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ABSTRACT Big data frameworks enable companies from various fields to build models that allow them
to increase profit margins by improving decision making at different levels (middle management, senior
management, and board) or by attempting to boost sales by customizing consumers’ experience based on
their history and feedback. Institutions and other entities also use big data coming from all kinds of sensors,
data that can be used to detect, in real time or in retrospect, possible problems (e.g., frauds, malfunctions,
and supply shortages), or to identify patterns and trends. In this paper, we organize large volumes of
community electricity consumption data coming from smart meters, smart plugs, and other sensors, but
also data regarding consumers’ preferences in order to assist them to dynamically optimize their electricity
consumption. In this regard, we develop a novel optimization approach that re-schedules every fifteen min
the appliances for residential consumers to reduce both the consumption peaks and the payments at the
community level. The consumers send their day-ahead schedule that is optimized and further implemented
to some extent. Thus, we monitor the electricity consumption via sensors and smart meters and dynamically
adjust the schedule in case the real consumption deviates from the optimized plan, considering appliances
constraints and consumers’ preferences. Every fifteen min, the algorithm evaluates the differences between
the optimized schedule and the actual consumption and controls the operation of the interruptible appliances
to stick with the day-ahead schedule as much as possible.

INDEX TERMS Day-ahead electricity and real-time consumption optimization algorithms, big data, stream
processing, smart meters, sensors.

NOMENCLATURE

Symbol Description

n Number of appliances;
nI Number of appliances of type I ;
nS Number of appliances of type S;
nB Number of appliances of type B;
I Interruptible appliance;
S Shiftable appliance;
B Battery (car battery);
NP Non-programmable appliance;
h The time interval for an hour;
h : m The time interval for hour: minute used in

real-time optimization (15 minutes);

TICh The vector of total initial consumption of all
appliances for each hour h;

TNPh The vector of total initial and scheduled con-
sumption of NP appliances for each hour h;

ICh
i Initial consumption of appliance i at

hour h,(∀)i = 1..n and (∀) h = 1, 24, forming
the matrix IC of initial consumption for I, S, B
type appliances;

ICh
t Total initial consumption of all appliances of

type I, S and B at hour h,ICh
t =

∑nI+nS+nB
i=1 ICh

i ;

SCh
i Day-ahead optimized scheduled consumption

of appliance i at hour h,(∀) i = 1, nI + nS + nB
and (∀)h = 1, 24, forming the matrix SC
of optimized scheduled consumption for I, S,
B type appliances;
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SCh
t Total optimized scheduled consump-

tion of all appliances of type I, S and

B at hour h,SCh
t =

nI+nS+nB∑
i=1

ICh
i ;

Rhi Operating constraint of appliance i at
hour h,Rhi ∈ {0, 1}, In case, the appli-
ance i may operate at hour h, then
Rhi = 1, otherwise Rhi = 0; These
elements are forming the matrix of
operation constraint R for S, I and B
type appliances;

AVIC The average initial consumption of
all appliances;

pk Peak hour for the initial consumption;
opk Off-peak hour for the initial

consumption;

Cpk
t Total initial consumption at peak

hour;

Copk
t Total initial consumption at off-peak

hour;
ICpk

move Total consumption that can be moved
from peak hour to off-peak hour;

nh Number of houses;
nmhi Number of meters in-house hi;
CSV j

hi Comma-separated files that contain
appliance power readings. The orig-
inal data-set included a different file
for each meter j of a house hi. The
timestamp of the reading is on the
first field of the file (index 0) and the
power readings for each device are on
the following fields (indexes 1..n);

FCSV hi The resulting CSV file that contains
the aggregated and concatenated data
for all the meters and appliances in
house hi;

T<t,ICn > A TreeMap structure where the map
is sorted according to the natural
ordering of its keys (i.e. LocalDate-
Time of the reading ti) and where the
values are a list of the consumptions
of all appliances (ICi) serviced by a
meter at those timestamps;

TJOINED<t,ICn > A TreeMap structure that contains all
the readings for all the meters in a
house;

1ci Maximum acceptable deviation of
the real consumption from the day-
ahead schedule for appliance i;

RSUh:m
i User option to re-scheduled appli-

ance i at time interval h : m,
RSUh:m

i ∈ {0, 1}. In case the electric-
ity consumer chooses to deviate from
the day-ahead schedule and use the
appliance i at time interval h:m, then

RSUh:m
i = 1. By default,RSUh:m

i =0,
meaning that the electricity consumer
respects the schedule;

Nintr i Number of maximum daily interruptions for
each appliance i;

intrh:mi Operation status of appliance i at h : m time
interval. In case the appliance i is switch-
off at h : m then intrh:mi = 1; in case
the appliance respects the day-ahead sched-
ule, then no intervention is required and
intrh:mi = 0;

switchh:mi The ON/OFF operation for appliance i at h :
m time interval;

RCh:m
i Real consumption of appliance i at h : m time

interval gathered from meters and sensors;
RSCh:m

i Re-scheduled consumption determined in
real time by the optimization algorithm for
each appliance i at h : m time interval;

FI Flattening index
PAR Peak to average ratio
EPC Electricity payment
EPToUC Electricity payment with a ToU tariff
EPFTC Electricity payment with a flat or standard

tariff

I. INTRODUCTION
Until not so long ago, electricity was exclusively produced
in large power plants, transmitted over power lines and
distributed to the residential consumers. The balancing of
generation and consumption was traditionally done by the
transmission grid operators that dispatched the generating
units to follow the demand requirement in real time. In the last
ten years, variable renewable energy sources (RES) have been
massively added into the mix, creating difficulties to the dis-
patching centers that have to cope not only with consumption
fluctuations but also with less predictable and tempestuous
RES operation.

Thus, we are facing a change of paradigm: distributed gen-
eration continues to grow, bringing power generation almost
at the same place with consumption. Therefore, balancing can
be done not only at the generation side that is challenged
by the RES integration, but also at the consumption side
involving residential consumers. Such consumers account
for about 30% of total electricity consumption and have
the potential via ICT for using smart technologies that can
change the consumption pattern and allow remote control
on some appliances, based on service contracts [1], in order
to facilitate the peak curtailment. Interrupting continuously
operating appliances, for short time periods (i.e. from 1 to
15 minutes), such as air conditioners, ventilation systems,
boilers, refrigerators have been proved to have little impact on
consumers’ comfort, but for grid operators and suppliers can
provide a particular demand response that is proportional with
the community size, flexibility and the magnitude of inter-
rupted power. The progress of sensors and actuators-based
technologies allow the consumption monitoring and control
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of some appliances (such as interruptible or shiftable appli-
ances) considering favorable operating schedules. Without a
doubt, the day-ahead electricity consumption optimization is
an important step to alleviate the peak, while in our approach
the additional effective Demand Side Management (DSM)
measures for adjusting the consumption are taken at every
fifteen minutes very close to the real time so that last-minute
changes are adequately handled.

Many optimization methods implement optimized sched-
ules without monitoring and controlling the operation of the
appliances, thus neglecting the real-time uncertainties due
to the change in consumers’ preferences that could appear
next day and the opportunities to reschedule the operation of
some devices in order to improve the results of the optimiza-
tion process. Other optimization methods don’t thoroughly
discuss the impact of the vast volumes of data generated,
especially in urban areas, by smart appliances. Even if the
payloads of individual readings are usually small, sizing in
the realm of a few kilobytes, in a grid with hundreds of
thousands or even millions of smart meters and intelligent
plugs, digital protection devices or other types of sensors,
during a year, the data readings can add up to thousands
of terra bytes [2]. This electric power big data has the 4V
characteristics (volume, velocity, variety, and value) of big
data as showed by Zhou et al. [3] and further demonstrated
in this paper. Storing and manipulating such data and meta-
data is in most cases not fit to be organized in relational
databases due to its size (scale of data), variety (different
schemas associated with each meter), velocity (continuous
streaming flow that require rapid analysis to extract useful
information before it becomes stale) and veracity (detecting
noise, abnormalities or even falsifications). Big data frame-
works such as Hadoop and Spark or the multitude of NoSQL
databases can handle the data storage and processing problem
by distributing the workload in a cluster of computer nodes.

Considering the above-mentioned characteristics of elec-
tricity consumption data, the authors of this paper address
two questions: Are the current day-ahead optimization mech-
anisms close to the real-time operation? How can such opti-
mization mechanisms benefit by processing both streams and
batches of data with Big Data frameworks?

II. LITERATURE REVIEW
A smart grid is an electric grid that can deliver electricity in a
controlled way, from suppliers to consumers, the latter having
the ability to modify their behavior according to information,
incentives or disincentives [4]. A smart grid usually includes
smart meters, smart appliances, sensors, and plugs, together
with dynamic tariffs and bidirectional communications that
enable the integration of RES.

In a smart grid, the electricity consumption and lifespan
of smart meters and other intelligent appliances are critical
factors in applications because faulty readings from meters
which exceeded their lifespan (sometimes prematurely due to
environment conditions) may produce unreliable decisions.
Smart meters continuously generate a large volume of data

with high velocity and with various schemas that usually
need to be stored before schemas can be defined. A brief
introduction regarding big data and its application in the smart
grid context is given by recent studies [5], presenting typical
big data applications and pointing out the future challenges
in electricity consumption recorded by smart meters and
sensors.

Research in power big data covers a whole range of
topics including power generation side management,
microgrid, and RES management, asset management and
collaborative operations or demand-side response.

Demand-side response (DSR) aims at reducing load bur-
den during peak periods. Kwac and Rajagopal [6] proposed
a method that uses a combinatorial optimization involving
predicted electricity consumers responses and that was tested
on smart meter readings from more than 58.000 house-
holds from 4 climate zones. Depending on the climate, up
to 50% of the additional critical peak electricity consumption
of residences consumption is generated by appliances with
limited flexibility in terms of rescheduling (i.e., air condition-
ers, refrigerators, freezers, dehumidifiers, heaters, etc. that
typically operate in the background). Nonetheless, many of
these devices can be adjusted with a negligible impact on
consumers’ perceived comfort [7], [8], [9].

The consumption peaks can be regulated, considering pri-
orities and without exceeding the available energy, by con-
trolling the priority of domestic appliances, spreading at best
the energy. Marah and El Hibaoui [10] attempt to solve
this problem by proposing an algorithm with two phases,
a priority management phase, and a branch and bound phase,
relevant for addressing the underlying knapsack (rucksack)
problem.

Another approach that was put forward by Duan [11]
focuses on the day-ahead stage, integrating price-elastic
demand bids in order to reduce the demand to average
demand ratio. A Smart Home Controller strategy which pro-
vides efficient management of electric energy in a domestic
environment is presented in [12]. The problem is formalized
by the authors as an event-driven binary linear programming
problem and takes into consideration the real power thresh-
old, the forecast of consumption from loads that cannot be
planned and various electricity tariffs and outputs the best
time to run the appliances. The best time to run of smart
household appliances is determined, under a virtual power
threshold constraint, considering the real power threshold and
the forecast of consumption from uncontrolled loads. The
study reveals the consumer benefits from using local energy
management systems and shows the relevance of automated
demand side management. The best savings of 21.07% are
obtained on a low number of loads that can be scheduled in
the off-peak interval with the best tariffs.

Another approach that focuses on computing day-ahead
tariffs and on estimating and refining consumers’ reaction to
the tariffs is proposed by Soares et al. [13]. The approach
allows the electricity supplier to adjust dynamically the
offered tariffs based on consumers’ behavior.
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Various demand response programs have been introduced
to help the Independent System Operator (ISO) in mitigating
the demand fluctuation. Current market mechanisms in sev-
eral countries enable retailers or aggregators to make bilateral
agreements with their consumers who would like to benefit
from consumption optimization. Vuelvas et al. [14] proposed
a mathematically proved incentive-based demand response
program that doesn’t require sending energy preferences,
a program in which the aggregator randomly chooses a user to
perform the energy reduction. They demonstrated how inte-
grating price-elastic demand bids into day-ahead scheduling
can effectively reduce the demand to average demand ratio.

A variation on minimizing the electricity supplier’s cost
takes into consideration the electricity consumers’ willing-
ness to shift their appliances usages. Kwac et al. developed
an algorithm that computes day-ahead prices and another
algorithm that estimates the reaction of different user classes
to these prices in order to refine the provider’s estimates of
user behavior [15]. They investigated a household electricity
segmentationmethodology that uses an encoding systemwith
a pre-processed load shape dictionary and concluded that
different consumer usually might require tailored forecasting
approaches. Although the primary purpose of mechanisms
such as time-varying prices is to encourage consumers to
reduce their consumption during high electricity demand, it is
usually a hassle to residential consumers to manually adjust
their loads in response to dynamic electricity prices.

Pan et al. [16] collected every 15 minutes, multidimen-
sional smart meters data from 2 million households for three
years in order to propose a model that starts from classifying
consumers based on benchmark distributions and their price
differences at peak vs. non-peak times. The approach uses a
sublinear amount of the collected data, nonetheless guaran-
teeing small error bounds with given confidence (e.g., 95%).
The model computes the theoretical profit gains of utility
companies by differentiating user service accordingly.

Time-of-use tariff (time-varying prices) is the simplest and
the most traditional DSM approach to minimize peak load
in the system. But in a smart grid context, the existence of
dynamic tariffs and bidirectional communications simultane-
ously allow and require an active role from the end-user con-
cerning consumption optimization [17] enabling suppliers to
create a control-feedback loop using time-dependent pricing.
Such strategies make consumption optimization an essential
tool in balancing markets. Large consumers who act in day-
ahead and intra-day markets have to declare their consump-
tion schedule in hourly or 15 minutes basis (depending on the
settling time period of the market). They are responsible and
pay if they cannot meet their schedule. For small consumers
like households, retailer companies or aggregators (i.e., load
serving entities (LSEs)) take this role.

The question of ‘‘How will demand response aggrega-
tors affect electricity markets?’’ is explicitly addressed by
Chen et al. [18] analyzing the market effects of demand
response program based on load flexibility. To some
extent, the consumers can serve to aggregators as

‘‘dispatching units’’ for certain periods to reshape the load
curve by postponing the start times or by controlling the
operation time. The authors proposed an approach for such a
service in which consumers can self-report their baseline and
reduction capacity, given a payment scheme that includes cost
of electricity, incentive price, and penalty caused by any devi-
ation between self-reported and actual energy consumption.
Different from the classic solutions, the participant agent does
not require reporting energy preference, and only announces
information in terms of energy. Such mechanisms proposed
in the literature may open new opportunities to players in the
market including consumers and aggregators.

Fuzzy logic is also addressed as a solution in the
scheduling and the controlling of electric loads in residential
buildings [7] where a Swarm Optimization Fuzzy Sugeno
(SOFS) based energy management controller is compared
with a Swarm Optimization Fuzzy Mamdani (SOFM) based
controller. Moreover, in order to manage the load in a com-
pelling fashion, a load curtailment strategy is formulated
using fuzzy logic for the seasonally used electric loads.

Another important topic of research in this area deals
with privacy concerns and the problems sharing refusals can
pose to data collection and implicitly to DSR. Data collected
from consumers’ smart can reveal personal insights like the
number of inhabitants in a domicile, their daily schedules,
the appliances they use or even TV or multimedia content
preferences [19]. Yassine et al. [20] propose a negotiation
game theoretic mechanism between the data aggregator and
the data analyst that balances benefits and privacy levels and
where consumers are rewarded for their participation in the
data market. In another approach [21], the privacy-cost trade-
off is formulated as a convex optimization problem, and a
low-complexity backwardwater-filling algorithm is proposed
to calculate the optimal energy management policy.

Big data and clustering techniques using a voting system to
select the optimal number of clusters can be used to identify
electricity consumption patterns. Such an approach was put
forward by Pérez-Chacón et al. [22] and takes advantage
of the distributed version of the k-means clustering algo-
rithm embedded in the Apache Spark’s Machine Learning
Library.

Not all consumers are eligible for a demand response
program, so, selecting electricity consumers for demand
response programs utilizing data and big data available from
individual-level smart meters is a challenging problem [23].
The results of the researches show that the prediction accu-
racy can go to up to 90% to identify the electricity consumers
that are appropriate targets for demand response program
participation according to the consumption behavior and
lifestyle.

Large volumes of electricity consumption data are already
generated by smart meters and sensors in different cities
(e.g., Shanghai) [24], requiring identification and correction
of outliers, advanced analyses of consumers’ pattern, the
correlation between different variables and applying big data
techniques for smart grid data.
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Electricity consumption is a critical factor in smart grid
applications. To optimize the electricity consumption and to
improve the lifespan of smart meters, a knowledge-based
approach for smart meters is proposed by Agnetis et al. [25].
The results show that the proposed method can enhance the
lifespan of smart meters by up to 72% and optimizes the
electricity consumption with 21%.

The smart grid concept involves sensors and smart meters
that continuously generates large volume of data with high
velocity and variety, strategies, methods and real-time data
processing requirements. A brief introduction about energy
big data applications in smart grid, mentioning recent studies,
developments and security issues, is pointed out in [26], also
addressing some future challenges of big data in the energy
domain.

Keshtkar et al. [27] and later Javaid et al. [28] addressed
problems pertinent to the lack of energy management sys-
tems. The authors proposed a flexible autonomous energy
management solution for residential Heating, Ventilation, and
Air Conditioning systems.Moreover, an autonomous thermo-
stat utilizing a synergy of Supervised Fuzzy Logic Learning,
wireless sensors capabilities, and dynamic electricity pricing
is developed. The thermostat proposed by the authors can
adjust the set point temperatures of the day without any
interaction while saving energy and thereby cost, without
jeopardizing users’ thermal comfort. The results of these
studies demonstrate that if any change occurs to user’s sched-
ules and preferences, the Adaptive Fuzzy Logic Models can
effectively learn and adapt to new changes while considering
energy conservation issues.

The operation of the appliances is modeled by
Barker et al. [29] with the goal of minimizing electricity cost
considering the consumers’ preferences and requirements as
constraints. The authors propose an electricity consumption
optimization algorithm that offers a schedule for home appli-
ances by using amixed-integer programming technique. They
proved that by adding a PV system, the electricity bill is
reduced.

Scheduling a set of appliances at the electricity consumer’
premises is also studied by Qayyum et al. [30]. The authors
consider a scenario with electricity tariff variability and a
photovoltaic (PV) panel functioning as a power-producing
appliance that acts as a micro-grid. The problem is solved
using mixed-integer linear programming without affecting
climatic confort.

In this paper, we focus on managing large volumes of
community consumption data to schedule the appliances for
the next day optimally y and evaluate the differences between
the day-ahead optimized program and the real consumption in
order to assist consumers to readjust the consumption sched-
ule and reduce costs. After investigating many approaches
that were put forward by other researchers, to the best of our
knowledge, there are no other studies employing a similar
approach.

The paper is structured as follows: in the current section,
the importance of the proposed approach and literature review

FIGURE 1. Flowchart of the methodology.

are presented; in the second section, we describe the big data
processing and sliding time window electricity consumption
optimization algorithm, providing a flowchart that shows the
steps of the methodology; in the third section, simulations are
performed emphasizing the results, and in the fourth section,
the conclusion is drawn.

III. METHODS AND MODEL
Addressing the two questions mentioned in the introduction
section, we propose a methodology described as a flowchart
(shown in FIGURE 1) that consists of three steps:
• Identifying the electricity consumption data sources for
the targeted consumers. In this study, real electricity
consumption data for 2016 from 11 complex houseswith
numerous appliances are used [31]. The data sources
consist of smart meters, plugs, and sensors that allow the
monitoring and control in real time of the appliances;

• Processing and transforming the data generated by the
different smart devices. This large volume of data is
continuously flowing at different time resolution from
various data sources. To handle it, we suggest an Elas-
ticsearch centered architecture where the data streams
are captured and transformed using Logstash and Beats;

• Considering that monitoring and controlling the appli-
ances in smart homes by means of sensors networks
and actuators are great opportunities to optimize the
electricity consumption and decrease the load peak,
we propose an optimization algorithm for the day-ahead
schedule that takes in account the appliances based
on the category they belong to. Thus, we classify the
appliances into some categories without revealing their
brand/model and other intrusive characteristics. The pur-
pose of the algorithm is to minimize the consump-
tion peak by shifting and controlling the operation of
the programmable appliances that will also reduce the
electricity payment by implementing different time-of-
use (ToU) tariffs [32] and stimulating the consumption
at off-peak hours. As a result, the day-ahead schedule
is provided to the electricity consumers for next day
implementation;
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FIGURE 2. Data management architecture.

• In real-time operation, the electricity consumption devi-
ates from the day-ahead optimized schedule. By moni-
toring and controlling the operation of the appliances to
follow the schedule and to achieve the objective func-
tion, we propose a sliding time window optimization
process that closely follows the consumption and cor-
rects deviations from the day-ahead schedule program.

• In order to evaluate the efficiency of the proposed opti-
mization approach (day-ahead and real-time optimiza-
tion algorithms), we calculate two consumption peak
indices: flattening index and peak to average ratio, and
two relevant electricity payment gains considering four
ToU tariffs.

A. DATA MANAGEMENT
To collect, store and analyze data, we favor an Elasticsearch
centered architecture as described in FIGURE 2. The elastic
stack can be an excellent solution to process sensor data,
telemetry, and other metrics. Such data are fined-grained
(usually collected at second resolution), annotated with meta-
data and require aggregations and roll-ups.

This architecture makes good use of the power of Elas-
ticsearch, which is a horizontally scalable NoSQL database,
being at the same time, more comfortable to implement
compared to a Hadoop or Spark centered solution, and in
most cases can do operations such as aggregations faster
on similar clusters. Nonetheless, if needed, with the help
of ES-Hadoop [33], data can be moved in both directions
between Elasticsearch and Hadoop and Spark can be used for
data processing or preprocessing. In such a scenario, Hadoop
Distributed File System (HDFS) can function as a repository
for long-term archival.

Data is captured from different smart meters, smart
devices or other IoT devices. A SmartThings hub or an
IoT Gateway [34] can help such devices to communicate
with each other by collecting and translating different pro-
tocols and can be a point of integration from which Beats
or Logstash can capture the data from a TCP socket or from

a log file. There are many commercially SmartThings hubs
(e.g. [35]), but then again such a device can also be built
using, for example using a Raspberry Pi board, an SD card,
a Zigbee USB adapter, a Wifi adapter and the Mozilla
IoT Gateway [36].

For data ingestion, the architecture includes Beats,
a lightweight agent that can be run on different servers or
devices and Logstash that is suitable for Extract, Transform
and Load (ETL) -like jobs and for connecting and accessing
multiple data sources. Elastic provides Beats agents to cap-
ture Audit data (Auditbeat), Log files (Filebeat), Availability
of services (Heartbeat), Metrics (Metricbeat), Network traf-
fic (Packetbeat) and Windows event logs (Winlogbeat). The
data can be sent from Beats to Logstash for further process-
ing or directly to Elasticsearch. There is also an extensive
list of community-sourced Beats [37]. The central compo-
nent, Elasticsearch is a horizontally scalable solution for data
storing, data searching and data analyses with built-in time
series aggregating facilities, including nested aggregations
searches. Kibana connects to Elasticsearch and focuses on
data management and visualization.

Elasticsearch stores data in uniquely identified documents
expressed in JSON. Documents reside in indexes which
are collections of documents with similar characteristics
(e.g., consumers, appliances, readings, etc.). Starting with
version 6.0 there can be only one mapping type per index
that determines how the documents are indexed. A mapping
type has meta-fields and fields [38]. Large indexes can be
divided into shards that can be distributed across the nodes of
a cluster. For fault-tolerance and search performance, indexes
can be replicated leading to primary shards and replica
shards.

We stored all the real-time readings data inside an index
and all the processed data inside another index. We used a
three-node cluster with 5 primary shards and one complete
replica. Having more shards induces overhead but can be nec-
essary as one shard can only hold up to 2,147,483,519 docu-
ments [39]. In our case, each reading is stored in an individual
JSON document.

In order to load electricity consumption data from sensors
and meters into the Elasticsearch documents, a preprocessing
stage is required to assure data consistency and validation
checks against missing or invalid values. Another important
aspect is to transform data recorded at different time intervals
to a common time resolution for aggregation and optimization
purposes. In our scenario, there are 11 houses with smart
meters and sensors that record data in .csv files at different
time resolution that varies from 1 minute up to 60 minutes.
In order to run the proposed optimization algorithms, the time
resolution for these records should be adjusted and set to
15 minutes. Therefore, a batch preprocessing approach is
proposed that reads every .csv file sent by sensors/meters
of a house (CSV j

hi) and transforms the time resolution of
the records to 15 minutes, as illustrated in Algorithm 1.
We choose this approach for batch processing to have a
reasonably consistent pre-processing plan for all the datasets
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that had different time resolutions (1 minute, 15 minutes,
30 minutes and 1 hour).

In case of one-minute time intervals, we only kept the
maximum values for every quarter of the hour (0, 15, 30 and
45 minutes past the hour). In the case of 30-minute time
intervals (0 and 30 past the hour), we calculated the average
of two consecutive intervals to generate appropriate values
for 15 and 45 pass the hour. In the rare cases when we only
had data for every hour, we calculated the averages three
times (once for 30 and once for 15 and 45 past the hour).
For every data set, we encountered two particular cases,
the change to daylight saving time in spring when for an hour
(2:00-3:00 am) we had no readings and the switch back to
standard time in the fall when we had two sets of recordings
for one hour. In case of two sets of values for the same
timestamp, we kept the first one, and in case we had no read-
ings for an hour, we applied the average method described
above.

This algorithm is also useful in the data pre-processing
step for filling in missing values, resolve inconsistencies and
dealing with outliers. The algorithm is implemented in Java
which has TreeMap, an implementation of the NavigableMap
interface where the map is sorted according to the natural
order of the keys. In our case, the mapwas sorted according to
the timestamp of the readings. With some adjustments, it can
be implemented in other languages that don’t implement a
TreeMap structure but implement map, hash table or dictio-
nary structures.

As a result, the records for each house are stored in one .csv
file (FCSVhi), having the time resolution set to 15 minutes.
The final .csv files for all houses are then loaded into Elastic-
search as indexed documents and are used in the optimization
process.

B. SLIDING TIME WINDOW ELECTRICITY CONSUMPTION
OPTIMIZATION ALGORITHM
For the optimization process (step 2 of the flowchart), dif-
ferent types of appliances are considered with their operation
constraints provided by the electricity consumers for the next
day.

C. TYPOLOGY OF APPLIANCES
For day-ahead and real-time electricity consumption opti-
mization approach (FIGURE 3), we classify the devices into
three main categories:

a) NP representing the non-programmable appliances that
include TV, laptops, lights, etc. Although most of these appli-
ances are interactive and have little scheduling flexibilities,
they are involved in the optimization process since they are a
significant part of the total consumption.

b) S representing shiftable or programmable appliances
without interruption that admit flexible delays in operation,
such as washing machines, dishwashers, bread machines, etc.
Their main characteristic is that they could be switched on
almost any time, but the interruption of operation is not feasi-
ble (once they start, they should operate without disruption).

FIGURE 3. Optimization process for day-ahead and sliding time window
interval.

Thus, they can be scheduled for the day-ahead optimization
stage and significantly influence the daily load curve.

c) I - representing interruptible appliances (e.g., ACs,
freezers, and refrigerators) that can be either ON with fixed
consumption, OFF for shorter time intervals or dimmable
according to the intrinsic characteristics of each appliance.
Some I appliances (e.g., water heaters, furnaces, etc.) can be
interrupted and shifted in order to meet the objective func-
tion of the day-ahead / real-time optimization process. Thus,
the appliances can be remotely monitored and controlled
by the supplier or other service providers based on service
contracts in which consumers are compensated for partially
giving up control over certain appliances. However, their
ON/OFF cycle duration is based upon consumers’ preference
setting. This type of appliance is used in both day-ahead and
real-time optimization due to their high operating flexibility.

d) B appliances are for storage use (batteries), electric
household appliances with batteries (such as vacuum clean-
ers) or electric vehicles batteries that can be charged from
the grid. They can be scheduled for both day-ahead and
real-time optimization stages. However, they are not used
as storage capacities at the community level since multiple
charging/discharging cycles lead to a tremendous lifetime
decrease.

For NP appliances, some estimations of the total con-
sumption based on their previous operation are considered in
the optimization algorithm, while for programmable appli-
ances the preferences of the consumers prevail, and for con-
trolled appliances, the preferences of the supplier in terms of
consumption peak are also taken into account. Since non-
programmable devices are numerous (sending preferences
for them would hassle the consumers) and do not contribute
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to the improvement of the schedule, their operation for the
following time interval is scheduled as the current real con-
sumption as in naïve forecasting approaches.

For day-ahead optimization, the objective function is peak
minimization by shifting programmable appliances (type I,
S, B) from peak to off-peak hours considering their opera-
tion constraints and the consumers’ preferences. Therefore,
the initial hourly consumption of each appliance (ICh

i ) and
the appliance constraints (Rhi ) for the next day are sent by
the consumer via web-interface and stored in the Elastic-
search indexes. In the case of non-programmable appliances,
the electricity supplier may estimate the total consumption
(TNPh) for the next day based on the previous day. The opti-
mization algorithm takes these elements as inputs, performs
peak minimization and provides the hourly schedule for each
appliance (SCh

i ). As a result, this rescheduled program is
sent back to the consumers for the next day implementation.
The electricity consumers may choose to follow the schedule
considering incentives and contract regulations. The electric-
ity consumers may change this schedule in case of some
unexpected events, in this case, they will set RSUh:m

i = 1.
For real-time optimization, the real consumption of each

appliance RCh:m
i recorded by smart meters is compared with

its schedule and major deviations greater than an accepted
value (1ci) are corrected by interrupting that appliance.
An individual appliance will not be interrupted for two con-
secutive time intervals or more than its maximum allowed
interruptions per day (Nintr i). As a result, reschedule con-
sumption is calculated for each appliance (RSCh:m

i ).

1) DAY-AHEAD OPTIMIZATION ALGORITHM
The day-ahead optimization algorithm schedules the appli-
ances based on their operating constraints set by the consumer
by moving I, S and B appliances from peak hours to off-peak
hours, thus flattening the consumption curve. First, the pro-
posed algorithm evaluates the total hourly consumption of
the appliances (TICh) based on the initial schedule sent by
consumers for day-ahead.

TICh
= TNPh + ICh

t , (∀)h = 1, 24 (1)

In order to flatten the consumption curve, the peak should
be decreased as much as possible to the average consump-
tion by shifting the operation of I, S, B appliances to the
off-peak hours. To facilitate this, the average, peak and
off-peak consumption are determined.

AVIC =
1
24

∑24

h=1
TICh (2)

ICpk
t = Max(ICh

t ), (∀)h = 1, 24 (3)

ICopk
t = Min(ICh

t ), (∀)h = 1, 24 (4)

For the peak hour, the algorithm determines the total con-
sumption of appliances of type I, S and B that can be shifted
to the off-peak hour by evaluating the operating constraints
of these appliances.

ICpk
move =

∑
j
ICpk

j , (∀) j∈ {I ,S,B} (5)

For each appliance j that will be shifted, the algorithm will
check the following set of conditions:

C1 – the initial peak consumption of appliance j should be
greater than zero: ICpk

j > 0;

C2 – the appliance can operate at off-peak hour: Ropkj = 1
C3 – the appliance should not already operate at off-peak

hour: ICopk
j = 0;

C4 – the initial peak consumption minus the total moved
consumption should not be less than the average consump-
tion: ICpk

t −IC
pk
move ≥ AVIC ;

C5 – the newly scheduled consumption at off-peak
hour should be less than the initial peak consumption:
ICopk

t +IC
pk
move < ICpk

t .
The appliances are shifted from peak to off-peak hours

in the ascending order of their operating constraints, so the
matrix R is sorted in the ascending order of the total restric-
tions for each appliance. Then, the average consumption is
computed according to equation (2) and the algorithm iterates
from equation (3) until ICpk

move = 0 for every hour considered
as peak/off-peak. The pseudo-code is detailed in Algorithm 2.

The flowchart of the day-ahead optimization algorithm is
represented in FIGURE 4.

The algorithm will set the optimized values for electricity
consumption for each appliance to SC array and discard the
changes of IC array. This is done in order to preserve the
initial consumption values to further compare the electricity
payment between the initial schedule and the real-time con-
sumption. Afterwards,the schedule for day-ahead consump-
tion of each appliance is sent to electricity consumers for next
day implementation.

2) REAL-TIME OPTIMIZATION ALGORITHM
The algorithm receives from meters the real consumption of
each appliance for every time frame interval (15 minutes)
and compares it with the scheduled consumption. The objec-
tive of the real-time algorithm is to control the operation
of appliances in order to minimize their deviation from the
day-ahead schedule. Thus, the appliances that are under the
supplier control (type I and B) will be switched on in case
they are not already operating according to the schedule and
the appliances that are operating at unplanned hours or are
consuming more than the schedule will be switched off.

In real time conditions, the operation of the appliances
may slightly deviate from the day-ahead schedule, so the
algorithm should consider an acceptable rate of deviation for
each appliance (1ci). Also, due to some unplanned events,
the electricity consumers may choose to use some appliances
that were not considered in the initial schedule or were sched-
uled at a different hour. In this case, the consumer option to
re-schedule appliance i at time interval h:m is represented by
the variable RSUh:m

i set to 1. In this case, the operation of
appliance i will not be changed.

Another important aspect that must be considered in
switching off the appliances is their maximum number of
interruptions over the last 24 hours. So, according to the
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FIGURE 4. The flowchart of the day-ahead optimization algorithm.

operating conditions of each appliance, the value of Nintr i
is checked. Also, an appliance will not be switched-off at two
consecutive time intervals. Synthetizing, the above conditions
can be formalized as follows:

C1 – check if the appliance is not re-scheduled by the
electricity consumer: RSUh:m

i = 0;
C2 – check if the appliance is scheduled for operating and

its real consumption is zero:RCh:m
i = 0AND SCh

i > 0. In this
case, the appliance is switched-on and its consumption is set
to the schedule:

RSCh:m
i ← SCh

i (6)

switchh:mi ← ON (7)

C3 – check if the real consumption of the appliance is
greater than the accepted deviation from the scheduled:
RCh:m

i > SCh
i +1ci;

C4 – in case the condition C3 is true, check if the maxi-
mum number of interruptions over the last 24 hours has not
exceeded and if it was not interrupted in the previous time

frame:
h:m∑

k=h:m−24h
intrki < Nintr i AND intrh:m−1i = 0. In this

case, the appliance is switched-off and the value of intrh:mi is
set to 1:

RSCh:m
i ← 0 (8)

switchh:mi ← OFF (9)

intrh:mi ← 1 (10)

FIGURE 5. The flowchart of the real-time optimization algorithm.

Variable switchh:mi is set to on/off in case the deviation from
the schedule is greater than 1ci and the Algorithm 3 calls
routines for switching on/off the appliances.

The flowchart of the real-time optimization algorithm is
represented in FIGURE 5.

IV. EVALUATION
In order to evaluate the performance of the day-ahead and
real-time optimization algorithms in terms of peak reduction,
the following indices are calculated: flattening index (FI) and
peak to average ratio (PAR). FI represents the ratio between
the average consumption and the total peak consumption; it
varies from 0 to 1, increasing to 1 as the daily load flattens,
while PAR is the ratio between the total peak consumption
square and the average consumption square.

FI =
AVG(C)

Cpk
t

(11)

PAR =
Cpk2
t

AVG(C)2
(12)

These two indices can be calculated for specific days or for
periods of time (monthly or annually) and give an indication
of the performance of the optimization algorithms. They can
be determined and compared at different stages (initial con-
sumption, day-ahead optimization, consumption, real-time
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FIGURE 6. ToU tariffs proposed for payment evaluation.

optimization or re-scheduling) to identify the demand poten-
tial to reduce the peak.

For electricity payment evaluation, four ToU tariffs
(as in FIGURE 6) are applied to estimate the electricity
consumption expenses with day-ahead and real-time opti-
mization in comparison with a flat standard fare of 16.2 Euro
cents, adapted after [32].

The ToU peak rates (between hours 17 and 22) are
higher than the standard tariff; A and B tariffs are
milder in terms of peak rates compared with tariffs C
and D, but the other rates of tariffs A and B (off-peak
and day rates) are higher, compensating the difference.
In other words, C and D discourage the consumption at
peak hours and better reward the consumption at off-peak
hours.

For tariffs evaluation and to measure the effect of day-
ahead and real-time schedule on the electricity payment,
we propose the subsequent gains.

Gain 1 represents the benefit if the consumerswould follow
the day-ahead schedule (SC) or real-time schedule (RS) in
comparison with real consumption.

Gain1SC → RC = 100−
EPSC
EPRC

× 100 (13)

Gain1RS → RC = 100−
EPRS
EPRC

× 100 (14)

Gain 2 is the benefit if the consumers would follow the
day-ahead schedule (SC), real-time schedule (RS) or real
consumption (RC) with different ToU tariffs instead of the
flat tariff.

Gain2SC = 100−
EPToUSC

EPFTSC
× 100 (15)

Gain2RC = 100−
EPToURC

EPFTRC
× 100 (16)

Gain2RS = 100−
EPToURS

EPFTRS
× 100 (17)

FIGURE 7. Appliances types belonging to the 11 houses.

FIGURE 8. Distribution of appliances at house level based on the type of
appliances.

V. INPUT DATA DEPICTION
The dataset contains consumption records of 314 appliances
measured in 2016 that belong to 11 modern houses that
form a community. Based on the operating particularities and
consumers’ requirements, appliances are classified into sev-
eral categories: Non-programmable (NP), Interruptible (I),
Shiftable (S) and Batteries (B). The number and percentage
of appliances according to their types (NP, I, S, B) for each
house are depicted in Table 1 and FIGURE 7.

As depicted in FIGURE 7, NP appliances represent 39%,
I appliances represent 49%, while B and S appliances repre-
sent only 8% and 4% respectively of the total consumption
at the community level. Basically, the fixed consumption of
NP appliances represents 39%, while the variable con-
sumption (S, I, B appliances) represents 61% of the total
consumption.

FIGURE 8 shows the potential of each house to contribute
to the optimization process. Only 3 houses (HE, HF and HK)
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FIGURE 9. Sum of consumption power for each type of appliance/house.

FIGURE 10. Daily load profile at the community level.

have all four components (S, NP, I appliances and B), while
the other houses have NP, I and S appliances.

FIGURE 9 shows the level of consumption power in kW
for each house recorded in 2016. House G had the highest
consumption, while the lowest consumptions were recorded
for HA, HB, HC, HI, and HJ.

The daily load profile of the entire community represents
the average hourly consumption of each appliance type,
as shown in FIGURE 10. The fixed or NP consumption
(in light green) is positioned at the bottom of the curve
forming the consumption baseline that cannot be altered.
The curve described in FIGURE 10 shows two consumption
peaks: morning (around 7:00) and evening (around 19:00)
peaks and two consumption off-peaks: night (around 3:00)
and afternoon (around 11:00) peaks, providing enough space
for shifting the operation of the appliances to the valleys of
the curve. The proportion of NP and I appliances is almost
equally distributed for the 24-hour intervals. The batteries (B)
are charging mostly during the evening, while S appliances
are operating mainly during the day (especially in the morn-
ing and afternoon).

Batteries could be assimilated to the S or I appliances rather
than considering them as storage capacities due to the lifetime

FIGURE 11. Load profiles for each weekday at the community level.

FIGURE 12. Hourly electricity consumption before/after day-ahead
optimization (working day).

reduction issue in case of daily repeated charging/discharging
cycles. The load profiles representing the average hourly
consumption by appliances for each weekday (where 1 is
for Sundays and 7 for Saturdays) at the community level are
illustrated in FIGURE 11.

The highest consumption was recorded on Fridays, while
the lowest consumption was recorded on Sundays. Also,
the shape of consumption curves reflects the weekday
consumers’ activities.

VI. SIMULATIONS AND RESULTS
A. DATA SOURCES DESCRIPTION AND MANAGEMENT
The data is recorded by smart meters and sensors into separate
.csv files. Each house has more than one smart meter/sensors,
so the data is split into 2 or more flat files depicting reads
from several meters servicing various appliances within that
house. The number of attributes and the number of lines
are different, even for data coming from the meters of the
same house. The schemas are also different (i.e., the num-
ber of attributes) because each meter serviced a variable
number of appliances and the number of records also var-
ied due to different resolutions. To exemplify, for a meter
from house A we have data for 8 devices for the interval
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FIGURE 13. Consumption before (a)/after day-ahead optimization
(b) based on the type of appliances.

1-January-2016 00:00 to 15-December-2016 20:59 at a one-
minute resolution (503.820 records in total). For another
meter of the same house we have data for 11 devices
at a thirty-minute resolution between 1-January-2016
00:00 and 20-July-2016 11.30 and at a one-minute resolution
and from 20-July-2016 11.31 and 31-December-2016 23:59
(246.639 records). For the third meter of the same house,
we have data for 12 devices at a fifteen-minute resolution
between 1-January-2016 00:00 and 19-January-2016 1:45
and at a one-minute resolution between 19-January-2016
2:00 and 31-December-2016 23:59 (502.743 records in total).
For other houses, in rare cases, we have data at a one-hour
resolution. Given the fact that our algorithms evaluates the
differences between the optimized schedule and the actual
consumption and suggests a new re-optimized program,
we pre-processed the data and transformed it to a fifteen-
minute time resolution.

In case of real-time processing of the data streams, we
calculated in Elasticsearch the average consumption every
fifteen minutes for each interruptible (I) and shiftable (S)
appliances of each house (as in Query 1).

FIGURE 14. Real (a) and rescheduled electricity consumption (b).

FIGURE 15. Hourly electricity consumption before/after day-ahead
optimization for a weekend day.

For real-time optimization, the query performance is a very
important aspect that should be considered. Therefore, apart
from the existing data set, to test the real-time processing of
data, after loading the initial data into an Elasticsearch cluster
(3 nodes), we generated streams of data, every second, from
10 different computers using multiple threads, simulating
continuous readings from a total of 50 devices. To ensure
that the stream values are realistic, we used a Monte Carlo
simulation to randomly sample data from the actual readings
of a corresponding appliance (j) for each of the 50 simulated
appliances, as shown in algorithm 4 implemented in Java.
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Query 1 Aggregate Data in Elasticsearch
{

"query": {
"bool": {

"must": {"terms": {"type": ["i", "s"]}},
"filter": {"range": {"date_time": {"gte": "now-

15m/m","lt": "now/m"}}}
}

},
"aggs": {
"group_by_day": {

"date_histogram": {
"field": "date_time",
"interval": "15m"

},
"aggs": {

"group_by_Type": {
"terms": {
"field": "appliance"
}

,
"aggs": {
"type": {
"terms": {
"field": "type"},
"aggs": {"avg_rc" :{"avg" : {"field" : "rc"

}},
"avg_sc" :{"avg" : {"field" : "sc" }}
} } } }}}}}

FIGURE 16. Consumption before (a)/after day-ahead optimization
(b) based on the type of appliances.

The Logstash TCP/IP plugin [40] was set up to listen on
the port the messages are written by Algorithm 2. As a filter,
we used theDissect plugin [41] to separate the data and output
it to Elasticsearch. We didn’t experience any noticeable lags
in data ingestion and in processing aggregating queries such
as the one in Query 1.

FIGURE 17. Real (a)/rescheduled electricity consumption (b).

FIGURE 18. Monthly flattening index.

B. OPTIMIZATION ALGORITHMS
The proposed day-ahead and real-time optimization algo-
rithms described in section 3 are implemented in Python
and the aggregated data from Elasticsearch is retrieved into
Pandas DataFrames for processing. Based on the available
data sets, we perform the optimization process for each day
of the entire period (year 2016). To evaluate its performance,
we randomly choose two individual examples for a work-
ing day (1-July-2016) and a weekend day (1-October-2016)
which are discussed in the following paragraphs.
In FIGURE 12, the initial (according to consumers’ schedule)
and scheduled hourly electricity consumption (based on day-
ahead optimization algorithm) for 1-July-2016 is shown.
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FIGURE 19. Monthly peak to average ratio.

TABLE 1. Number of appliances.

The hourly electricity consumption before optimization
based on the type of appliances shows a higher peak of
around 36 kWh at 19:00 that decreased after optimization to
around 22 kWh (as in FIGURE 13).

In real time, the electricity consumers may not stick to the
schedule, and for some appliances, significant deviations are
encountered. Thus, the actual consumption as in FIGURE 14
(a) deviates from the day-ahead optimized consumption being
necessary to reschedule the consumption as in FIGURE 14
(b) based on day-ahead schedule and the changes from the
previous 24 hours that the consumers may impose.

In FIGURE 14 (a) real consumption on 1-July-2016 is
depicted, while in (b) the re-scheduled consumption at
15 minutes is simulated sticking as much as possible with the
day-ahead schedule and considering the consumers’ prefer-
ences expressed between the day-ahead optimization and the
real consumption (i.e., when they change the initial prefer-
ences).

In Table 2, the optimization performance indices for
1-July-2016 are shown.

In FIGURE 15, the initial and scheduled hourly electricity
consumption for 1-October-2016 is shown.

Algorithm 1 Preprocess the Data in Batch
DEFINE TreeMap<LocalDateTime, List<Float>> T
FOR hi=1 TO nh

FOR j=1 TO nmhi
FOR RECORD : CSV jhi
IFRECORD.getMinute()in (0, 15, 30, 45)THEN

T < t,IChi> .setKey()← RECORD [0]
T < t,IChi> .setValue()← RECORD[1..n]

END IF
END FOR
FOR ENTRY : T < t,IChi>.entrySet()

t1 = ENTRY.getKey()
t2 = ENTRY.next().getKey()
IF t1.getMinute()−t2.getMinute()IN(30,−30) THEN
IC j = ENTRY.getValue()
FOR j=1 TO ICn.Size()
T.set(t1+15 minutes, AVG (T .get (t1) [j],T .get(t2)[j])

END FOR
END IF

IFt1.getMinute() = 0 ANDt2.getMinute() = 0 THEN
FOR j=1 TO ICn.Size()LOOP
T.set(t1+30 minutes, AVG (T.get (t1) [j],T.get(t2)[j])
T.set(t1 + 15 minutes, AVG (T.get(t1)[j],
T.get(t1+30 minutes)[j])

T.set(t1 + 15 minutes, AVG
(T.get

(
t1+30 minutes

)
[j],T.get(t2)[j])

END FOR
END IF

END FOR
TJOINED<t, ICn >=TJOINED<t, ICn >FGTJOINED.t
=T.t T<t, ICn >

FOR ENTRY : TJOINED < t,IChi>.entrySet()
t1 = ENTRY.getKey()
t2 = ENTRY.next().getKey()
IF t2.getMinute()<>t1.getMinute()+15minutes THEN

RAISE ERROR
END IF
FCSVhi ← TJOINED<t,ICn >

END FOR
END FOR

END FOR

TABLE 2. PEAK indices calculated for working day 1-July-2016.

Hourly electricity consumption before optimization based
on the type of appliances shows a high peak of almost 30 kWh
at 19:00 that decreased after optimization to around 16 kWh,
as in FIGURE 16.

In FIGURE 16 (a), the real consumption for a weekend day
is depicted, while in (b) the re-scheduled consumption is sim-
ulated sticking as much as possible with the day-ahead sched-
ule and considering the consumers’ preferences expressed
between day-ahead optimization and real consumption when
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Algorithm 2 The Day-Ahead Optimization Algorithm

Ri ← OrderSUM
(
Rhi

)
ASC

AVIC ← SUM
(
TNPh + ICht

)
/24

REPEAT
ICpkt ← Max(ICht )
ICopkt ← Min(ICht )
ICpkmove := 0
FOR j=1 TO nI + nB+nS

IF ICpkj > 0 AND Ropkj = 1 AND ICopkj = 0 AND

ICopkt + ICpkj < ICpkt AND ICpkt − IC
pk
j ≥ AVIC THEN

ICpkmove := ICpkmove + IC
pk
j

ICopkt := ICopkt + ICpkj
ICpkt := ICpkt − IC

pk
j

ICopkj := ICpkj
ICpkj := 0

END IF
END FOR

UNTIL ICpkmove = 0
FOR i=1 TO n

SChi ← IChi
END FOR

Algorithm 3 The Real-Time Optimization Algorithm
FOR every h : m time interval

FOR i=1 TO nI + nB
IF RSUh:m

i = 0 THEN

IF RCh:mi = 0 AND SChi > 0 THEN

RSCh:mi ← SChi
switchh:mi ← ON
CALL SWITCH_ON(i)

ELSE
IF RCh:mi > SChi +1ci AND

∑h:m
k=h:m−24h

intrki < Nintr i AND intrh:m−1i = 0 THEN

RSCh:mi ← 0
switchh:mi ← OFF
CALL SWITCH_OFF(i)
intrh:mi ← 1

END IF
END IF

END IF
END FOR

END FOR

they change their announced preferences. In case of the week-
end day, the actual consumption also deviates from the day-
ahead optimized consumption being necessary to reschedule
the consumption as in FIGURE 17 (b). This is accomplished
based on the day-ahead schedule and the last 24-hour changes
that consumers may impose.

In Table 3, the optimization performance indices for 1-
October-2016 are shown.

For the entire period, at the monthly level, the optimization
performance indices are calculated in Table 4.

In FIGURE 18 and FIGURE 19, monthly flattening index
and peak to average ratio are represented for initial, day-
ahead scheduled, real and rescheduled consumption.

On average, the FI increased from 0.41 to 0.6 for day-
ahead optimization and to 0.56 for real-time optimization,

Algorithm 4 Generate a Data Stream for each Appliance j
With a Given T Resolution

DEFINE sourceData List<Float>

DEFINE sourceDataIndexed TreeMap<Float,Float>

DEFINE echoSocket Socket(hostName, portNumber);
DEFINE PrintWriter out (echoSocket)
FOR RECORD FCSVx

sourceData < E > .add(RECORD [j])
END FOR
FOR i=1 TO sourceData.Size()
sourceDataIndexed.put(i/sourceData.size(),
sourceData(i))

END FOR
WHILE VALUES ARE NEEDED DO

r ← RANDOM(0, 1)
FOR ENTRY : sourceDataIndexed < K,V>.entrySet()

f = ENTRY.getKey()
IF f ≥ r THEN

Out.println(LocalDateTime.now(),
ENTRY.getValue(), ‘‘DEVICEj′′, ‘‘TYPEOFj′′)

BREAK
END IF

SLEEP(T)
END FOR

END DO

TABLE 3. Peak indices calculated for weekend day 1-October-2016.

while PAR (peak to average ratio) fell from 7.1 to 3 for day-
ahead optimization and to 3.37 in real-time rescheduling.
The data from Table 5 indicates that tariff A is the most
convenient for the residential consumers due to the lowest
electricity payment, while tariff D rewards best the shifting
of the appliances with almost 9% gain if the consumer would
have scheduled their appliances based on the day-ahead opti-
mization program (SC) and with almost 5% if the supplier
reschedules the appliances based on real-time optimization
program (RS).

Considering that the tariff A brings the highest sav-
ings at the community level, the electricity payment and
gain evaluation for each house with tariff A are shown
in Table 6.

The highest gain is obtained by HG, HE, HF, HK, and HB
if the houses stick with the day-ahead schedule or byHK,HG,
HE and HD in case the supplier reschedules the appliances of
these houses in real time.

On average, the gain per year per house regardless the
tariff is about 137 Euro if the consumers would follow the
day-ahead optimization schedule and 81 Euro if the supplier
reschedules the appliances in real time. Although the gain
is not impressive, we should have in mind that the primary
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TABLE 4. Peak indices for each month at the community level.

TABLE 5. Electricity payment and gain evaluation at the community level.

TABLE 6. Electricity payment and gain evaluation for each house with
tariff A.

purpose is to reduce the peak as it definitely brings long-run
advantages, such as grid investment reduction, RES integra-
tion, better environment, etc.

VII. CONCLUSION
Starting from massive volumes of electricity consumption
data coming from smart meters, smart plugs, other sen-
sors and consumers’ preferences, we proposed a two-stage

dynamic optimization approach to minimize the load peak
and decrease the electricity payment based on the incen-
tives of the ToU tariffs. A novel optimization approach that
schedules the appliances for residential consumers for the
next day and then re-schedules the appliances in real time at
fifteen-minute time intervals are developed at the community
level. For this approach, we processed a large volume of
data from sensors and smart meters considering consumers’
preferences. Every fifteen minutes, the algorithm evaluates
the differences between the optimized schedule and the actual
consumption and control the operation of the interruptible
appliances to stick with the day-ahead schedule as much as
possible.We showed that real-time processing of such electri-
cal big data using the proposed algorithm takes advantage of
the Elasticsearch centered architecture, manages to reduce the
peaks and delivers financial gains for the consumers without
harming their comfort.

Nonetheless, the algorithm is based on the readiness of
the consumers to send their day-ahead schedule and to make
small adjustments to their habits based on service contracts.
They can be further stimulated to submit their consumption
patterns by using additional incentives such as gamification,
i.e., the use of game elements such as rewards for accomplish-
ing tasks. These type of approaches are heavily employed
by companies like Uber [42] to stimulate their drivers in
order to take more rides and could be translated into the
field of electricity consumption optimization. For example,
a further reduction of the electricity bill or discounts to
partner companies can be offered after the first 10 submitted
consumption patterns or for completing a task that asks to
reduce consumption 5 days in a row for a given time interval.
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