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ABSTRACT The BPMN design models are widely used in the software development process. Owing to
the lack of BPMN standard semantics, formal verification is used to validate whether the BPMN design
model is free of undesirable properties. The primary challenges of BPMN design model verification are
the enormous size and complexity of BPMN design models; these challenges may lead to time-consuming
processes for model abstraction and overcoming the state space explosion problem. This paper proposes a
hierarchical verification technique for the state space analysis based on a colored Petri net (CPN). A BPMN
partitioning technique and rules for the transformation of a BPMN into a CPN model are provided. The
partitioning approach supports the unstructured BPMN design model, and the obtained CPN model also
supports hierarchical verification. To validate and analyze the BPMN design model, the transformation
technique and state space generator are implemented as a BPMN verification framework. This method is
a viable option for the software process designers and is suitable for the large-scale BPMN design model
verification.

INDEX TERMS Formal verification, BPMN, colored Petri net, model transformation, hierarchical
verification.

I. INTRODUCTION
The BPMN design models are used to bridge the commu-
nication gap between software process designers and devel-
opers. Business process model notation (BPMN) [1] enables
designers to design various types of software models, such
as process diagrams, orchestration diagrams and choreog-
raphy diagrams. BPMN design models are likely to have
flaws or undesirable properties as a result of the use of
inappropriate or ambiguous notation. Specifically, the huge
design model of a concurrent system that has sophisti-
cated behavior cannot be validated by using ordinary testing
approaches or general formal verification techniques.

The main obstacle of BPMN design model verification is
the state space explosion problem [2], which is the result of
the huge abstract model that produces tremendous state space
size exceeding the capacity of the verification tool. The state
space size of the abstract model is dependent on the num-
ber of activities, the control flow dependency [7], the data
dependency, the data type variety and the capacity of the
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concurrent execution level of the designed model. Hier-
archical verification [9] is an alternative solution to
resolve or avoid the state space explosion problem. In hier-
archical verification, the BPMN design model is sliced into
appropriate partitions, and structural-based partitioning is
applied to reduce the size of the abstract model. Each partition
can be chosen to be verified arbitrarily or determined as a
black-box process for the hierarchical verification. However,
these techniques are complicated for designers who are not
familiar with formal languages and verification tools; thus,
various researchers have proposed solutions to perform the
verification procedures.

This paper provides a hierarchical verification approach
that is an extension of our previous work [5], [6]. The
rules for BPMN transformation into a CPN model are
extended to handle both structured and unstructured BPMN
models [8]. Additionally, the BPMNmodel partitioning tech-
nique is modified by applying the weight-based consider-
ation. We also provide a hierarchical verification approach
using state space analysis. The state space is constructed from
the CPN sub-nets derived from the automated BPMN model
transformation. The sweep-line method [14], [15] is applied
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in the state space construction algorithm to decrease the state
space size. For practical use, the proposed techniques are
implemented as a Java application tool named CP4BPMN
to perform BPMN design model verification. This process
can reduce time consumption and mistakes and increase the
transparency of complicated verification procedures.

This paper focuses on a hierarchical verification tech-
nique to verify large-scale BPMN design models. This
paper is organized as follows: section 2 presents the back-
ground of the BPMN software process model and the
model checking procedures. Section 3 discusses the related
research. Section 4 describes the proposed approach and its
implementation. Finally, the experiments, results, and conclu-
sions are presented in Section 5.

II. BACKGROUND
BPMN provides graphical standard notation to design soft-
ware process models, and many software products support
the BPMN standard. The BPMN design model of software
processes is a collection of BPMN elements composed of
control flows, data flows and related activities that produce
the specific operation to achieve the business requirements.
The modelers can use these elements to describe the BPMN
process diagram or collaboration diagram for more sophisti-
cated behavior. The core subset of BPMN elements is divided
into six groups: 1) Event elements, 2) Task elements, 3) Gate-
way elements, 4) Connecting elements, 5) Artifacts, and
6) Swim-lanes and pools. The responsibilities of each element
and the formal definition of BPMNmodels are detailed in [5].
Figure 1 shows the core subset of BPMN elements.

FIGURE 1. Core set of BPMN elements [1].

Model checking [10] is the formal verification approach,
and the verification procedure requires an abstract model
written in formal language. The abstract model is used to
generate a state space and explore the model’s properties.
This step requires a state space generator, including temporal
logic [11] interpreted over the state space. The core verifica-
tion procedure consists of five steps: 1) defining the objec-
tive, scope and boundary of verification 2) determining the
formal language [12] used for modeling an abstract model,
3) formalizing the desirable properties in temporal logic,
4) validating an abstract model using the model simulation
approach or state space analysis approach, and 5) the resulting
interpretation.

CPN is an outstanding formal modeling language for
designing and verifying a concurrent system. CPN is an
enhanced form of the traditional Petri net (PT) [13] obtained
by integration of the advantages of the Petri net semantics
and programming language. The elements of CPN consist of
place, transition, guard condition, arc, arc inscription and
colored set. A directed arc is used as a bridge between place
and transition. The place serves as a container for accumulat-
ing tokens. A token’s value is called the token color, whose
data type is defined by the colored set. Transition firing is a
situation where the transition consumes the token at its input
place and produces a token at its output place. This situation
represents a state change in the system. Figure 2 (a) shows the
elements of a CPN, Figures 2 (b) and (c) show the transition
firing, and Figure 2 (d) is an example of a CPN model of a
simple protocol.

A CPN enables modelers to construct compact and param-
eterized models. This feature is suitable for complex model
verification. Several CPN-based verification tools support the
design and verification of concurrent systems and enable
designers to validate CPN models via two modes. Simulation
mode involves checking the model in a particular control
action, whereas verificationmode considers all possible states
of the system. Verification mode relies on a state space gen-
erator to construct the reachability graph. The reachability
graph, or state space graph, consists of nodes and edges.
A node, or marking, represents a system’s state, whereas an
edge represents a state transition, which is the transition’s
firing information, called the binding elements. The func-
tional commands and temporal formulas interpreted over a
state space are used to create the queries for state space
exploration.

State space explosion is a problem in the verificationmode.
The root cause of this problem is the large size and com-
plexity of the model. A CPN model may become large and
inconvenient; thus, it should be broken into CPN submodels
called CPN sub-nets and refined into a hierarchical struc-
ture. To refine the hierarchical structure, black-box behav-
ior, which represents the workings at a higher abstraction
level, replaces the sub-net. The hierarchical structure can also
reduce the complexity and state space size. A hierarchical
CPN model can be combined with reduction methods to
reduce the time consumption and state space storage require-
ments. For instance, the sweep-line method is a state space
reduction technique used to avoid representing the entire state
space. This method is exploits certain states that store only
small fragments.

Generally, functional commands implemented via tempo-
ral logic are provided for creating queries to inquire about
the state space. The type of temporal logic depends on the
verification tool and includes linear temporal logic (LTL),
computation tree logic (CTL) and CTL* [11]. The designers
must express queries in the appropriate query syntax, and the
verification tools may require additional libraries to explore
the state space.
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FIGURE 2. CPN elements and example of a CPN model [3]. (a) Elements of CPN. (b) Before transition firing. (b) After
transition firing. (d) Example of CPN model of a simple protocol.

III. RELATED WORK
Several BPMN verification are currently being employed,
including both BPMN model transformation and behavioral
verification using state space analysis. The model abstrac-
tion techniques and verification tools used in each paper
are different. In the area of BPMN verification using a col-
ored Petri net approach, transformation frameworks and CPN
tools are used for flaw detection in BPMN design models.
In [16] and [17], the transforming techniques were imple-
mented based on BPMN 2.0 and CPN paradigms. The trans-
formation tools can extract the BPMN elements in XMI
format and transform them into CPN XML-based represen-
tations. This representation can be supported and verified
via CPN tools. The transformation rules focus on the con-
trol flows of BPMN model, but they do not address the
data flow perspective or the model complexity. Although the
technique of [17] focused on data evaluation of the control
flow, the rules do not cope with the actual input and output
data of a task. Ramadan et al. [18], the authors focused the
BPMN verification on the loop, sub-process and transaction
of the BPMN model. The authors applied the CPN place to
represent the task’s properties; however, they did not pro-
vide a colored set handling and an automated transformation
framework.

The classic Petri net approach is similar to the CPN
approach. In [19], the traditional Petri net was used to rep-
resent the abstract BPMN model by transforming the BPMN
elements via their transformation tool. The abstract model
was expressed in the Petri Net Markup Language. This
work handled the ordinary process design and addressed
the complexity of the sub-process, muti-instance and task
dependency, but the transformation rules did not follow the
data flow perspective. In [20], the formal specification used
the Petri net-based language called ECATNets. The meta-
model for transforming BPMN elements into a Petri net and
framework were provided, and the data flow, control flow,
and multiple instances, including exception handling, can be
addressed using the transformation language defined as the
metadata between BPMN and RECATNet. Next, the Maude

model checker was used to verify the soundness of the
ECATNets model. Although the task dependencies were con-
ducted, the authors did not consider the actual data values
of a task. In [21], an algorithm for reachability checking
and flaw detection techniques were provided using time Petri
nets (TPN) [22]. The abstract model was described using
a formal mapping of the BPMN model into a time Petri
nets model, but the authors did not consider the data flow
of the BPMN model. Similarly, von Stackelberg et al. [23]
and AwadGero and Lohmann [24] performed data flow error
detection in the BPMN model using the classic Petri net
approach. Anti-patterns were applied in the data flow error
detection technique of [23]. They also provided the transfor-
mation rules and state space analysis of BPMN data flow
verification using the model checker LoLA. The techniques
of [23] and [24] focused on data anomaly detection in BPMN
design models, and the data flow representation was still not
the actual data flow in the BPMN model.

Some studies have included experiments outside the con-
text of the CPN modeling language for verifying BPMN
design models via timed automata [25], Pi-Calculus [26]
and process algebra [27]. Malleka et al. [25] provided an
interoperability checking technique for the BPMN collab-
orating diagram. The BPMN model was mapped to a for-
mal model written in UPPAAL language, that is, timed
automata. The UPPAAL model checker [28] was used for
verifying the model’s properties. This work was limited in
terms of the enormous state space size, and the interoper-
ability checking depended on the resulting responses of the
UPPAAL model checker, including the property formaliza-
tion. Boussetoua et al. [26] provided an intermediate model
to transform the BPMN models to Pi-Calculus. The paper
illustrated only simple BPMN constructs. Malleka et al. [25]
used the equivalence checking technique to encode the
BPMN choreographed model into process algebra and used
the VerChor framework [29] to verify their models.

Durán et al. [33] enhanced the extension BPMN seman-
tics representation supporting conditions and data flow. They
provided the symbolic specification of BPMN enriched with
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FIGURE 3. Overview of the BPMN verification process.

data, for verifying deadlock freedom and reachability activi-
ties. The BPMN models were represented and verified using
Maud’s rewriting logic framework. The authors did not pro-
vide the automated transformation framework. This paper
illustrates only simple BPMN models and their verification
approach still faces with the state space explosion problem.
Massimiliano et al. [34] proposed the fashion to verify the
soundness properties of DPN which is Petri net based pro-
cess model. They illustrated the mapping rules for soundness
checking of the decision enriched with data and decision in
DPN model, it indicate that the advantages of CPN are useful
to verify the soundness properties. This is a reason why we
use CPN to be a formal language for representing abstract
model of our work.

Almost previous related works emphasized only on the
BPMN structural verification which did not consider the
actual input and output data of the tasks so that the state
space size of those works may possibly be handled by a
verification tool used. In contrast, the state spaces size of
the behavioral verification concerning the use the data flows
tends to increase exponentially. Our work will address the
huge state space and improve the CPN model abstraction to
achieve the behavioral verification using the partitioning and
hierarchical approaches.

IV. METHODOLOGY
The intention of this section is to describe our verification
methodology. The overview of the BPMN verification pro-
cess is shown in Figure 3. The methodology is divided into
the transformation stage and verification stage. The transfor-
mation stage describes the related formal definitions, techni-
cal terms of the transformation and framework architecture,
whereas the verification state describes the state space anal-
ysis based on the capability of our framework. On the basis
of the formal definitions in [5], we present additional formal
definitions involving an extension. The details of each stage
are described in subsections A and B.

Due to the increase in the state space size, we coped with
this challenge by providing the gateway pairwise analysis
to partition the BPMN model into sub-modules called the

BPMNpartitions. The advantage of the gateway pairwise par-
titioning is that the pattern of the obtained partition is a block,
and it can also be easily represented and investigated using
CPN. Whereas, the complexity of BPMN element can be
handled by the weight-based consideration. The combination
of the gateway pairwise and weight-based approaches yields
the BPMN partitions supporting the partial and hierarchical
verification. To decrease the state space size, we applied
the CPN hierarchical verification technique and sweep-line
method to reduce the run-time explosion. Our proposed tech-
niques are the transparent procedures which are proceeded by
our framework automatically.
Definition 1 (A Hierarchical CPN Model): A hierarchical

CPN model is a tuple HCPN = (CPN, TS, PS, fPS) where:
• CPN is a set of non-hierarchical models.
• TS is a set of special substituted transitions used as
agents of the sub-nets cpn | cpn ∈ CPN.

• PS is a set of special port locations determined as the
input place or output place of the substitution transition.

• fPS is a mapping function used to indicate the type of
port place direction, fPS: PS→ {Input, Output}.

Hierarchical CPNmodel is a CPNmodel containing multi-
ple non-hierarchical CPN sub-models or sub-nets, and some
of them are determined to be the representation in higher
abstraction level. For determining the higher abstraction
level, the implementations of all sub-nets are hidden, and
the substituted transitions are represented instead of such
sub-nets. The interfaces of the substituted transition will be
addressed by the input/output port places.
Definition 2 (A Reachability Graph): A reachability graph

is a tuple DRG = (MN, EG, fFI) where:
• MN is a set of nodes that are the reachable markings.
• EG is a set of edges such that (MN ∩ EG) = ∅.
• fFI is a mapping function used to indicate the firing
information, fFI: (MN, EG)→ The Binding elements.

The reachability graph is constructed by a state space gen-
erator andwill be explored by the queries expressed in term of
the temporal logic. The core component of reachability graph
consists of nodes and edges. The node is a marking or an
state of system while the edge represents the state transitional

16798 VOLUME 7, 2019



C. Dechsupa et al.: Hierarchical Verification for the BPMN Design Model Using State Space Analysis

information that is the data collection of the transition firing
and variables snapshot called the binding element. The bind-
ing element is used to interpret an identified or identifiable
firing transition in the state space exploration process.
Theorem 1 (Hierarchical Verification): Let CPN model

M consist of sub-nets {s1, . . . , sm−1, sm(1), . . . , sm(i), sm+1,
. . . , sn}. Model M conforms to model Mx if and only if
{sm(1), . . . , sm(i)} conforms to sub-net sm and {s1, . . . , sm−1,
sm, sm+1, . . . , sn} conforms toMx.
Hierarchical verification is that the CPN model is parti-

tioned into sub-nets, {s1, s2 . . . , sn} is a set of sub-nets. Each
sub-net can also be re-partitioned once again as a set of semi
sub-nets. For example, sub-net s1 can be re-partitioned into
{s1−1, s1−2 . . . , s1−n}. The flat CPN model M conforms to
the hierarchical CPN model Mx if and only if all sub-nets
of the hierarchical CPN model conform to that of flat CPN
model even some sub-nets of hierarchical CPN model are
determined to be the substituted transitions.

A. BPMN DESIGN MODEL PARTITIONING
A BPMN model partitioning technique is provided for han-
dling the large-scale BPMNdesignmodel. The data of BPMN
model in XMI format are retrieved and stored for the model
structural analysis. The execution paths of BPMN design
models are similar to directed graphs, where each BPMN
element acts as a node of a directed graph. We modify
the partitioning algorithm of [5] by combining the structural
decomposition [30] approach with the weight-based consid-
eration. We first use the node type and gateway pairwise
analysis to determine the preliminary boundary of the BPMN
partitions. The size of the BPMN partitions derived from
the gateway pairwise analysis may be larger or smaller than
the configured weight. Next, the weight-based consideration
is used for re-partitioning the large partitions or composing
the dangling partitions. The modified algorithm supports
unstructured BPMN models and yields appropriate BPMN
partitions.

Seven flow patterns are derived from the partitioning stage:
1) sequence, 2) If-then, 3) If-then-else or Parallel, 4) Repeat-
until, 5) While-do, 6) Do-while-do, and 7) Indeterminate
pattern. The indeterminate pattern is a result of either the
unstructured flow or the re-partitioning of the partitions over
the configured weight. The node types of the BPMN directed
graph and the flow patterns are shown in Figure 4.

Algorithm 1 illustrates the BPMN partitioning process.
Lines 1 and 2 check the model types and whether the BPMN
process is well defined. If the input model is a process dia-
gram, the number of pools is set to 1. Lines 4 to 27 are the
graph traversal for the gateway pairwise analysis. The gate-
way matching criteria and the partition number identification
are in lines 9 to 16, and the function node is labeled with
the partition identifier in lines 17 to 21. After all the nodes
in the BPMN design model have been labeled, the BPMN
partitions over the configured size are re-partitioned, and
the trivial partitions are merged if their total weight

Algorithm 1 Partitioning BPNM Model in to BPMN Parti-
tions
01 Require:BPMN design model is an ordinary, hierarchical

or collaboration diagram.
02 Ensure:well-defined BPMN design model.
03 IfBPMNdesignmodel is without pool then setP = 1
EndIf
04 If PL > 0 then
05 For swl ∈ PL
06 SG := lb(n)→ Es
07 Do SG 6= ∅
08 n := choose the node from

SG by FIFO ordering
09 If n is gateway then
10 If n does not a pairwise

of previous node then
11 set par_id=increase

partition number
12 lb_n = {n, par_id}
13 Else
14 lb_n = {n, par_id}
15 set par_id=increase

partition number
16 End if
17 Else if n is a function node

then lb_n = {n, par_id}
18 Else n is a sub process
19 set par_id= create new

partition number
20 Partitioning(n)
21 End if
22 SO: SG ∪ {choose node(s)

from BG where source
node = n}

23 SG:=SG\{n}
24 HBP:=HBP ∪ lb_n
25 End do
26 Next
27 End if
28 While HBP: par_id/∗Check the size of sub-models∗/
29 BEGIN
29 Sub_modelSize=CalculateSizeBasedWeight

(par_id)
30 If Sub_modelSize>SizeConfig then
31 Repartition the sub-model by recursive

function
32 HBP: = (HBP|par_id) ∪ re-partition

(par_id)
33 Else
34 Merge the sub-partitions with neighbor-

ing partitions if their total weight
35 does not exceed SizeConfig.
36 HBP: = (HBP | par_id) ∪ mergeParti-

tion(par_id, neighborhood(par_id))
37 End If
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FIGURE 4. Node types and flow patterns in the BPMN directed graph.

FIGURE 5. BPMN model partitioning concept. (a) BPMN partitioning using the gateway pairwise analysis. (b) BPMN partitioning using the
weight based re-partitioning. (c) The obtained BPMN partitions derived from the gateway pairwise analysis and weight based re-partitioning
in Figure (a) and (b) respectively.

Algorithm 1 (Continued.) Partitioning BPNM Model in to
BPMN Partitions
38 End while
39 Return HBP

does not exceed the configured size. The re-partitioning
and merging via the weight-based consideration are in
lines 28-38.

Figure 5 shows the cursory BPMN model partitioning
concept. Figure 5(a) is an original BPMN design model par-
titioned using the gateway pairwise analysis. The model is
composed of two pools (A and B), and each pool is analyzed
independently. Seven BPMN partitions are derived from the
gateway pairwise analysis. Next, the partitions are assessed
with the weight-based consideration shown in Figure 5(b).
Suppose that the configured weight per node is 3 and that
the maximum weight per partition is 12. Partitions M3 and
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FIGURE 6. An example of a partitioned BPMN design model.

TABLE 1. Partitioning log of the gateway pairwise analysis of the BPMN model in Figure 6.

M4 of pool A can be merged because partition M4 is a
dangling partition and the combined weight of partitions
M3 and M4 does not exceed 12. By contrast, partition M6 of
pool B is overweight and is therefore re-partitioned. Thus,
seven final BPMN partitions are obtained from the gateway
pairwise analysis and weight-based consideration, as shown
in Figure 5(c).

Figure 6 shows the implementation of the partitioning
algorithm with the real collaboration BPMN process model.
The model is part of the process of a mortgage loan system.
Table 1 shows the portioning log of the gateway pairwise
analysis. The statistical analysis is based on the configured
weight. The weight per node is 3, and the maximum weight
per partition is 15. Thee preliminary partitioning is the classi-
fication of BPMN elements using the pool elements (with the
prefixesM1 andM2 in column Partition ID). Next, the nodes
in every pool are classified by gateway matching. Some of
the BPMN partitions may become larger or smaller than the
maximum configured size.

As shown in Table 1, partition M2-2 exceeds configured
weight, and partitions M1-1, M1-4, M1-5, M2-1 and M2-3
are trivial partitions. Thus, partition M2-2 is repartitioned
using the weight-based consideration into M2-2 and M2-3.
By contrast, the partitions M1-4 and M1-5 are merged.

However, partitionsM1-1,M2-1 andM2-3 cannot be merged
with the neighboring partitions because the resulting weight
would exceed the maximum weight per partition. The par-
titioning log of the weight-based re-partitioning is shown
in Table 2. In the BPMNdesignmodel in Figure 6, the dashed-
line blocks are the final partitions that are passed to the
gateway pairwise analysis and weight-based consideration.

B. BPMN DESIGN MODEL TRANSFORMATION
After model partitioning, each BPMN element is transformed
into a CPN construct and concatenated into a a CPN model.
The CPN sub-net is the CPN model derived from a set
of BPMN elements in the same partition, and the partition
identifier of the BPMN model is shared by the CPN model.
The BPMN designing tools do not restrict the programming
language used for model expression, which may result in a
syntactical difference in the inscriptions. The inscriptions of
the CPN model consist of the color sets, variable declara-
tion, guard condition expression and arc expression. We use
the mapping rules from our previous work [5] and add the
model inscriptions expressed in Java programming language.
Thus, the inscriptions of the CPN model conform to the
syntax and lexicon of Java. The mapping rules are illustrated
in Figures 7, 8, 9 and 10.
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TABLE 2. The partitioning log after weight-based re-partitioning of the BPMN model in Figure 6.

FIGURE 7. The mapping rules to transform BPMN elements into CPN constructs.

Since we create the CPN model using an automated trans-
formation, the completeness of each CPN model passes the
basic criteria check. However, the designers have to deter-
mine the initial marking, the boundary values of all the vari-
ables and the boundary of the places and must refine their
CPN models before the state space construction. Figure 11
shows the CPN model derived from the transformation stage
of the BPMNmodel in Figure 6.We have omitted the detailed
information about the arc inscriptions and guard conditions of
the transitions to simplify the model. The CPN sub-nets still
conform to the partitions of the BPMN model. The sub-nets
can be selected arbitrarily by the designer either one by
one or all at once to generate the state space and validate the
properties.

As the mentioned inscription, the data types and variables
declaration, including the data manipulation expressions of
the BPMN model, are straightforward mappings to the input
and output arc inscriptions and the guard conditions of the
CPN transition.

The variables used on the arc inscriptions may be the local
variables, which are the transformed item definitions of the
BPMN model, or the global variables, which are manually
declared by the designers. We classify the inscription patterns
of the CPN model as follows.

1) INPUT ARC INSCRIPTION
For passing token colors (data values) from an input place to
the transition, the list of variables on the input arc must be

the local variables, and their color sets have to match with
the color set of the input place. Figure 12(a) illustrates the
input arc inscription for passing token colors from the input
to output location. The color set of place p1 is RequestInfo,
and the inscription of the arc connecting p1 and transition t1
is (cust_name, request_no). The colored sets of the variables
cust_name and request_no conform to that of RequestInfo,
whose color sets are String and Integer, respectively.

2) PREDICATE INSCRIPTION
The predicate inscription is used to express the guard con-
dition of a CPN transition. The variables used in a predicate
statement must be the local valuables on the input arcs or the
global variables, and the result of the predicate evaluation
must be true or false. Figure 12(b) shows an example of a
predicate expression. The guard condition of the transition
t1 is ‘‘request_no!=null & global_var_n>1’’, for which the
variable request_no is the local variable on the input arc and
the variable global_var_n is the global variable.

3) OUTPUT ARC INSCRIPTION
The output arc inscription plays an important role in deter-
mining the token colors for the output place; the designers
can express the output arc inscription in two fashions.
• Direct passing: The variables on the output arc may
come from the variables on the input arc or may
be global variables or constant values. Figure 13(a)
shows the direct passing of an output arc inscription.
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FIGURE 8. The mapping rules to transform BPMN elements into CPN constructs (Continued).

The output arc inscription of transition t1 is (cust_name,
request_no), which means that after transition t1 is
enabled, the next transition t1 produces new token
colors by passing the token colors of variables

cust_name and request_amount to the output
place p3.

• Functional passing: The advantage of functional pass-
ing is that the transition can produce the output token
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FIGURE 9. The mapping rules to transform BPMN elements into CPN constructs (Continued).

colors using the capabilities of functional programming.
The operators and operands are used in mathematical
form to manipulate the global variables and produce

the token colors. Figure 13(b) illustrates the functional
passing of the output arc inscription. The transition t1
produces the token colors to place p3 using function
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FIGURE 10. The mapping rules to transform BPMN elements into CPN constructs (Continued).

fn_produce, whose input parameters are the list of vari-
ables on the input arcs of the transition t1. The operations
of function fn_produce are the global valuemanipulation
and token color construction in the statement ‘‘return’’.

C. STATE SPACE GENERATION AND STATE
SPACE EXPLORATION
To validate the CPN models using the state space analysis,
the CPN models obtained from the transformation stage are
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FIGURE 11. CPN model of the BPMN model in Figure 6 transformed using the BPMN transformation rules.

FIGURE 12. Examples of input arc inscriptions and predicate inscription of the CPN transition. (a) Input arc inscription.
(b) Predicted inscription of CPN transition.

used to construct the reachable graph [31] called the state
space. The reachable graph represents the possible states of a
CPN model based on a given initial marking. The reachable
graph is generated from the CPN model via the state space
generator tools. The existing state space generators have limi-
tations in terms of the size of the state space and programming
language used for the inscription expression. We propose a
state space generator that can store the state space data in
secondary storage and support model inscriptions that are
written in Java programming language.

According to Definition 2, each node in the reachable
graph represents a reachable marking. The edges con-
necting nodes represent the transition firing information,

i.e., binding elements. Nodes and edges are retrieved and
interpreted to account for the state transition. We apply the
reachability graph construction algorithm of [4] and extend
part of the multi-binding element construction for our state
space generator. Because of the elaborated algorithm, this
paper demonstrates merely the core algorithm of state space
construction. The algorithm for computing the reachable
graph is illustrated in Algorithm 2.

In Algorithm 2, line 3 is the initial marking, which acts as
the initial state and is determined to be the first marking of a
set of work. Work is the controller of the marking queue for
producing the successor markings and binding elements. The
process continues as long as the work is not empty. M1 is the
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FIGURE 13. Examples of output arc inscriptions. (a) Output arc inscription using direct passing. (b) Output arc inscription using
functional passing.

Algorithm 2 The State Space Generation
01 Require: A CPN model CPN = (PP, TT, AA, 6 VV, fCC,

fGG, fEA, fII)
02 Ensure: CPN is the finite reachable marking
03 {M0}=fII ([26])
04 work:={M0}
05While work6=∅
06 M1 := select a marking fromwork by FIFO ordering
07 work := work\{M1}
08 singleBinding.=empty
09 For enabled(M1): trans
10 If fire(M1, trans) then
11 M2 := fire(M1, trans)
12 b := binding elements of transition

firing
b
→

13 ifM2 dose not exists in nodes then
14 nodes := nodes ∪ {M2}
15 work= work ∪ {M2}
16 end if
17 edges := edge ∪ {M1

b
→M2}

18 singleBinding:= singleBinding ∪ {b}
19 End if
20 Next
21 MultiBinding(singleBindjng):
22 End while

current marking chosen from the marking queue by first-in-
first-out ordering. Lines 9 to 20 are loops that depend on the
number of enabled transitions for the current markings. The
enabled transitions produce successor marking M2, aned the
binding element can be expressed by the symbol −→, which
represents the relationship between markings M1 and M2.
Line 13 checks whether marking M2 exists in a set of nodes.

If the marking does not exist in the nodes, the new mark-
ing M2 is added to the set of nodes and work. For every
transition firing, the transition firing information on the edge
that represents a single binding element is recorded in the
set of edges. Next, the multi-binding elements are calculated
from the set of single binding elements, and the results of the
multi-binding elements are added to the set of nodes, work
and edges.

As the result of successor marking construction, the bind-
ing element occurs when the transition is enabled, and the
transition fires the tokens to the input places. The successor
marking construction consist of three key components.

1) Binding the token colors.
The token colors are assigned to the variables on the input

arc inscriptions if the variable name is matched. The color
assignments are recorded as the colored binding information.

2) Computing the enabled transition.
The enabled transition relies on the CPN constructs and

the guard condition. In the case that the transition results in
the guard condition, the variables on the guard conditions are
replaced by the values in the colored binding information if
the variable name matches. If the guard condition evaluation
is true, the transition is enabled. In other cases, the enabled
transition depends on the CPN constructs.

3) Producing the new token for the output places.
When the transition is enabled, the transition fires the

new token to its output places by means of the output arc
inscriptions. The colored binding information and transition
name are collected as the binding elements.

For instance, we begin the processing set with the enabled
transition (t) and then assign the token colors residing in the
input place to the variables (V) on an input arc inscription
of transition t. The variables related to the transition can be
denoted by V(t). The colored binding information is recorded
as the pairwise item (variable: value). After binding all the
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FIGURE 14. Example of the successor marking computation. (a) CPN model given marking. (b) Key components of the successor
construction. (c) The result of successor marking construction in figure (b).

token colors, we obtain a set of binding information as <
v1 = tc1, . . . , vn = tcn >, where vi ∈ V(t), tci is the
token color, i = 1, 2, 3 . . .. If the transition does not have
a guard condition and its construct satisfies the enabling rule,
the transition is enabled. By contrast, if the transition has
a guard condition, the variable on the guard condition is
replaced by the token color if the variable matches variable
V(t) or a global variable with the same name; then, the guard
condition is evaluated. If the result of the guard evaluation is
true, the transition is enabled. The next step is the processing
of the successor markings. The token colors passed through
the variables V(t), the global variables and constant values
can be used to produce new token colors for the output place
of the transition. When the new token is added to the output
place, the new marking is recorded as the successor marking.
Figure 14 shows the successor marking process.

The marking m0 is the current state of the system, and the
token color of place p1 is the token (Name_1, 7750). To bind
the token colors, the matching of token color (Name_1,
7750) to the input arc inscription (cust_name, request_no)
proceeds via the variable cust_name = ‘‘Name_1’’ and
request_no = 7750. The guard condition on transition t1 is
expressed as ‘‘request_no!=null & global_var>1’’, and at
this moment, the variable request_no is 7750 and global
variable global_var is 18. Thus, variables request_no and
global_var on the guard condition are replaced by ‘‘7750’’
and 18, respectively. When the result of the guard con-
dition evaluation is true, transition t1 is enabled, which
may produce token colors for place p2. Next, the vari-
ables related to transition t1 are placed into the output

arc inscription as the new added token (Name_1, 18) on
place p2.
The state space construction of the hierarchical CPNmodel

is similar to the processing of a non-hierarchical CPN model.
The difference is that some sub-nets of the CPN model may
be determined as black-box processes in which the sub-net
is reduced to the substitution transition. However, we must
execute all parts of the sub-net because the neighboring
sub-nets always require the output data from the substitution
transition to construct their states. In the state space reduction
process, the dead marking states of the substitution transition
are ignored.

Figure 15(a) shows an excerpt of the non-hierarchical CPN
model in Figure 11. sub-net:M1-1, sub-net:M1-2 and sub-
net:M1-3 are selected for the CPN model for the state space
generation. Figure 15(b) shows a hierarchical CPN model
where sub-net M1-2 is the substitution transition. The dual
line place IP1 and IP2 are the input ports of substitution
transition sub-net:M1-2, whereas places OP1, OP2 and OP3
are the output ports.

Figure 16(a) illustrates the intuition behind the state space
generation of the CPN model in Figure 15(a). To simplify the
reachable graph, we have omitted the marking information
and binding elements. The tree shows the implicit states
produced from sub-net:M1-1 and sub-net:M1-2. Node m0
denotes the initial state, which is the given marking on place
p0 of sub-net:M1-1. The successor states are m1 and m2.
The marking m2 represents the explicit state with one token
in place p3 with token color 1^(Name_1, 7750, memOK).
Because place p3 is shared between sub-net M1-1 and
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FIGURE 15. Examples of CPN model structures for state space generation. (a) Non-hierarchical CPN
structure. (b) Hierarchical CPN structure.

FIGURE 16. The excerpt reachable graph of the CPN model in Figure 15. (a) State space of non-hierarchical CPN structure.
(b) State space of hierarchical CPN structure.

sub-net M1-2, statem2 is the latest successor marking of sub-
net M1-1 and is also the initial marking of sub-net:M1-2. The
markings m3 to m14 are the successor markings derived from
Sub-net:M1-2. The gray nodes are the dead markings of sub-
net:M1-2, which represent the markings that cannot enable
the transitions of sub-net:M1-2. The dead markings are an

important factor in the state space reduction for hierarchi-
cal verification. They represent the possible outputs of sub-
net:M1-2 and are used to compute the successor markings
of the neighboring sub-net:M1-3. Figure 17 illustrates the
binding elements of marking m11, which is composed of
three binding elements: e1, e2 and e3 (with execution
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FIGURE 17. Binding elements of marking m11 in Figure 16(a).

TABLE 3. Commands for state space exploration.

path m2−→m3−→m6 −→m11). The binding element e1 is
the firing information of transition Gp_1. Next, the tran-
sitions Request Assessment and Check Credit Bureau fire
tokens simultaneously; these tokens are binding element e2.
The explicit state of e2 is the tokens on places p6, p7
and p15 (represented by marking m6); however, mark-
ing m6 is not a dead marking because it can enable the
transition Evaluate risk. Therefore, marking m6 can reach
marking m11, which is the implicit state firing of transition
EvaluateRisk.

Figure 16(b) illustrates the state space of the hierarchical
CPNmodel in Figure 15(b). The state space size of the hierar-
chical CPNmodel is smaller than that of the hierarchical CPN
model in Figure 16(a). This is an application of the sweep-line
method [15]. The state space construction of a substitution
transition is focused on the initial and end states of a sub-net,
which results in a smaller state space. Considering the dead
marking sub-net:M1-2, we keep only the dead markings. The
transitive states (blue nodes) are ignored in the state space
storing process. Next, the dead markings of sub-net:M1-2 are
taken as the initial markings of sub-net:M1-3. When process-
ing the successor markings of sub-net:M1-2, the markings
are computed based on the assumption that sub-net:M1-2
works like an atomic process. Therefore, the transitions of
the neighboring sub-nets (sub-net:M1-1 and sub-net:M1-3)
cannot be enabled at this moment (in the scenario where there
are initial tokens distributed at more than one place and in
different sub-nets).

In the preceding paragraphs, we have conducted the state
space generation. After the state space has been generated,
an important part of BPMN design model verification is the
temporal logic formulas interpreted over the state spaces.
We design the functional commands for exploring the state

information and transition information. For practical use,
we provide the basic commands and the equivalent temporal
logic commands. These commands are detailed in Table 3.

D. IMPLEMENTATION
To illustrate the proposed techniques, we have implemented
the BPMN design model verification framework as a Java
application called the CP4BPMN tool. Screenshots of the
tool are shown in Figures 18, 19 and 20. The application
comprises five main modules.

1) THE MODEL VIEW CONTROLLER
This functionality is used for visualizing the input BPMN
model and the obtainedCPNmodels, parameterizing the CPN
model and refining the CPN model structure.

2) THE BPMN MODEL PARTITIONER
When the BPMN design model and item definition data
files are imported into the system, the BPMN elements are
extracted using the XML parser. Next, the attributes of the
BPMN elements are stored in the model repository for trans-
forming and debugging purposes. Then, the BPMN model
partitioner classifies and labels the BPMN elements with
the partition number. The gateway pairwise analysis and
weight-based consideration are back-end process of BPMN
partitioning.

3) THE BPMN TRANSFORMER
The responsibility of the BPMN transformer is to trans-
form the BPMN elements into CPN constructs. The CPN
constructs are composed of the structural elements and the
CPN inscriptions. The structural transformation of a BPMN
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FIGURE 18. Screenshot of the CPN model refinement of the CP4BPMN tool.

FIGURE 19. Screenshot of the state space exploration of the CP4BPMN tool.

element into a CPN construct is a one-to-one mapping, and
the CPN inscriptions are directly mimicked from the inscrip-
tions of the BPMN model. To check the completeness of the

transformation, the system includes basic criteria to check all
the CPN constructs, and a Java syntax checker verify whether
the inscriptions conform to Java syntax.
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TABLE 4. Transformation result of applying the CPN4BPMN to the existing models.

FIGURE 20. Example report of the state space exploration.

4) THE STATE SPACE GENERATOR
The verification using the state space may consider specific
situations. The CPN model can have an enormous or even
infinite number of reachable markings. To address the size of
the state space, prior to the state space generation, the design-
ers must refine the CPN model and determine the initial
marking. The state space generator will check the correctness
of the CPN model. If the CPN model is successful, the state
space produces the reachable graph based on the given initial
marking. During the state space generation, if the CPNmodel
violates the invariant properties, a counterexample is shown,
and the state space construction is terminated. The reachable
graph, including the state space report, is stored in the state
space repository designed using a combination of XML stan-
dard and MS SQL Server.

5) THE STATE SPACE EXPLORER
The basic commands and temporal logic for searching the
model properties are implemented as functional queries. For
example, the command UNREACH(ρ) is used to find the
unreachable transitions or unreachable places. The command
EXIST_NEXT(ρ) is used for finding whether it is possible
for state ρ to occur next, where ρ is the name of a transi-
tion or place.

V. EXPERIMENT
We demonstrate our techniques and validate the CP4BPMN
tool by applying to the existing models. The BPMN mod-
els of the Mortgage Loan System (MLS) and Inventory
Management System (IMS) are used as our test sets. The
BPMN design models of both systems were designed using

the Eclipse BPMN2 Modeler [32]. The models have been
tested with different sizes, types, and hierarchical structures.
The elements of the input BPMN model and the result of
transforming the BPMN model into a CPN model are shown
in Table 4.

As the statistical report shows in Table 4, BPMN parti-
tioning is dependent on the weight configuration. The weight
per element is 3, and the maximum total weight per partition
is 15. In our experiments, we separate the testing into two
phases.

In the first phase, the verification of the transformation
results is focused on the completeness of the CPN models.
We define the basic criteria for checking the obtained CPN
models as follows.

1) Each CPN element can be traced back to the sourced
BPMN element.

2) All CPN elements in the same sub-net must have a path
to each other.

3) The inscription in the CPNmodel must conform to that
of the BPMN model.

4) The CPN sub-net and the BPMN partition must be
consistent.

In the experiments, the CP4BPMN tool can transform the
BPMN models into CPN models correctly. The partitioning
technique and framework not only reduce the mistakes in the
CPN model but also reduce the time consumption.

In the second phase, we validate the CPNmodels using the
state space analysis method. Our test plan is that the composi-
tion sub-nets are necessarily re-arranged to be a hierarchical
model. The substituted transition is used to hide the internal
implementation of the sub-nets. While the flat verification
of that all sub-nets intends to show the state space without
hiding their internal implementations. Next, we compare the
state space construction, exploration and the results of the
flat structure to those of hierarchical structure. Intuitively,
the time consuming and number of state space of the flat
structure is much more than those of the hierarchical struc-
ture. However, the queries used for the state spaces explo-
ration should be working at the state space of both the flat
model and hierarchical model. We will explore and analyze
the state space using the functional queries of CP4BPMN tool
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TABLE 5. State space statistics of the CPN model in Figure 11.

TABLE 6. Excerpt results of the CPN model verification with specific requirements.

to check deadlock, unreachable task, invariant, soundness and
possibly other specific requirements.

The example of test plan: The sub-nets of a CPN model
are selected to generate a state space, and the sub-nets are
arranged in different hierarchical structures. For example,
we choose sub-net:M1-1, sub-net:M1-2 and sub-net:M1-3
from the eight sub-nets in Figure 11. Next, we set one or all
of them to be substituted transitions for the hierarchical
verification. Since the abstraction level between the BPMN
model and CPN model may be different (most CPN models
have lower abstraction levels), we have to refine the CPN
model by adding the global variables and the predicate for
checking the invariant properties, including revising some of
the inscriptions for completeness. Then, the initial markings
are determined, and the state spaces are constructed using our
state space generator. Table 5 shows the state space statistics
of the CPN model in Figure 11.

The standard report of state space generation is the infor-
mation regarding the standard properties, size of the state
space, time consumed, and dead markings. We investigate
the state space analysis of the refined CPN model in both
non-hierarchical and hierarchical CPN structures. The CPN
models are verified using the bottom-up approach. The
sub-net identified as the substitution transition is verified
before repeating the large-scale process simultaneously.

Generally, the termination behavior of a CPN model must
conform to the BPMN design with end events. In short,

the end events of the BPMN model must be reached from the
start events. Failure of the state space to satisfy this condition
indicates that the BPMN design model may have unreachable
tasks or deadlocks.

We consider the size of the state space and the CPN model
refinement. The size of a state space depends on the number
of sub-nets chosen, the substitution transition determination
and the number of initial tokens. In Table 5, case number 1 is
tests the large-scale model based on a single loan application,
where all the sub-nets derived from the partitioning step are
combined into an abstract model with a flat structure for state
space construction.

We verify the CPNmodel by gradual refinement in the dif-
ference of sub-nets and hierarchical structures. Hierarchical
structure refinement usually leads to an easier representation
and smaller state space. Sub-nets can be selected from dif-
ferent participants (pools) or from the same participant when
checking the communication between organizations. Finally,
the initial marking of place p0 is determined by a single
token, and the number of tokens is increased to validate the
concurrent execution. The results shows that sub-net:M1-2
and sub-net:M1-3 are complicated processes. Whenever they
are identified as the substituted transitions, the size of the
state space and time consumed are smaller than those of a
flat model.

We also investigate whether the CPN model has spe-
cific properties. The specific properties come from the user
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requirements and describe the business needs. For the prop-
erties verification, the queries are determined to traverse the
state space. The goal states may possibly be in different
sub-nets. For example, the query of requirement No.1 in
Table 6 is EF_AND(‘t2’, AND(‘t3’, ‘t4’)), which state t2
‘‘verify the type of customer’’ is in sub-net:M1-2 while state
t3 ‘‘check credit bureau’’ and state t4 ‘‘request asset assess-
ment’’ are in sub-net:M1-2. The excerpt specific properties
for the state space exploration of the mortgage loan are
shown in Table 6. The mortgage loan model does not satisfy
requirement number 5. We resolve this issue by redesigning
the BPMN design model by changing gateway Gx_3 to a
parallel gateway and moving the task Call credit scoring to
the position after the parallel gateway.

VI. CONCLUSIONS AND FUTURE WORK
The verification of BPMN design models using state space
analysis is related to model abstraction and state space explo-
ration. The CPNmodel can have an enormous or even infinite
number of reachable markings. Specifically, in large-scale
BPMN model verification, the huge size and complexity of
the BPMN design model may result in the state space explo-
sion problem. To address this problem, prior to state space
generation, the designers should refine the model by parti-
tioning and rearranging the abstract model in the hierarchical
structure to reduce the complexity and size of the abstract
model, including the state space size. We provide CPNmodel
abstraction and partitioning techniques, transformation rules,
and an automated framework called CP4BPMN to perform
BPMN design model verification. The obtained CPN models
support the verification in the specific partitions, as well
as in the hierarchical structures. In the verification stage,
we provide a state space generator that supports the input
CPN models with inscriptions written in Java programming
language. The sweep-line technique is applied to reduce the
state space storage. The state space explorer interprets the
functional commands for state space exploration. The exper-
iment shows that the partitioning techniques and hierarchi-
cal structure refinement reduce the size of the state space
and time consumption. This technique is a viable option for
large-scale BPMN design model verification for designers
who are not familiar with CPN language.

Because the behavior of the complex gateway is sophisti-
cated, the modelers should simplify the gateways to simple
gateways before model transformation. Another limitation is
parallel execution since synchronization may require input
data from different tasks that might provide data with the
same variables. Thus, the designers must refine the CPN
synchronization logic to choose the correct data version. Our
ongoing work is directed toward improving the performance
of state space construction and implementing nested com-
mands to explore the state space for the practical use. We plan
to extend the transformation rules supporting the BPMN
transaction, cancellation and compensation handling and to
apply probability component analysis in the BPMN model
partitioning process.
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