cardiac images. First, they find
the close registration of the MR images for the ultra-
sound volume. Then the ultrasound segmentation pro-
cess can reference the shape constraint from cine-MR.

Although these previous studies have achieved good per-
formance, they still ignore the following questions due to the
modality of images, which can prevent them from effectively
utilizing medical images of different modality and general-
izing well to new modalities once learned from one specific
modality.

• Lack of generalization to a new modality. Single-
modality based method and multi-modality application
based method cannot be applied directly and accurately
to novel modalities because they are different from the
training samples. Due to the different imaging proce-
dure, the appearance of cardiac in MR images and CT
images differ a lot from each other, as can be observed
in Fig.1. The boundary of the myocardium, the intensity
of the cavity and myocardium, demonstrate the clear
difference betweenCT images andMR images. All these
differences make a learning method trained on samples
of one modality invalid for new modality. The single-
modality based method need to be retrained on new

FIGURE 1. The shape of myocardium on MR images and CT images
demonstrate subtle difference, which makes it possible for modality
adaptation shape regression. (a) Shape of myocardium on cardiac MR
images (b) Shape of myocardium on cardiac CT images.
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FIGURE 2. Modality adaptation shape regression for left ventricle segmentation on mixed MR and CT images.

samples before being applied to images of newmodality,
which again increase the demand of manually-labeled
training samples.

• High cost of multi-modality data. The multi-modality
based methods, such as [35], combine complementary
information from multiple modalities of the same sub-
ject to improve the reliability. However, multi-modality
data can not always be obtained in routine clinical
practice and adds extra cost for patients. Besides,
the obtained method is still restricted to the modalities
contained in the training samples.

To overcome these problems, we propose a newly-invented
LV segmentation method MA-Shape for images of mixed-
modality. By Mixed-Modality, we mean that more than one
modality exists in the training samples, while for every
subject, only one modality exists. Compared to single-
modality or multiple-modality methods, the proposed mixed-
modality method can 1) be applied to images of newmodality
during the test phasewithout retrained on new samples, which
improves the generalization of the learned methods, and
2) take advantage of existing samples of different modalities
during the model learning phase, which alleviates the high
demand for data for multi-modality.

To achieve this, we propose for mixed-modality car-
diac images a novel adaptation module which can improve
the consistency of MR images and CT images concerning
the shape of cardiac myocardium. The underlying assump-
tion of modality adaptation is that the shape of cardiac
myocardium share similarities for different modalities image,
while the appearance change doesn’t affect the shape of the
myocardium, as can be observed in Fig.1 and Fig.2. With
this modality adaptation module, we propose an effective
LV shape regression methodMA-Shape that can successfully
handle images of novel modality without retrained on new
samples with the learned segmentation model.

The proposed MA-Shape is constituted of four successive
steps: 1) cardiac image representation, which aims to capture
the shape and appearance information of cardiac; 2) modality

adaptation(MA) of mixed-modality images, which improves
the shape consistency between the representation of MR
and CT images and reduces the inconsistent information
with dimension reduction; 3) shape-aware feature enhance-
ment(SFE), which further enhance the shape awareness of
the feature with supervised shape information, and 4) shape
regression, which directly obtains the final myocardium con-
tour from the shape-aware feature with multi-output support
vector regression (MSVR).

We validate the proposed method on a mixed-modality
cardiac database, which includes MR scans of 145 subjects
and CT scans of 96 subjects. The average dice metric(DM),
epicardium error and endocardium error are 91.1%, 1.74 mm,
1.46 mm on CT images, and 90.9%, 2.22 mm, 1.54 mm
on MR images, respectively. Particularly, as demonstrated in
the experiments, the proposed modality adaptation module
improves the generalization of the learned model to new
modalities and improves the performance of single modality
method with the incorporation of training samples of new
modalities.

In summary, the main contributions of our paper include:
• We propose, for the first time, a novel modality adap-
tation module for the mixed-modality database, which
is capable of generalizing a machine learning model
learned from data of one modality to data of novel
modalities. It alleviates the requirements of training
samplings in the learning phase and also enables deploy-
ing machine learning models to new modalities without
the need for retraining.

• We propose an effective shape regression model
MA-Shape for LV segmentation, which combines the
advantages of modality adaptation and supervised fea-
ture learning, and obtains accurate segmentation perfor-
mance on Mixed-Modality images of 145 MR scans and
96 CT scans.

The remaining of the paper is as follows. In Section II,
the modality adaptation of shape regression for left ventricle
segmentation on mixed MR and CT images is presented.
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Then we give the database, experiment details, results and
discussions in Section III. Section IV gives the conclusion.

II. MODALITY ADAPTATION OF SHAPE REGRESSION
In this paper, the left ventricle segmentation on mixed-
modality images are modeled as the multi-output shape
regression problem, with four consecutive steps (as illustrated
in Fig. 3): image representation, modality adaptation(MA)
of mixed-modality images, shape-aware feature enhance-
ment(SFE) and shape regression. Hereafter, the mixed-
modality image dataset can be denoted by IM1 =

{I1,1M1
. . . Ia1,b1M1

} and IM2 = {I
1,1
M2
. . . Ia2,b2M2

}, where M1 and
M2 are the first modality and second modality, a1 and a2
are the number of subjects in M1 and M2, b1 and b2 are the
frame number in one subject. Besides, we equally sample
the N1 and N2 pixels in the endocardium and epicardium
and use their coordinates as the ground truth for each image:
y = {(x, y)endo1 . . . (x, y)endoN1 , (x, y)epi1 . . . (x, y)epiN2}. For
the different modalities image IM1 and IM2, the ground
truth can be constructed by YM1 = {y1,1M1 . . . y

a,m
M1 } and

YM2 = {y
1,1
M2 . . . y

b,n
M2}.

FIGURE 3. The shape regression error of MA-Shape on mixed-modality
images, and comparison with settings of single modality and
mixed-modality without modality adaption. The M1 is CT in
mixed-modality scenario.

A. IMAGE REPRESENTATION
Considering the mixed-modality images with different
appearance and similar shape, we first obtain a representation
which can model the shape of myocardium and dominate
spatial structure. In this paper, we employ the GIST [36]
to achieve the image representation of our mixed-modality
dataset due to its capability of capturing both the texture
information and the spatial layout.

First, the input image is segmented by a k by k grid. Then
32 Garbor filters are employed at 4 scales, 8 orientations,
producing 32 feature maps on every grid. Then the Gist
descriptor of an input image can be obtained by concatenating

the averaged values of all 32 feature maps, results a vector of
length l = 32k2. For a dataset of mixed-modality containing
the short-axis view in MR cardiac images IM1 and CT cardiac
images IM2 , their representation can be denoted as XM1 =

{X1,1
M1
. . .Xa1,b1M1

} ∈ Ra1b1×l and XM2 = {X
1,1
M2 . . .X

a2,b2
M2 } ∈

Ra2b2×l , respectively.

B. MODALITY ADAPTATION OF
MIXED-MODALITY IMAGES
Given the observation that cardiac images of different modal-
ities share similar myocardium shape and show different tex-
ture information, we propose a shared matrix decomposition
of the MR and CT representations XM1 and XM2 to improve
their shape consistency while reducing the inconsistent tex-
ture information.

argmin
W ,UM1 ,UM2

‖XM1 − UM1W‖
2
F + ‖XM2 − UM2W‖

2
F , (1)

where UM1 ,UM2 are new representations of XM1 ,XM2 , and
rows of W ∈ Rl′×l acts as the bases in the transformed
space, like dictionary in sparse coding, DCT basis, wavelets,
etc. To ensure the uniqueness of the decomposition, each
row of W is conditioned as ‖Wi‖ = 1, i = 1, 2, . . . , l ′.
In the following, we aim at obtaining a robust shape-aware
transformation matrix W , which is capable of capturing the
common shape characteristic of MR and CT images, while
eliminating the different texture information.

1) SHAPE REPRESENTATION WITH GRAPH SPECTRUM
We first extract the shape information of each modality with
graph spectrum, due to its role of identifying the boundary
of different parts in image segmentation. For an image I ,
we can construct a graph G = (V , E), where V is the set of
nodes, i.e., features in each position of the image, E denotes
the connectivity of the graph with an adjacent matrix S, and
S(i, j) is the similarity measurement between features of two
positions. S is computed as:

S(i, j) = h(f (I (i)), f (I (j))) (2)

where f extracts the image feature in each position, and
h() computes the similarity between two features and can
be implemented as Gaussian kernels or inner product. The
spectrum of a graph is by definition the spectrum of the
Laplacian matrix:

L = D− S,

D = diag(d1, d2, . . . , dn) (3)

with di =
∑

j S(i, j). The eigenvectors E of L contain shape
information of objects from large to small size, as indicated
by the nonzero eigenvalues in ascending order.

2) SHAPE-AWARE MODALITY ADAPTATION
To extract the common shape information of two modalities,
the shape information of each modality is first obtained from
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the average adjacent matrix of all images:

SM (i, j) =
1
num

∑
r

h(f (I rM (i), f (I rM (j))), M ∈ {M1,M2}

(4)

where r index the image in one modality, the num index the
number of images in one modality(num = a1b1 for first
modalityM1 or num = a2b2 for secondmodalityM2). If inner
product is used for h and mean-removed GIST feature is used
for f , then the adjacent matrix becomes the covariance matrix
of the image representations.

SM = (XM − X̄M )T (XM − X̄M ) (5)

where X̄M is the mean GIST vector of all images in modal-
ity M . Then we have

LM = DM − SM , M ∈ {M1,M2} (6)

Therefore, the global shape information of M1 and M2 can
be obtained from the eigenvectors of LM1 and LM2 , which are
denoted as EM1 and EM2 .
We formulate extraction of common shape information

from two modalities as optimizing W to minimize the shape
difference of between of M1 and M2:

argmin
W
‖W (EM1 − EM2 )‖

2
F (7)

Besides, we also make the dimension of the adapted represen-
tation l ′ less than l to eliminate irrelevant texture information.

C. SHAPE-AWARE FEATURE ENHANCEMENT
To model the relationship among different images, and
enhance the shape awareness of the feature, a further SFE for
the modality-adapted representations UM1 , UM2 is proposed.
The underlying assumption is that if image I i and I j have
similar shapes yi, yj, then their representations should also
be close to each other. In this paper, we model the mutual
relationship among different samples by constructing a sec-
ond proximity graph Gshape = (V shape, E shape) based on the
ground truth shapes of all mixed modality images. Then our
shape-aware feature enhancement is modeled as:

argmin
U

∑
m,n

||Um
− Un

||
2
FS

shape
m,n (8)

Here U = {UM1 , UM2} is the combination of the new repre-
sentation for the two modalities. The Sshapem,n is the similarity
of two different shapes ym and yn, which is calculated by the
Gaussian kernel.

Sshapem,n = exp(
−||ym − yn||2

2σ 2 ) (9)

for m, n ∈ {1, . . . a1b1 + a2b2}.

D. SOLUTIONS VIA OPTIMIZATION
We integrated the Eqs. 1,7, and 8 to obtain the final objective
function of our shape-aware modality adaptation:

argmin
W ,UM1 ,UM2

‖XM1 − UM1W‖
2
F

a1b1
+
‖XM2 − UM2W‖

2
F

a2b2

+α‖W (EM1 − EM2 )‖
2
F + β

∑
m,n

||Um
− Un

||
2
FS

shape
m,n

(10)

The α and β are the regularization parameter(α + β = 1).
When l ′ < l, the first two terms are the reconstruction
error of low rank decomposition. Assume that rows of W
are orthogonal to each other, i.e, WW T

≈ I , then we have
UM1 = XM1W

T , UM2 = XM2W
T . The function in Eq. 10

becomes:

argmin
W ,WW T=I

α‖W (EM1 − EM2 )‖
2
F

+β
∑
m,n

||(Xm − Xn)W T
||
2
FS

shape
m,n

= Tr(W (α1E1ET + βXTLshapeX )W T )) (11)

where Tr() computes the trace of a matrix,1E = EM1−EM2 ,
X = {XM1 ,XM2}, and L

shape is the Laplacianmatrix ofGshape,
i.e, Lshape = Dshape − Sshape.
We adopt the truncated Singular Value Decomposition

(SVD) to solve this minimization problem. The pseu-
docode for our modality adaptation algorithm is illustrated in
Algorithm 1.

Algorithm 1 Modality Adaptation Shape Regression
Input: Mixed modality images IM1 and IM2, and their label

YM1 and YM2;
Output: A robust shape-aware transformation matrix W ,

New feature matrix UM1 and UM2 of mixed modality
images IM1 and IM2;

1: Compute the image representation XM1 and XM2 of the
images IM1 and IM2 using GIST as the description in
Section II.C.

2: Construct the objective function (10) and calculate a
robust shape-aware transformation matrix W by solving
the objective function (10) using (11)

3: Compute the new feature matrixUM1 andUM2 asUM1 =

XM1W
T and UM2 = XM2W

T .

E. SHAPE REGRESSION OF LEFT VENTRICLE
We formulated the left ventricle segmentation as a shape
regression problem. Given the set of feature UM extracted by
the proposedMA-Shape and the output YM with dimensional-
ity P = N1+N2, we use the MSVR for the shape regression
of left ventricle by finding the regressors wv and zv for every
output that minimize the following function,

Lp(w, z) =
1
2

P∑
v=1

||wv||2 + C
o∑

g=1

Lug (12)
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where

z = [z1, . . . , zP]T .

ug = ||eg|| =
√
eTg eg

eTg = yTg − ϕ(xg)
Tw− zT (13)

The function ϕ() represents a nonlinear transformation to the
feature space, C represents a hyper parameter which deter-
mines the trade-off between the regularization and the error
reduction term. The ε-insensitive quadratic loss function L(u)
is defined as:

L(u) =

{
0, u < ε

u2 − 2uε + ε2, u ≥ ε
(14)

III. EXPERIMENTS AND ANALYSIS
A. DATASET
The proposed modality adaptation of shape regression has
been evaluated on the mixed-modality cardiac images. The
mixed-modality cardiac images contain 2D short-axis cine
MR and CT cardiac images. Cardiac MR images are col-
lected from three hospitals affiliated with two health care cen-
ters(London Health Care Center and St.Josephs Health Care).
It contains 2900 images, which is collected from 145 subjects,
each subject has 20 images throughout a cardiac cycle. The
average age of all the subjects is 58.9 years old(range from
16 yes to 97 yes). The average pixel spacings of the MR
images is 1.5625 mm/pixel (range from 0.6836mm/pixel to
2.0833 mm/pixel). The cardiac CT images are collected from
St.Josephs Health Care. It contains 288 images, which is
collected from 96 subjects, each subject has three images
throughout a cardiac cycle. The pixel spacing of the CT
images range from 0.5456 mm/pixel to 0.5968 mm/pixel).
All the cardiac MR and CT images are aligned with the size
of 80×80 by the following preprocessing step, labeling, ROI
extracting and resizing. The ground truth labeled by manual
containing the boundary of endocardium and epicardium is
double checked by two radiologists.

B. QUANTITATIVE METRICS FOR EVALUATION
The pixel-wise error of epicardium (Eepi), endocardium
(Eendo) and dice metric (DM) are employed to evaluate the
performance of our method.

The pixel-wise error is the distance between the estimated
boundary and the ground truth which can be defined as:

Eepi/edno =
1
pq

p∑
s=1

q∑
t=1

||Yst − Y Prest ||; (15)

where the p is the number of subjects and the q is the number
of images in one subjects. The Y Pre is the estimated boundary,
and the Y is the ground truth.
The dice metric is used to measure the overlap between the

ground truth and predicted left ventricle area, it can be defined

as:

DM =
1
pq

p∑
s=1

q∑
t=1

(
2|Ast

⋂
Gst |

|Ast | + |Gst |
); (16)

where A is the estimated left ventricle, and G is the ground
truth.

C. CONFIGURATIONS
To test the proposed method in a mixed-modality scenario,
we employ a modified 5-fold cross-validation scheme under
the context of mixed modality: the subject of the first modal-
ity (M1) is split into training set (80%) and test set (20%), and
the subject of the second modalityM2 is added into the train-
ing set to help during model training. When a single modality
scenario is used, the standard 5-fold cross-validation based on
subjects is employed.

D. PERFORMANCE OF MA-SHAPE AND EFFECTIVENESS
OF MODALITY-ADAPTION
In this section, we evaluate the performance of MA-Shape
for the left ventricle segmentation on mixed-modality
images and the effectiveness of the proposed modality-
adaption module. To this end, LV segmentation performance
is examined on three different settings: single modality,
mixed-modality without MA, mixed-modality with MA
(MA-shape). TABLE 1 and TABLE 2 show the results when
M1 is CT and MR, respectively. Fig.4 and Fig.5 show the
bar plots of the shape regression error for both cases. It can
be drawn from these two tables that: 1) MA-Shape delivers
excellent performance for LV segmentation in for both CT
(Eepi = 1.74 ± 0.96 mm, Eendo = 1.46 ± 0.99 mm and
DM = 91.1%) and MR (Eepi = 2.22 ± 0.97 mm, Eendo =
1.54± 0.94 mm and DM = 90.9%) images; 2) Using dataset
of a second modality without modality-adaption leads to
obvious decrement of segmentation performance for both CT
and MR images; 3) The proposed modality-adaption module
effectively helps improve the segmentation performance by
using dataset ofM2 and extracting the common shape features

TABLE 1. The performance of MA-Shape on mixed-modality images, and
comparison with settings of single modality and mixed-modality without
modality adaption. The M1 is CT in mixed-modality scenario.

TABLE 2. The performance of MA-Shape on mixed-modality images, and
comparison with settings of single modality and mixed-modality without
modality adaption. The M1 is MR in mixed-modality scenario.
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FIGURE 4. The shape regression error of MA-Shape on mixed-modality
images, and comparison with settings of single modality and
mixed-modality without modality adaption. The M1 is MR in
mixed-modality scenario.

from the two modality. Visualization of the segmentation
results can be seen in Fig. 6(a,b,c) and Fig. 7(a,b,c). Obvi-
ously, the MA-Shape which focuses on the shape similarity
of mixed-modality images can assist well the left ventricle
segmentation.

E. IMPROVEMENT OF ACROSS MODALITIES
GENERALIZATION FOR SINGLE MODALITY METHOD
In this section, the benefit of the proposed MA module is
demonstrated regarding across-modality generalization: the
M1 is used for model training, and the M2 is used for
model testing. TABLE 3 and TABLE 4 show the results

TABLE 3. Cross-modality generalization from MR to CT with the proposed
modality adaption module. The proposed modality-adaption module
greatly improves the generalization of the segmentation method from MR
to CT.

TABLE 4. Cross-modality generalization from CT to MR with the proposed
modality adaption module.The proposed modality-adaption module
greatly improves the generalization of the segmentation method from CT
to MR.

when M1 is CT and MR, respectively. It can be drawn
that in the cross-modality scenario, the proposed modality-
adaption module greatly improves the generalization of the
segmentation method from MR to CT or from CT to MR.
Fig.8 and Fig.9 show the bar plots of the shape regression
error for both cases. When generalization from MR to CT,
modality adaption helps reduce the error of epicardium and
endocardium by 36.24% and 35.71%, and improve the dice
metric with 5.3 percents. When generalization from CT to
MR, modality adaption helps reduce the error of epicardium
and endocardium by 33.80% and 39.94%, and improve the
dice metric with 7 percents.

F. ROLE OF SHAPE-AWARE FEATURE ENHANCEMENT
The benefit of the SFE is also validated in themixed-modality
scenario by comparing MA-shape with its variant where the

FIGURE 5. Visualization results of different methods on CT images, MA-Shape, single-modality (CT), Mixed-modality without MA,
Mixed-modality without SFE, SDL, Level Set and U-Net. The green curves are the automated segmentation results of different
method, and the ground truth are depicted by red curves. (a) MA-Shape. (b) Single-modality. (c) Without MA. (d) Without SE. (e) SDL.
(f) Level Set. (g) U-Net.

FIGURE 6. Visualization results of different methods on MR images, MA-Shape, Single-modality(MR), Mixed-modality without MA,
Mixed-modality without SFE, SDL, Level Set and U-Net. The green curves are the automated segmentation results of different
method, and the ground truth are depicted by red curves. (a) MA-Shape. (b) Single-modality. (c) Without MA. (d) Without SE. (e) SDL.
(f) Level Set. (g) U-Net.
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FIGURE 7. Cross-modality generalization from MR to CT with the
proposed modality adaption module. The proposed modality-adaption
module greatly improves the generalization of the segmentation method
from MR to CT.

FIGURE 8. Cross-modality generalization from CT to MR with the
proposed modality adaption module. The proposed modality-adaption
module greatly improves the generalization of the segmentation method
from CT to MR.

TABLE 5. The performance of and shape-aware feature enhancement on
CT images. It can further improve the segmentation performance on CT
images.

SFE module is removed. TABLE 5 and TABLE 6 show the
results when M1 is CT and MR, respectively. Fig.10 and
Fig.11 show the bar plots of the shape regression error for
both cases. It’s obvious that after modality adaption, the SFE
module can further improve the segmentation performance.
The segmentation results are visualized in Fig.6(a,c,d) and
Fig.7(a,c,d).

FIGURE 9. The performance of SFE on CT images. It can further improve
the segmentation performance on CT images.

TABLE 6. The performance of and shape-aware feature enhancement on
MR images. It can further improve the segmentation performance on MR
images.

FIGURE 10. The performance of SFE on MR images. It can further improve
the segmentation performance on MR images.

G. COMPARISON WITH EXISTING METHODS
The proposed MA-Shape outperforms existing methods on
LV segmentation. The level-set based segmentation method,
the shape regression-based method employing SDL and
U-Net are used for comparison. Table 7 and 8 demonstrate the
results when M1 is CT and MR, respectively. Fig.12 shows
the dice metric of MA-Shape comparing with SDL, Level
set and U-Net on CT images and MR images. MA-shape
outperforms level set and U-Net regarding dice metric, and
outperforms the direct shape regression method concern-
ing endocardium and epicardium error and dice metric,
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FIGURE 11. The performance of MA-Shape comparing with SDL, Level Set
and U-Net on CT images and MR images. MA-shape achieves the best
performance than the SDL, Level Set and U-Net both on the CT images
and MR images.

TABLE 7. Comparison between MA-Shape and existing segmentation
methods on CT images. MA-shape achieves the best performance than
the SDL, Level Set and U-Net on the CT images.

TABLE 8. Comparison between MA-Shape and existing segmentation
methods on MR image. MA-shape achieves the best performance than
the SDL, Level Set and U-Net on the MR images.

demonstrating the effectiveness of the proposed MA-shape.
The segmentation results are visualized in Fig.6(a,e,f,g) and
Fig.7(a,e,f,g).

IV. CONCLUSION
In this paper, we proposed a modality adaptation shape
regression method (MA-Shape) for LV segmentation on
mixed-modality images. The LV shape was estimated by
regression from image representations, which underwent a
newly-designed modality adaption module and a supervised
feature enhancement module. The MA module effectively
improved the performance of LV shape regression and the
cross-modality generalization of MA-shape by extracting
common and intrinsic shape feature in each modality. The
SFE module further brought error reduction by enhancing
the expressiveness in the image representation. Experimental

results on a mixed-modality database with MR sequences
145 subjects and CT scans of 96 subjects showed that our
method could achieve high accuracy for left ventricle seg-
mentation on both of the CT andMR images and lead to better
cross-modality generalization. Besides, MA-Shape outper-
formed its competitors, the shape regression method SDL
and the segment method Level set. These advantages reveal
the efficiency of utilizing training data of mixed-modalities
during model learning and the flexibility of cross-modality
deployment in the practical application of the proposed
MA-shape.
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