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ABSTRACT The Internet of Things (IoT) provides a beautiful and intelligent landscape for humanity’s
future. The connections of various sensors and devices in the IoT result in a large consumption of energy.
Therefore, research on energy saving and energy efficient methods is imperative. For wireless sensors in
an JoT network, sustainable operation in an energy efficient manner is essential due to the limited battery
capacity of sensors. This paper attempts to study an IoT network containing wireless sensors and base
stations. Wireless power transfer techniques for supplying battery charging are becoming increasingly
mature. For wireless sensors, a charging vehicle is responsible for the electrical power supply. To save
electrical energy, data transfer of the discussed IoT network scenario is expressed as a minimization problem.
A three-stage method is proposed to handle the optimization problem. A restart artificial bee colony (RABC)
method is proposed to solve the subproblems of the data transfer model. It is proved that the RABC method
asymptotically converges to the optimal solution of the problem. Numerical simulations show that energy
consumption in the studied network scenario can be minimized using the proposed method with a good,
robust property.

INDEX TERMS Artificial bee colony, global optimization, Internet of Things, wireless power transfer,

wireless sensor.

I. INTRODUCTION

The Internet of things (IoT) is a network that extends through
the Internet. In the Internet of things, “things” and the
internet are connected through radio frequency identification
equipment, sensors and positioning equipment in accordance
with a certain agreement to exchange and communicate infor-
mation, so that the recognition, location and supervision of
the object will become more intelligent. Its greatest feature
is communication and dialog between things that can also
interact and communicate with the environment [1], [2].

In 2003, Technical Comments of the United States
proposed that sensor network technology will be the first
technology to change people’s lives in the future. In 2004,
the Ministry of Internal Affairs and Communications (MIC)
of Japan proposed the u-Japan project, which strived to realize
the connection between people, things, and people and things,
and hoped to build Japan into a network society anytime,
anywhere, between any things and any people [3]. In 2005,

the International Telecommunication Union (ITU) published
“ITU Internet Report 2005: Things” at the World Summit
on the Information Society (WSIS) held in Tunisia. In this
report, the concept of the “Internet of Things” is defined. The
scope of the IoT had been expanded greatly, and no longer
referred to the Internet of things based on RFID technol-
ogy [4]. In 2008, Innovation 2.0 was proposed in China to
develop the mobile and IoT technologies, which represented
the formation of a new generation of information technology,
and promoted the transformation of economic and social
forms to innovative forms. In 2009, the IoT became one of the
key points for revitalizing the economy in America. [oT tech-
nology has attracted attention worldwide and has developed
rapidly. The number of interconnected devices increased from
7 billion to 9 billion worldwide in three years from 2010 to
2013. It is expected to reach 24 billion devices by 2020.
According to the Global System for the Mobile Commu-
nications Alliance (GSMA), this amounts to $1.3 trillion in
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revenue opportunities for mobile network operators involving
health care, automotive transportation, utilities and consumer
electronics [1].

The development of the [oT requires the connection of all
types of wired or wireless sensors and other devices. Wire-
less sensors are usually equipped with batteries of limited
capacity. The limited power constrains the data transfer in the
IoT. Hence, finding an energy efficient method for promoting
the development of the IoT is inevitable. This paper attempts
to study an IoT scenario with wireless sensors and base
stations (BSs). Wireless sensors generate data and transmit to
the BSs. There are two levels of BSs: the micro base station
and the macro base station (BS). The micro BS receives data
from wireless sensors and sends it to the macro BS. The
macro BS then sends data to the database or cloud computing
platform. Regarding the limited battery capacity, the wireless
power transfer (WPT) technique is suitable for charging the
battery. It is assumed that a vehicle equipped with a large
capacity battery is responsible for charging the batteries of the
sensors. A novel method is proposed to solve the data transfer
problem. The contributions of this paper are as follows:

(1) The IoT scenario is modeled as an optimization prob-
lem. In the model, the total energy cost of the wireless sensors
and vehicle are minimized. Hence, the energy consumption of
the network is also minimized.

(2) A three-stage method is proposed for the problem. The
stages are finding the shortest travel path, mutual interference
reduction and determining the optimal uplink route. The
travel path is the route of the vehicle to visit all wireless
sensors. Mutual interference is the signal interference among
sensors and micro BSs. The uplink route is the data transfer
route from the sensors to the macro BS.

(3) A restart artificial bee colony (RABC) method is pro-
posed to solve for the travel path and uplink route. The
asymptotic convergence of the RABC method is also proved.
The RABC method can provide a set of promising solutions
to the problem.

Section II introduces the recent studies of the IoT, wire-
less sensor network and WPT. Section III describes the
IoT scenario and its mathematical model discussed in this
paper. Section IV presents the three-stage method. Section V
presents the RABC method. The simulation results are pro-
vided in Section VI to verify the usefulness of the proposed
method. The conclusion is drawn in Section VII.

Il. RELATED WORKS

There are five technologies in the IoT: radio frequency iden-
tification (RFID), wireless sensor networks (WSNs), middle-
ware, cloud computing and IoT application software [1], [2].
Among these, the WSN is the important technology for
obtaining the data and information from the environment.

A wireless sensor network is a computer network system
that uses space distributed autonomous devices to monitor the
physical or environmental status of different positions such
as the temperature, sound, vibrations, pressure, etc. Recently,
the technology of WSNss has been widely applied in industrial
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control, smart homes, security, military safety, intelligent
agriculture, environmental awareness and health monitor-
ing [5]. Synchronization and/or localization of a WSN can be
modeled as optimization problems, which can then be tackled
using nonlinear programming methods [6]-[10]. Because of
the small volume of the sensor nodes, the battery energy
that they carry is limited, which restricts the application of
a WSN. To address this problem, Han et al. [11], [13], [14],
Liang et al. [12], Ma and Wang [15], and Wu er al. [16]
designed energy saving routing protocols to solve the energy
problem. However, these studies could only reduce the energy
consumption, and did not replenish energy to the sensor
nodes that lack energy. Thus, the technology of wireless
power transfer (WPT) [17]-[21] provides the opportunity for
replenishing a sensor with energy at any time.

In 2007 [17], a research team from MIT proposed the
technology of wireless power transfer based on the cou-
pled magnetic resonances. In this system, the power can
transfer from the transmitter coil to the receiver coil wire-
lessly, which have identical resonant frequencies. In contrast
to the inductive wireless power transfer system, the wire-
less power transfer system based on coupled magnetic res-
onance can transfer power over a mid-range distance with
high efficiency [19], [20]. Zhang and Zhang [21] studied
the charging problem in the WPT system using a near
field plate structure. Zhao et al. [22] studied the assign-
ment of time for a three-node WPT communication system.
Rana and Xiang [23] studied the estimate of the state and
stabilization of the IoT network for the WPT system.

Combining the technology of the WSN and WPT, in this
case, the wireless rechargeable sensor network (WRSN) is
designed and studied [24]-[26]. Xie et al. [24] studied the
operation of charging each sensor’s battery wirelessly using
amobile charging vehicle. The researchers obtained the max-
imum vacation time of the mobile charging vehicle over the
cycle time. Fu er al. [25] proposed a charging scheme for
WRSNs to minimize charging delays. The authors did not
consider the data transmission between the sensors and the
base stations. Han et al. [26] proposed a grid-based joint
routing and charging algorithm in which the sensor nodes
were not charged one by one.

lll. PROBLEM MODELING

The scenario considered in this paper is comprised of wireless
sensors, micro base stations (BSs) and a macro base station
as in Figure 1. Connections of wired devices (e.g., a wired
sensor or computer) are more reliable than those of wireless
sensors. Hence, wired devices are not considered in this study.
Wireless sensors contain batteries with a limited capacity.
They are assumed to have the same type of battery and are
fully charged in the beginning. There are two types of base
stations: macro BS and micro BS. It is assumed that wired
connections are present between the micro BSs and a macro
BS. As wireless connections are less reliable and consume
more energy than wired connections, it is reasonable to put
more effort on wireless sensors.
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FIGURE 1. An example of a problem scenario.

Denote Nws and Ny as the number of wireless sensors and
the number of micro BSs, respectively. Suppose the sensing
data rate of sensor i is R;. The sensors send the collected data
to the micro BSs, which send data to the macro BS. In case
a sensor is not covered by a micro BS, its nearest sensor
becomes arelay to transmit data. Multi-hop data transmission
may be required in such a case. Hence, the data transmitted,
received and sent by sensor i should be balanced:

Y i+ Ri= > f (1

ki i#j
where fj; is the data from sensor & to sensor 7, and fj; is the data
from sensor i to sensor j; the first term is the data received
by sensor i, and the last term is the data sent by sensor i,
either to another sensor or to a micro BS. Let the sensing
data rate of the micro BS be R; = 0, then formula (1) is
also correct for the micro BS. Note that a sensor may hold
its data transmission when Signal to Interference plus Noise
Ratio (SINR) or Signal to Noise Ratio (SNR) is too low. Thus,
the left hand side of (1) should be greater than or equal to the
right hand side.

Based on data transmission, the energy consumption per

unit time can be computed as:

ei=piy_fi+ Y Cify, 2
ki i
where ¢; is the energy cost for node i, the second term is the
energy cost for receiving data and p; is the basic consumption
per unit data rate. In (2), Cj; is the energy cost for sending one
data unit. It is usually related with the distance between two
nodes and computed as:

Cij = B1 + B2Dj, 3

where Dj; is the distance between node i and node j and «, 81
and B, are constants depending on D;;. Formula (3) was used
in [24].
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For simplicity, N,,; wireless sensors and Ny micro BSs
are considered nodes in the IoT network. Spectrum resources
are very precious in wireless communication networks, and
proper spectrum allocation is necessary for data transfer in
IoT networks such as cellular networks and cognitive relay
networks [27], [28]. Mutual interference among wireless sen-
sors and micro BSs must be considered. It is also necessary
to reduce consumption power so that their interferences are
below a predefined threshold /7;. Denote g(m, i,j) as the
channel gain between node i and node j operating on the
same channel m. Denote P(m, i) as the transmission power
of sensor i. Thus, the following formula is established:

D P (m.j)*g(m,ji) <IT;. )
J#

For the scenario, a sustainable network uses a charging
vehicle to supply electric power for the wireless sensors.
Clearly, the charging vehicle should work periodically to
construct a sustainable cycle. During one cycle, each sensor
collects and transmits data according to some route, and the
interference caused by data transmission must be less than an
interference threshold. The macro base station is responsible
for transmitting data to the data center or destination. Given
that wireless sensors can be charged periodically, the IoT
network can run in a cycle.

Suppose there is a place for charging the vehicle, which is
the starting place. Clearly, the vehicle should visit all wireless
sensors to recharge the batteries. Denote v as the velocity
of the vehicle, and suppose the vehicle maintains a constant
velocity to traverse all sensors. Thus, the travel time of the
vehicle is:

Ty = i» 5

v
where [ is the path length of the vehicle trip. The vehicle
should return to the starting place after its travel to recharge
its battery or substitute another battery.

Denote 7 as the time for the vehicle to traverse all sensors
and recharge all nodes. The amount of electric power used
by sensor i must equal the amount of power recharged by the
vehicle. Hence, the recharging time of sensor i is:

e;T

T = 77 (6)

where U is the electric power transfer rate. Thus, the cycle
time of the network 7 is:
Nivs
T = Z T+ Ty @)
i=1
Because v and U are considered constants, minimizing the
cycle time (6) is equivalent to minimizing the energy con-
sumption of the network.

Finally, the problem is expressed as in (8). In problem
model (8), the data transmission rate f;;, energy consump-
tion e;, and travel length [/ are independent variables. The
objective is to minimize the travel time and charging time of
all nodes.
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IV. PROBLEM SOLVING

Formula (8) is a non-differentiable optimization problem.
A three-stage method is proposed to solve this problem. The
first stage is to determine the variable /. This variable is the
shortest path for traveling to all wireless sensors. The second
stage is to reduce the mutual interference of wireless sensors
and micro BSs. This stage assigns different channels to satisfy
the third inequality constraints in (8). The third stage is to
determine fj; and e; so that an optimal uplink route is found
for the problem.

Nis
mint =1, + Z T;

i=1
sty fatRi—=> f=0,

ki i#j
ei—piY)_fit ) Cyfi=0.

ki i
D P (m,j)xg(m,j,i) <IT;
J#
i=1""’NWS9 0ri=15"'5NM17
Jfij€i, 1= 0,. ®)

In model (8), the variables are the data from sensor i
to sensor j fi;, energy consumption of sensor ie; and travel
length [. By optimizing the travel length /, all sensors are able
to keep working. By optimizing sensor energy consumption
e; and data transfer route fj;, energy cost of sensors can then
be minimized.

A. SHORTEST TRAVEL PATH

The charging vehicle must traverse all wireless sensors.
Based on graph theory [29]-[31], all sensors are repre-
sented as nodes, so they are the starting points of the vehi-
cle. If the vehicle is restricted, then it passes each node
only once. The shortest travel path belongs to the travel-
ing salesman problem (TSP). The TSP was proved to be
a non-deterministic (NP) complete problem. In our case,
the vehicle returns to the starting place, hence, its trip is a
cycle. Finding the shortest path becomes finding the shortest
Hamilton circuit for the trip.

Theorem 1: For an optimal solution of model (8), the
vehicle travel path must follow one of the shortest Hamilton
circuits (the shortest Hamilton circuit might not be unique).

Proof by Contradiction: Suppose X = (fij, e;, [) is an
optimal solution of model (8), but the travel path of this
solution does not follow one of the shortest Hamilton circuits.

Denote I’ as one of the shortest Hamilton circuits. Based
on solution x, another solution x’ could be constructed
x = (fl]’, e;, ') with flj’ = f;j, and e; = e;. Because x is a
solution of model (8), it satisfies the first three constraints.
Thus, based on the construction of x’, solution x’ also satisfies
the first three constraints. This means that X’ is a feasible
solution of model (8).

Based on (5), X' follows one of the shortest Hamilton
circuits, whereas x does not. Hence, 7,(x) < 17,(X).
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Moreover, 7;(x') = 7;(x) due to ¢; = e;. Then, we have
7(x’) < 7(x). On the other hand, based on the assumption
that x is an optimal solution, we have t(x) < 7(x'). The
conclusions contradict each other. Therefore, the theorem
holds.

Although there are many methods for finding the shortest
Hamilton circuit, a new method will be designed in the next
section for such a problem. This method is not only effective
but also more robust than other methods.

B. REDUCING THE MUTUAL INTERFERENCE

Due to the dense deployment of sensors and/or BSs, wireless
data transmission causes mutual interference. The follow-
ing method is useful for reducing or removing such mutual
interferences.

First, it is practicable to determine the interference region
for each node. Because the transmission power of the sensors
and micro BS are limited, the radius of their interference
region can be computed. For simplicity, it is assumed that the
wireless sensors have the same radius R,,;, and the micro BSs
have the same radius Rj;. If two nodes are distant from the
interference radius, then both nodes can use the same channel;
otherwise, both nodes interfere with each other if using the
same channel, which can be solved in the second step.

Second, the graph coloring principle is used to remove
the mutual interference of nodes. For nodes located in the
interference region, the graph coloring principle is very use-
ful for removing the mutual interference. The nodes having
potential interference constitute an undirected graph. The
covering region of each micro BS is considered an undirected
graph. It is assumed that the mutual interference does not
occur between two micro BSs. According to the Headwood
theorem, the number of colors is not greater than 5. Thus,
if the mutual interference can be reduced to an undirected
planar graph, five channels are sufficient for removing it.

C. OPTIMAL UPLINK ROUTE

After the mutual interference is reduced to the required level,
there are many possible uplink transmission routes, especially
when the number of nodes becomes large. For energy-saving
purposes, it is necessary to find the optimal or suboptimal
route.

As observed from model (8), parameters f;; and e; must be
determined. Parameter e; can be computed using the second
equality constraint of (8). Thus, determining fj; is crucial.
There are (N,,s+Nur )2 parameters to be determined, which is
very difficult. The following method is used to find an optimal
solution for the uplink route.

First, find a set of good and feasible solutions to model (8).
Let the sensors and micro BSs be graph nodes. Then, con-
struct an undirected graph of all nodes, in which two nodes
are connected by an edge if data can be transmitted based on
the allowed interference. After a graph is constructed, its min-
imum spanning tree (MST) can be found [30]. It is assumed
that micro BSs can connect to the macro BS, so it is better
to decide the MST for each micro BS and its corresponding
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covering region. This makes each micro BS the center of its
covering region. The method proposed in the next section can
be used to find the MST. Next, we will show that data transfer
based on the MST is a feasible solution to model (8).

Theorem 2: For a data transfer route based on a minimum

spanning tree, the route is a feasible solution to model (8).

Proof: Suppose x = (fjj, e;, I), where [ is determined
in Section III-A, and fj; (the data transmitted from node i to
node j) follows an MST. It is easy to verify that x is a feasible
solution.

Mutual interference was discussed in Section III-B. Based
on the construction of the graph, an edge exists only if two
nodes can transmit data without violating the interference
threshold. Hence, the third constraint of (8) is satisfied.

For the MST, all wireless sensors can be connected directly
or indirectly to the nearest micro BS. Micro BSs then connect
with the macro BS. Hence, the data received and generated
by a sensor or micro BS equals the data sent to other sensors,
micro BSs or the macro BS. Thus, the first equality constraint
of (8) holds. The energy consumption ¢; is computed using
the second constraint of (8). This constraint also holds with
respect to X. Then, x is a feasible solution of (8).

Having found a feasible solution based on the MST,
the proposed method is initialized in the next section. Then,
the proposed optimization method is responsible for finding
better solutions. The proposed optimization method is pro-
vided in the next section.

V. RESTART ARTIFICIAL BEE COLONY METHOD
To evaluate global optimization problems, the restart artifi-
cial bee colony (RABC) method is proposed in this section.
Note that in this section index i and j refers to solutions
and variables of optimization problems, which differs from
the meaning of Section III and Section IV. First, the RABC
method is provided, followed by the convergence analysis.
The work flow of the RABC method is shown in Figure 2.
It begins with a set of food sources (potential solutions for
a problem). In general, the initial food source set is created
based on a uniform distribution. The bee colony consists of
employed bees and onlooker bees. Denote N}, as the number
of bees in the colony. Half of the NV, bees are employed bees
and half are onlooker bees. Accordingly, the pseudocode of
the RABC method is shown in Algorithm 1.

A. PROCEDURES OF THE RABC METHOD

The employed bees perform a search in a large region and are
responsible for reaching the neighborhood of the global opti-
mum. For continuous optimization problems, the following
formula is used to produce a candidate solution v;:

vij = xij + rij (xj — ), ©)

where x; and x; (i # k) are two solutions, index j refers to
the j-th parameter of a solution, and r;; is a random number
between —1 and 1. For discrete optimization problems, such
as the shortest Hamilton cycle problem, all nodes are encoded
by integers to constitute a solution, and then the candidate
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FIGURE 2. Flow chart of the RABC method.

Algorithm 1 Pseudocode of the RABC Algorithm
Input  Model (8), N, range of variables
Output The best solution found by the algorithm

1 Randomly create a set of N}, solutions;

2 Evaluate the solutions by model (8);

3 Repeat
4 Send out employed bees by (9) and (10);
5 Evaluate the solutions by model (8);
6
7
8

Do greedy selection to attain good solutions;
Send out onlooker bees by (11);
Evaluate the solutions by model (8);
9 Do greedy selection to attain good solutions;
10 Send out restart scout bees by (12);
11 Evaluate the solutions by model (8);
12 Do greedy selection to attain good solutions;
13 Until termination criteria are met.

solution v; is produced either by a reverse operation or by an
exchange operation:

reverse opeartion if i < Prev (10)
Vi = . .
exchange operation otherwise,

where p, is the probability of doing the reverse opera-
tion. The reverse operation refers to reversing the order of

VOLUME 7, 2019



X. Zhang et al.: Energy Efficient IoT Network Using RABC and WPT

IEEE Access

a fraction of a solution. This operation may result in a candi-
date solution much different from the older one. The proba-
bility p,., is set to 0.1 in this paper. The exchange operation
refers to exchanging the positions of two parameters of a
solution.

The onlooker bees perform their search in a small region
and are responsible for refining high fitness solutions. For
continuous optimization problems, a food source x; is chosen
based on its fitness, and then the following formula is used to
produce the candidate solution v;:

vy = X + 15 (x5 — Xj) (1n

where X; and x; (f # k) are two solutions. For the shortest
Hamilton cycle problem, the exchange operation is used to
produce v;.

In the RABC method, the restart stage substitutes the scout
bee stage of the standard artificial bee colony (ABC) method.
The advantage of the restart technique is that it assures
asymptotic convergence of the method to the global optimum.
The restart technique refers to a proportion of low fitness food
sources that are replaced by new food sources as follows:

X;_lew — Xmin +1 (Xmax _ Xmin) , (12)

where x™" and x™#* are the lower and upper bounds of a solu-

tion, and r; is a vector of random numbers between 0 and 1.
Denote p,, as the proportion of food sources to be replaced.
It is set to 5% in this paper.

B. CONVERGENCE ANALYSIS OF THE RABC METHOD

For a continuous or discrete optimization problem f (x), there
may be several global optima. Denote S* as the global optima
set of f(x). In real world applications such as the wireless
communication field, optimal solutions are generally not iso-
lated. Therefore, given a threshold ¢ of the global optimal
function value f (x*), that is:

V(x) —f (x*)| <e, (13)

it is reasonable to assume that the size of S* under some
metric is a positive number, that is:

n(s*)=68>0, (14)

where u stands for some measure of set $*. Given threshold
¢ of the optimal function value, the associated solutions sat-
isfying the threshold constitutes an optimal solution set S;.
Hence, we can define the convergence of a method in proba-
bility to the optimal solutions.

Definition 1: Suppose {X',t =1, 2, ...} is the population
sequence produced by a stochastic method when solving
problem f(x). If

lim p{X' N7 # 0} =1, (15)

then we say that the stochastic method can converge to S} in
probability.
Theorem 3: Denote {X', t = 1,2,...} as the sequence

produced using the RABC method. Denote & ;fg)) =5§>0
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as the ratio of the optimal solution set to the feasible solution
set. If 0 < py, < 1, then the RABC method converges to S}
with a probability of 1.

Proof: Let p {x S } be the probability of solution
x being an optimal one. In the restart stage of the RABC
method, there are p,, x N, random restart solutions. The
probability that such solutions lie in S} is no less than 8.
As the restart stage works at each generation of the RABC
method, the probability that solutions in population X' lie
outside of S} is:

p{xt ¢ S:} <1-38, wherex X, (16)

Based on (16), the probability that the first ¢ generations
do not produce an optimal solution is:

t
Hp{ximsj=@]5(1—5)’, (17)
=1

On the other hand, considering the evolution process of the
RABC method, the best-so-far solution survives and stays
in the population if p,, < 1. Thus, the best solution in the
t-th generation is identical to the best solution in the first ¢
generations. The following formula holds:

t
lim p X' NS =0} = lim ]’!p{x'msg‘zw}
=

t—00 4
< lim (1 =8)"=0, (18)
—00
Therefore,
: t * _
tlglolop{x NS #¢} =1 (19)

This completes the proof.

The above analysis shows that the proposed RABC
method converges asymptotically to the global optimum. The
RABC method belongs to the swarm intelligence category.
Such approaches have been used to evaluate optimization
problems in the communication and energy optimization
fields [32]-[37].

VI. EXPERIMENTAL RESULTS

This section presents the results for designing a sustaining
IoT network with wireless power transfer using the proposed
RABC method.

A. VEHICLE ROUTING BY THE RABC METHOD
Given a network, an optimal route must be found so that the
vehicle takes the shortest time to pass all nodes once. Consid-
ering the sensor and/or base station as graph nodes, the vehi-
cle routing is equivalent to finding the shortest Hamilton
cycle of the network. There are many powerful solvers for
the Hamilton path problem such as the Concorde solver. It is
necessary to show the advantages of the RABC method over
other methods.

Suppose the network with 15 nodes is distributed in a
1000x 1000 m? square area as shown in Figure 3. The nodes
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FIGURE 3. An loT network, instance 1.

may be sensors, relays or base stations. The Euclidean dis-
tance is used to measure the distance between two nodes. The
distance is set as the edge of the network. Suppose a vehicle
locates at the origin and goes through each node only once
to traverse all nodes of the network. Its forward velocity is
5 m/s. Constant speed is assumed for simplicity.

Using the RABC method, two optimal Hamilton paths
are found as shown in Figures 4 (a) and (b). As shown
in Figure 3, the distance between node 5 and node 6 is equal
to the distance between node 5 and node 7. The distance
between node 6 and node 8 is equal to the distance between
node 7 and node 8. Hence, the shortest Hamilton path of the
network is not unique. The proposed RABC method can find
both optimal paths. On the other hand, the Concorde solver
only provides one solution, which is the one in Figure 4 (a).
Compared with standard ABC method, it could find optimal
paths as in Figure 4, however, it is not as stable as the RABC
method. Standard ABC method sometimes was trapped in
local optima and could not find optimal paths. Furthermore,
the RABC method returns a population of feasible solutions
including optimal and suboptimal ones. As computer memory
becomes less expensive, it is reasonable to memorize sev-
eral paths to make the network more robust. For example,
if the road between node 5 and node 6 is suddenly blocked,
the vehicle can instantly find another optimal solution as
in Figure 4 (b). The travel time of the vehicle following the
paths in Figure 4 is 0.17 h.

B. UPLINK ROUTE USING THE RABC METHOD

Based on the vehicle travel path, the data transfer route prob-
lem can be solved using the RABC method. Suppose there are
3 micro BSs, 1 macro BS and 15 wireless sensors, and the
locations are provided in Table 1. The data rates generated
by the wireless sensors are between 1 kb/s and 200 kb/s.
The transfer rates for the micro BSs and the macro BS are
set to infinity, which means that they can handle all data
received from the sensors. The node locations and data rates
are randomly created in the simulation. In the simulation,
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FIGURE 4. Two shortest Hamilton paths of network instance 1 found
using the RABC method.

severe channel fading or interference is ignored, hence a
sensor could send out its data without holding operation.

The constants of (2) and (3) are setas o = 4, p; = B =
5x 1078 J/b, and B> = 1.3 x 10~13 J/b [24]. For the vehicle,
it is assumed that its power transfer rate is U = 5 W. The
interference radii R,,; and Ry are set to 300 m and 350 m,
respectively.

The optimal data transfer route found via the RABC
method is provided in Figure 5. Compared with standard
ABC method, it finds the same data transfer route as RABC
for the instance. The recharging time of all sensors is
0.4583 h. Moreover, the RABC method found a colony of
suboptimal solutions. The second, third and fourth data trans-
fer routes cost 0.4588 h, 0.4588 h and 0.4748 h, respectively.
Recording these routes could make the network more robust
against emergent events.

C. AN IoT NETWORK, INSTANCE 2
In instance 1, there are 19 nodes in the IoT network. Another
instance is discussed with 60 wireless sensors, 4 micro BSs
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TABLE 1. Node information of an loT network with 1 macro BS, 3 micro
BSs and 15 wireless sensors.

Type Location (m) R; (kb/s)
Sensor 1 (10,20) 40
Sensor 2 (200,10) 160
Sensor 3 (200,180) 140
Sensor 4 (330,150) 20
Sensor 5 (440,140) 60
Sensor 6 (470,170) 80
Sensor 7 (470,110) 20
Sensor 8 (520,140) 80
Sensor 9 (930,150) 100
Sensor 10 (970,500) 160
Sensor 11 (810,520) 140
Sensor 12 (470,670) 120
Sensor 13 (290,670) 120
Sensor 14 (40,500) 60
Sensor 15 (50,300) 200

Micro BS1 (450,220) N/A
Micro BS2 (780,400) N/A
Micro BS3 (210,540) N/A
Macro BS (500,500) N/A

N/A means not available as the base station does not generate data.
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FIGURE 5. Uplink route of instance 1 found using the proposed method.

and a macro BS as shown Figure 6. Suppose all nodes are
distributed in a 1000x 1000 m? square area. The node loca-
tions and data rates are randomly created and the details are
provided in Table 2. As in instance 1, the data rates of all
sensors are between 1 kb/s and 200 kb/s. The data transfer
rates for the micro BSs and the macro BS are set to infinity,
which means that they can handle all data received from
Sensors.

In the simulation of instance 2, the constants of (2) and (3)
are the same as in instance 1. The interference radii R,,; and
Ryyr are set to 160 m and 300 m, respectively.

The shortest Hamilton path of the IoT network for instance
2 is shown in Figure 7. Following the path in Figure 7,
the travel time of the vehicle is 0.3922 h. The vehicle can
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FIGURE 6. An loT network, instance 2.

TABLE 2. Node information of an loT network with 1 macro BS, 4 micro
BSs and 60 wireless sensors.

Type Location R; Type Location R;
(m) (kb/s) (m) (kb/s)
Sensor 1 (609,974) 160 Sensor 31 (252,791) 200
Sensor 2 (169,76) 180 Sensor 32 (676,594) 160
Sensor 3 (107,349) 60 Sensor 33 (175,925) 180
Sensor 4 (418,905) 40 Sensor 34 (918,949) 120
Sensor 5 (862,637) 60 Sensor 35 (34,759) 160
Sensor 6 (772,463) 80 Sensor 36 (758,64) 80
Sensor 7 (77,442) 60 Sensor 37 (773,207) 60
Sensor 8 (746,841) 200 Sensor 38  (701,112) 80
Sensor 9 (174,833) 20 Sensor 39 (152,892) 120
Sensor 10 (333,605) 120 Sensor 40 (796,128) 180
Sensor 11 (635,103) 40 Sensor 41 (678,128) 60
Sensor 12 (588,708) 180 Sensor 42 (343,242) 100
Sensor 13 (971,373) 40 Sensor 43 (735,203) 180
Sensor 14 (375,403) 120 Sensor 44 (92,187) 140
Sensor 15 (932,792) 200 Sensor 45 (742,666) 200
Sensor 16 (699,54) 80 Sensor 46 (600,847) 60
Sensor 17 (294,347) 20 Sensor 47 (748,928) 180
Sensor 18 (202,194) 60 Sensor 48  (865,435) 140
Sensor 19 (281,451) 80 Sensor 49 (301,967) 60
Sensor 20 (653,246) 80 Sensor 50 (84,841) 100
Sensor 21 (32,32) 60 Sensor 51 (999,724) 80
Sensor22  (643,879) 200 Sensor 52 (325,140) 120
Sensor 23 (354,785) 140 Sensor 53 (850,110) 180
Sensor 24 (408,9) 200 Sensor 54 (749,359) 40
Sensor 25 (40,996) 100 Sensor 55 (649,514) 180
Sensor 26 (22,285) 200 Sensor 56 (804,763) 180
Sensor 27 (172,308) 20 Sensor 57 (983,625) 80
Sensor 28 (960,47) 140 Sensor 58  (416,314) 100
Sensor 29 (860,837) 180 Sensor 59 (409,678) 120
Sensor 30  (248,158) 60 Sensor 60 (239,678) 160
Micro BS1  (345,280) N/A  MicroBS3  (670,715) N/A
Micro BS2  (720,330) N/A Micro BS3  (290,700)  N/A
Macro BS ~ (500,500) N/A

N/A means not available as base station does not generate data.

travel on the path in either a clockwise or counterclockwise
direction as the cost in time is identical. Note that the starting
location of the vehicle in Figure 7 is the origin (0, 0). The
starting location could be any other place in the region.
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FIGURE 7. Shortest Hamilton path of network instance 2 found via the
RABC method.
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FIGURE 8. Uplink route of instance 2 found using the proposed method.

The optimal data transfer route found using the proposed
method is shown in Figure 8. Compared with standard ABC
method, it fails to find the same data transfer route as RABC
for the instance 2. This is because instance 2 contains more
sensor nodes than the last instance. Standard ABC method
was trapped in local optima. Thus, the recharging time of
standard ABC method is greater than the time of the RABC
method. For the RABC method, the recharging time of all
sensors is 4.0385 h. The recharging time for standard ABC
method is 4.3476 h. Moreover, the RABC method found
a colony of suboptimal solutions with a similar recharging
time. It is observed from Figure 8 that some sensors work
as relays and are in charge of transmitting data from other
sensors such as sensor 9. There are six sensors relying on
sensor 9 to transmit data. Hence, sensor 9 becomes a critical
sensor. It requires more electrical energy than the leaf nodes
such as sensors 25, 35, and 49.

Through the above simulation, it is observed that the pro-
posed method can optimize the data transfer of the given IoT
scenario.
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VIi. CONCLUSION
This paper studies an IoT scenario with wireless sensors and
base stations (BSs). A micro BS receives data from wireless
sensors and sends it to a macro BS. The macro BS then sends
data to a database or cloud computing platform. Regarding
the limited battery capacity, the WPT technique is suitable for
charging the battery. The IoT scenario is modeled as an opti-
mization problem. In the model, the energy consumption of
the network is minimized. A three-stage method is proposed
for the problem. The stages are finding the shortest travel
path, mutual interference reduction and determining the opti-
mal uplink route. A restart artificial bee colony method is
proposed to solve for the travel path and uplink route. The
asymptotic convergence of the RABC method is also proved.
Simulations are conducted to verify the usefulness of the
proposed method. It is shown that the method can solve the
data transfer problem of the IoT network. The RABC method
can provide a set of optimal and suboptimal solutions. This
capability improves the robustness of the network against
emergent events. Wireless sensors working as relays become
critical nodes of the network. This requires designing a reli-
able and robust data transfer network. The power transfer
efficiency of the WPT system becomes increasingly practi-
cal [38]. Physical experiments will be conducted in the future
to test the performance of the method.
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