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ABSTRACT Multispectral images can provide more faithful representations for real scenes than the
traditional images and improve the performance of image restoration tasks. In this paper, we propose a
novel multivector sparse representation model for multispectral images using geometric algebra (GA),
with the truth that GA is now well used in image processing and it gives a formidable way to represent
multispectral images. The proposed model represents a multispectral image as a GA multivector by fully
considering the spatial and spectral information, where a GA dictionary learning algorithm is presented using
the K-GA-singular value decomposition (GASVD) (generalized K-means clustering for GASVD) method.
Consequently, with the complete consideration of the relationship between spectral channels in multispectral
images, artifacts and blurring effects can be successfully avoided. The experimental results demonstrate
that the proposed sparse model surpasses the existing methods for multispectral images reconstruction and
denoising tasks by capturing correlations between spectral channels thoroughly and shows its usefulness and
effectiveness for multispectral images processing.

INDEX TERMS Multivector, sparse representation, geometric algebra (GA), multispectral images, dictio-
nary learning, K-GASVD.

I. INTRODUCTION
Recently, multispectral images have been widely applied in
more and more areas, e.g., medical image analysis, military
defense, environmental monitoring, space remote sensing,
geological exploration, digital photography, etc. [1]–[3], due
to the large amount of information it contains. Combinedwith
spatial and spectral information, multispectral images specifi-
cally consist of visible light, infrared ray, ultraviolet radiation,
millimeter wave or X-ray. That is to say, amultispectral image
is formed with multiple scalar images, in which each image
is usually regarded as a band or a channel, at specific fre-
quencies across the electromagnetic spectrum. Substantially,
the performance of multiple computer vision tasks, such
as tracking, and inpainting [4], [5], have been dramatically
enhanced due to such comprehensive knowledge representa-
tion capability of multispectral images. Therefore, the pro-
cessing techniques for multispectral images have become
quite emerging topics, which bring both opportunities and
challenges [6]–[8].

In image processing and analysis domain, sparse repre-
sentation [9], [10] has occupied an important place, and
has witnessed great success in variety of tasks, e.g., natu-
ral image denoising [11], [12], reconstruction [12], classi-
fication [13], [14], detection [15], and restoration [16]. The
K-SVD algorithm [11] was utilized to show great perfor-
mance in a wide range of gray-scale image processing,
but it leaded to some unsatisfying results for color image
due to the loss of relationship between RGB channels.
Mairal et al. [16] provided a simple concatenation of the
RGB values of a color image to a single vector and training
on those directly, which gives already better results than
performing each channel separately. However, such a process
produces false colors and artifacts. Xu et al. [18] provided
an efficient color sparse representation model on account
of the compatibility between quaternion matrix and color
image to avoid losing the correlation of three color channels.
Wang et al. [19] applied geometric algebra to map the color
image into a high-dimensional space to color image analysis
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and achieved high performance. To address the problem of
high computational complexity owing to non-commutative
multiplication, Shen et al. [20] presented a novel theory of
reduced geometric algebra (RGA) with commutative multi-
plication rules and a novel vector-valued sparse representa-
tion model for color image using RGA. Shen and Wang [21]
then proposed a new singular value decomposition algo-
rithm for octonion signals, which can be simply regarded
as seven-channel multispectral images. However, existing
sparse models are mostly developed for gray or 3-channel
color images [17], [18], [22], and there are very few works
focusing on the sparse representation of multichannel signals,
typically as multispectral images.

Fortunately, geometric algebra (GA) provides a power-
ful computing framework in signal and image processing
and it gives a formidable way for multi-dimensional sig-
nals [23]–[25]. Ebling and Scheuermann [26] extended the
Fourier transform to (multi)vector fields using GA and
verify the generalizations of correlation, convolution and
derivative theorems. Wang et al. [27] created a sparse fast
Clifford Fourier transform based on GA, which showed great
improvement in computing performance over scalar and vec-
tor fields. Li et al. [28] put forward a new SIFT algorithmic
framework based on GA for multispectral images processing
and analysis.

Inspired by the useful information contained in multi-
spectral images, the recent progress of sparse representa-
tion models and the advantages of GA theory in various
fields of image processing, we present a novel multivector
sparse representation model, which adopts GA framework to
leverage the multispectral information. Due to the utilization
of the GA theory, both spatial and spectral information of
multispectral images can be completely retained, and the
inherent spectral structures in multispectral images can be
preserved successfully during sparse reconstruction without
losing the relationship of spectral channels. Besides, in terms
of training process, we correspondingly design the dictio-
nary learning algorithm based on GA, namely K-GASVD
(K-means clustering for singular value decomposition based
on GA) to obtain a trained dictionary that contains the richest
spectral information. In summary, the GA dictionary converts
the channel images to a subspace in a uniform way, and con-
sequently the inherent spectral structures can be successfully
preserved during vector reconstruction.

The major contribution of this paper lies in the following
aspects. Firstly, a multispectral image is successfully repre-
sented as a GA multivector, in which each spectral channel
is mapped to each blade of GA. Secondly, we propose a
novel and efficient multivector sparse representation model
based on GA on account of the compatibility between a
GA multivector and a multispectral image to avoid losing
the correlation of spectral channels. Thirdly, we develop an
effective dictionary learning method based on GA, namely
K-GASVD, which has the ability to update coefficient simul-
taneously instead of fixing the coefficient vector during
dictionary learning. Extensive experiments of multispectral

images reconstruction and denoising indicate that superior
performance is achieved with the proposed sparse model.

The remainder of this paper is organized as follows.
Section II reviews the existing sparse models and basis
of geometric algebra (GA) briefly. The proposed sparse
model for multispectral images is illustrated in Section III.
GA-based SVD and dictionary training methods are
described in Section IV. Reconstruction and denoising exper-
iments for multispectral images using our proposed model
are presented in Section V, and the conclusion of this paper
is given in Section VI.

II. RELATED WORK
A. REVIEW OF CURRENT SPARSE REPRESENTA-TION
MODELS
As a powerful and vibrant method to represent images uti-
lizing redundant dictionaries, image sparse representations
that mostly focused on patch processing, have enjoyed great
popularity as a means for image processing and analysis.
It is well known that existing sparse models have been very
successful in handling single channel gray-scale images as
well as 3-channel color images, in which every color channel
is associated with each other.

Sparse model based on K-SVD method [11] has achieved
great performance in gray-scale image domain, and can be
formulated by

minas ‖as‖0 , s.t. fs = Dsas (1)

where fs ∈ Rn is the gray-scale image patch, Ds ∈ Rn×m

is the corresponding dictionary, and as ∈ Rm is the assumed
sparse coefficient vector. Nevertheless, for color image, it just
regards RGB channels as three independent ‘‘gray-scale’’
images and processes them in a monochrome way, which
loses the inter-correlation among the three-color channels
leading to some unsatisfying results.

To further avoid the loss of relationship among channels in
a color image, the approach put forward in [16] concatenated
the three channels into a single channel to train a common
dictionary and share a common coefficient vector, the con-
catenation model is described as follows[

yTr yTg yTb
]T
=
[
DTr DTg DTb

]T
a (2)

Though, the concatenation model in (2) partly addressed
the loss of inherent color structure compared to (1),
it inevitably produced some unsatisfying results such as false
colors and artifacts.

When dealing with color image, the most urgent problem
needed to be addressed is to avoid the loss of inherent rela-
tionship of RGB channels.Wang et al. [19] applied geometric
algebra to denote the structure of color information and map
the color image into a high-dimensional space, and the model
has been, until very recently, regarded as a powerful model
for color image processing. Each color image patch can be
represented as f = 0 + f1e1 + f2e2 + f12e12 ∈ (G2)N while
applying GA, and the sparse representation model in G2 has
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been given as

ming ‖g‖0 , s.t. f = Dg (3)

where D = 0 + D1e1 + D2e2 + D12e12 ∈ (G2)N×M is a
dictionary inG2, g = 0+ g1e1+ g2e2+ g12e12 ∈ (G2)M is a
corresponding sparse coefficient vector, with its components
g1, g2 and g12 ∈ RM . Here, G2 denotes the 2-dimensional
GA space.

Compared with the K-SVD based sparse model in (1),
the sparse representation model in G2 deals with three color
channels information in a unified way to imitate the process
of human visual perception. The coefficient matrix captures
both the relationship of color channels and the orthogonal
property successfully. The obvious advantage is that it main-
tains the inherent structures of RGB channels during image
reconstruction.

In retrospect, the performance improvements of these
recent attempts have been ascribed to their use of algebraic
frameworks and, until now, very few researches have been
conducted in handling high dimensional data, typically as
multispectral images. Then, in this paper, we pay more atten-
tion to retain the correlation of each spectral channel by rep-
resenting the multispectral images and subsequently propose
amultivector sparse representationmodel based on geometric
algebra.

B. REPRESENTATION MODELS FOR MULTISPECTRAL
IMAGES
Since multispectral images have recently attracted much
attention and there have emerged many representation
methods. Huang et al. [29] presented a novel spatial and
spectral fusion model (SASFM) that uses sparse matrix
factorization to fuse remote sensing imagery with different
spatial and spectral properties. Lanaras et al. [30] jointly
processed high spectral and high geometric resolution images
and exploited their synergies to generate a fused image of
high spectral and geometric resolution, and improve (linear)
spectral unmixing of hyperspectral endmembers at subpixel
level, which is the pixel size of the hyperspectral image.
Dian et al. [31] proposed a novel hyperspectral image (HIS)
super-resolution method based on non-local sparse tensor
factorization (called as the NLSTF). The sparse tensor fac-
torization can directly decompose each cube of the HSI as
a sparse core tensor and dictionaries of three modes, which
reformulates the HSI super-resolution problem as the esti-
mation of sparse core tensor and dictionaries for each cube.
Zhang et al. [32] proposed a new low-resolution HS (LRHS)
and high-resolution MS (HRMS) image fusion method based
on spatial-spectral-graph-regularized low-rank tensor decom-
position (SSGLRTD) to effectively preserve spatial-spectral
structures in HRHS images.

C. THE BASICS OF GEOMETRIC ALGEBRA
William K. Clifford introduced Geometric Algebra abbre-
viated as GA, also called Clifford Algebra, which provides
such a coordinate-free framework to make the computation

efficiently [23]–[25]. It completes the constructions andmod-
elings in a coordinate-free way and also has revealed wide
applications especially when applying to computer vision
tasks [26]–[28].

Suppose Gn is n -dimensional GA with an orthonor-
mal basis of vectors {ei} , i = 1, · · · , n, which leads to
a basis {

1,
{
ei
}
,
{
eiej

}
, · · · ,

{
e1e2 · · · en

}}
(4)

Specifically, Gn can be represented by Gp,q, where
n = p + q and p, q are the number of vectors with positive
square and negative square in the basis of the space, respec-
tively. That is

e2i =

{
1, 1 6 i 6 p
−1, p+ 1 6 i 6 n

(5)

In this paper, we focus on Gn, in which q = 0. Generally,
the geometric product of two basis is anti-commutative, and

eiej = eij = −ejei = −eji, i, j = 1, · · · , n, i 6= j (6)

e2i = 1, i = 1, · · · , n (7)

eieij = eieiej = ej, i, j = 1, · · · , n, i 6= j (8)

Given two vectors w and z in Gn, the geometric product is
given by

wz = w · z+ w ∧ z (9)

where w · z denotes the inner product and w ∧ z is the outer
product. Since the vectors are orthogonal, then eiej = ei ·ej+
ei ∧ ej = ei ∧ ej.

Take G3 for instance, the orthogonal bases are con-
structed by vectors with 23 = 8 grades, which is given by:{
1,
{
e1 , e2 , e3

}
,
{
e1e2 , e1e3 , e2e3

}
,
{
e1e2e3

}}
and a simpler

form: {1, e1, e2, e3, e12, e13, e23, e123}. For a 2n -dimensional
signal, only basis is needed. Generally, the outer product of k
vectors is called a k-blade. The number k is called the grade
of the blade.

In GA space, multivectors, which stand for the extension
of vectors in higher dimensions, are the basic elements. Any
multivector M ∈ Gn is described by

M = E0 +
∑

16i6n

Ei(M )ei +
∑

16i<j6n

Eij(M )eij

+ · · · + E1···n(M )e1···n (10)

where E(M ) ∈ R.

III. THE MULTIVECTOR SPARSE REPRESENTATION
MODEL FOR MULTISPECTRAL IMAGES
In this section, we utilize geometric algebra (GA) to extend
the sparse model in (3) for color image to multispectral
images.
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A. REPRESENTATION OF MULTISPECTRAL
IMAGES USING GA
Each pixel of a multispectral image I can be denoted in Gn
as follows.

I (x, y) = 0+
∑

16i6n

Ii(x, y)ei +
∑

16i<j6n

Iij(x, y)eij

+ · · · + I1···n(x, y)e1···n (11)

where Ii(x, y), Iij(x, y), I1···n(x, y) are the spectral compo-
nents of multispectral image pixel I (x, y) at position (x, y)
respectively.

Specifically, all the spectral channels of the multispectral
image are assigned to the basis{

1,
{
ei
}
,
{
eiej

}
, · · · ,

{
e1e2 · · · en

}}
of the 2n -dimensional GA (Gn) respectively, and a
GA multivector is used to rewrite the multispectral images
pixel I (x, y) in GA space.

Thus, a multispectral image F ∈ (Gn)M×N with M rows
and N columns can be represented by a GA multivector

F = 0+
∑

16i6n

Ei(F)ei +
∑

16i<j6n

Eij(F)eij

+ · · · + E1···n(F)e1···n,E(F) ∈ RM×N (12)

Recently, the GA representation of multispectral images
have attracted great attention. Since our work is not the first
one to represent multispectral images using GA, the repre-
sentation method based on GA introduced in this paper has
some differences from the paper by Li et al. [28]. In the paper
by Li et al., it only uses 1-blade to represent a multispectral
image (see [28, eq. (14)]) and ignores all the outer product
parts (it says ‘‘There are two multivector in the result of
the Eq. (27), and the second multivector cannot be used in
the image processing simply.’’). In our paper, we reserve
all the outer product parts, which brings the relationship
of components in GA space into correspondence with the
correlation of spectral channels in a multispectral image,
and can be considered as a better and more comprehensive
representation of a multispectral image. It can be applied
in studying the problems of multispectral images processing
due to its capability to treat the spectral channels holistically
without losing the relationship of the spectral channels.

B. GA-MULTIVECTOR SPARSE REPRESENTATION MODEL
FOR MULTISPECTRAL IMAGES
To take the correlation of the multispectral channels into
consideration, we put forward a novel multivector sparse rep-
resentation model using geometric algebra for multispectral
images in this paper. For each patch f ∈ (Gn)

√
N×
√
N of the

multispectral image F ∈ (Gn)N×K , where N is the size of
the multispectral image and K denotes the number of image
patches. Then we transfer it to a vector f ∈ (Gn)N with the
length of N as follows

f = 0+
∑

16i6n

Ei(f )ei +
∑

16i<j6n

Eij(f )eij

+ · · · + E1···n(f )e1···n,E(f ) ∈ RN (13)

Then, we define our proposed multivector sparse represen-
tation model as follows

mina ‖a‖0 , s.t. f = Da (14)

where D =

E0(D)+
∑

16i6n

Ei(D)ei +
∑

16i<j6n

Eij(D)eij

+ · · · + E1···n(D)e1···n ∈ (Gn)N×M


is a GA dictionary consisting ofM atoms and E(D) ∈ RN×M .

a =

E0(a)+
∑

16i6n

Ei(a)ei +
∑

16i<j6n

Eij(a)eij

+ · · · + E1···n(a)e1···n ∈ (Gn)M

 is a GA

coefficient vector and E(a) ∈ RM . The objective function
‖a‖0 is resolved to collect all the number of non-zero com-
ponents in the coefficient vector above.

The generalized form of representation model for multi-
spectral images is derived in the Appendix A.

Specially, for a multispectral image F ′ ∈ (G2)N×K with
3 channels, which can be represented in G2 space, and each
patch f ′ ∈ (G2)

√
N×
√
N can be transferred to a vector

f ′ ∈ (G2)N with the length of N as follows

f ′ = 0+ E1(f ′)e1 + E2(f ′)e2 + E12(f ′)e12 ∈ (G2)N (15)

Then, the proposed model in G2 space for 3 channels color
image is defined as follows

mina′
∥∥a′∥∥0 , s.t. f ′ = D′a′ (16)

whereD′ = E0(D′)+E1(D′)e1+E2(D′)e2+E12(D′)e12,D′ ∈
(G2)N×M is defined as a GA dictionary with M atoms and a
GA coefficient vector is shown as a′ = E0(a′) + E1(a′)e1 +
E2(a′)e2 + E12(a′)e12.
Similarly,

∥∥a′∥∥0 is utilized to count the number of all the
non-zero components in GA coefficient vector.

The generalized form of 3 channels color image sparse
model can then be obtained as follows[

0 E1(f ′) E2(f ′) E12(f ′)
]

=
[
E0(D′) E1(D′) E2(D′) E12(D′)

]
(a′) (17)

Since

f ′ = D′a′ ⇔ 0+ E1(f ′)e1 + E2(f ′)e2 + E12(f ′)e12
=
(
E0(D′)+ E1(D′)e1 + E2(D′)e2 + E12(D′)e12

)
×
(
E0(a′)+ E1(a′)e1 + E2(a′)e2 + E12(a′)e12

)
=

(
E0(D′)E0(a′)+ E1(D′)E1(a′)
E2(D′)E2(a′)− E12(D′)E12(a′)

)
+

(
E0(D′)E1(a′)+ E1(D′)E0(a′)
−E2(D′)E12(a′)+ E12(D′)E2(a′)

)
e1

+

(
E0(D′)E2(a′)+ E1(D′)E12(a′)
+E2(D′)E0(a′)− E12(D′)E1(a′)

)
e2

+

(
E0(D′)E12(a′)+ E1(D′)E2(a′)
−E2(D′)E1(a′)+ E12(D′)E0(a′)

)
e12 (18)
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Therefore, we can obtain

(a′) =


E0(a′) E1(a′) E2(a′) −E12(a′)
E1(a′) E0(a′) −E12(a′) E2(a′)
E2(a′) E12(a′) E0(a′) −E1(a′)
E12(a′) E2(a′) −E1(a′) E0(a′)

 (19)

IV. GA-BASED DICTIONARY TRAINING
In this section, we extend the singular value decomposition
(SVD) to n-dimensional space using GA, and present the
dictionary-learning problems.

A. GASVD ALGORITHM FOR MULTISPECTRAL IMAGES
Similar to the SVD of real data [33]–[35], for a GAmultivec-
tor F ∈ (Gn)M×N of a multispectral image, then there exist
two GA unitary matrix U ∈ (Gn)M×M and V ∈ (Gn)N×N

such that

UHFV =
[
6′ 0
0 0

]
≡ 6 ∈ RM×N (20)

where 6′ = diag {σ1, σ2, . . . , σP} ∈ RP×P, σi are the
positive singular values of F , σ1 ≥ σ2 ≥ · · · ≥ σP and
P = min {M ,N } and H represents the conjugate transpose
operation.

That is, for any M × N GA multivector F , its SVD is
obtained by

F = U6VH
= U

[
6′ 0
0 0

]
VH (21)

where UUH
= IM×M , VVH

= IN×N , I is an identity matrix.
We can perform the GA-SVD with different kinds of

algorithms.
Suppose

F =

E0(F)+
∑

16i6n

Ei(F)ei +
∑

16i<j6n

Eij(F)eij

+ · · · + E1···n(F)e1···n ∈ (Gn)M×N


where E(F) ∈ RM×N , its real representation FR can be
defined as (22), shown at the bottom of the next page.

Then using the isomorphism between (Gn)M×N and
R2nM×2nN , the GASVD of F can be performed by employing
the conventional real SVD algorithm to FR. We define the
relationship between the GASVD of a GA multivector F and
the SVD of its equivalent real matrix FR as follows
1) 6′ = row2n−1

odd (col2
n−1

odd (6′R)).

2) U =

E0(U )+
∑

16i6n

Ei(U )ei +
∑

16i<j6n

Eij(U )eij

+ · · · + E1···n(U )e1···n

,

UR =
[
(UR)0 · · · (UR)i · · · (UR)ij · · · (UR)1···n

]T , then
U =

 (UR)0 −
∑

16i6n

(UR)iei −
∑

16i<j6n

(UR)ijeij

− · · · − (UR)1···ne1···n

.

3) V =

E0(V )+
∑

16i6n

Ei(V )ei +
∑

16i<j6n

Eij(V )eij

+ · · · + E1···n(V )e1···n

,

VR =
[
(VR)0 · · · (VR)i · · · (VR)ij · · · (VR)1···n

]T , then

V =

 (VR)0 −
∑

16i6n

(VR)iei −
∑

16i<j6n

(VR)ijeij

− · · · − (VR)1···ne1···n

. where

1 6 i < j 6 n, row2n−1
odd (P) and col2

n−1

odd (P) denote the odd
rows and odd columns extracted frommatrix P for 2n−1 times
respectively.

B. GA DICTIONARY TRAINING ANALYSIS
With the unknown variables, dictionary and coefficients,
the dictionary training process using GA can be regarded as
an extension of the sparse model put forward in (14), and can
be formulated as

{D̂ Â} = argminD,A ‖F − DA‖2F + γ ‖A‖0 (23)

where F = {fi, 1 6 i 6 K } ∈ (Gn)N×K is a series of the
sample image patches, D = {di, 1 6 i 6 M} ∈ (Gn)N×M

is the GA dictionary with M atoms, A = {ai, 1 6 i 6 K } ∈
(Gn)M×K is the sparse coefficient matrix and ‖A‖0 counts the
nonzero elements of the columns in A.

K-SVD [11] is a kind of fast and efficient sparse dic-
tionary learning algorithm, whose key problem is how to
learn sparse dictionary adaptively from the training data
set, and it performs well for gray-scale image processing.
However, when adapted to multispectral images, the main
challenge is to capture the loss of relationship among dif-
ferent spectral channels during image reconstruction. In this
paper, a dictionary training algorithm based on GA, called
K-GASVD, is introduced as an extension of K-SVD [11] to
cater to the multispectral images vectorization. Particularly,
the GA-based dictionary training process contains two major
steps, i.e., sparse coding stage and dictionary updating stage.

After extending to multispectral images processing,
the orthogonal matching pursuit algorithm using
GA (GAOMP) is designed to handle the sparse representa-
tion of GA multivector. The GAOMP algorithm deals with
the problem of decomposing signal F ∈ (Gn)N×K on a
GA dictionary D ∈ (Gn)N×M such that

A = argminA ‖F − DA‖22 , s.t. ‖A‖ 6 T (24)

where A ∈ (Gn)M×K denotes the sparse coefficient vector
and ‖A‖ 6 T is the stopping criteria. Such operation helps to
alleviate the problem of l0-norm sparse coding that is usually
seen as a NP-hard problem through assigning the maximum
number of non-zero coefficients of each signal.

The details of GAOMP algorithm for each multispectral
image patch are given in Table 1.

Once the sparse coding solution is obtained, the dictionary
and sparse representation coefficient are updated simultane-
ously using GASVD. The details of K-GASVD algorithm is
shown in Table 2:

C. FURTHER ANALYSIS
It is obvious that the introduced GAOMP algorithm in
TABLE 1 is also a greedy algorithm, which mainly focuses
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TABLE 1. The details of GA-based orthogonal matching pursuit algorithm.

TABLE 2. The details of GA-based dictionary learning using K-GASVD
method.

on selecting an atom that best matches the signal from the
dictionary according to certain criteria during each iteration
to sparsely approximate the original signal. Similar to the
traditional OMP algorithm for scalar data [36], the introduced
GAOMP algorithm is designed for multidimensional signals,
typically for multispectral images, based on GA. At each
step, the best atom which denotes the maximum of its inner
product with the residual, is selected from GA dictionary,
and then the residual is updated by conducting an orthogonal
projection of the signal approximated onto the vectorial space

FIGURE 1. Visualization of the color image dictionaries learned by K-SVD
(a) and K-GASVD (b) methods.

which is generated by the chosen atoms formerly. Clearly,
this orthogonalization shows its absolute importance since it
makes the convergence of this greedy algorithm more stably
and faster.

For the introduced GAOMP algorithm, because of the
introduction of GA, the result of inner product includes all
the components of multispectral images, rather than a single
component of original grayscale image. Therefore, during the
iterations, the sparsity of all the spectral channels rather than a
single channel is always guaranteed. So, all the components
of multispectral images are processed integrally and mono-
lithically while searching for the nearest atom.

Moreover, the convergence of the provided K-GASVD is
similar to that of K-SVD, since it applies the same frame-
work as the traditional K-SVD [9], [11], [13]. Fig. 1 shows
the trained dictionaries based on K-SVD and K-GASVD
methods. We observe that the learned dictionary using
K-SVD method shows high tendency to be monochromatic.
Since the K-SVD algorithm cannot perfectly handle the rich
spectral components of the original multispectral images,
which produces a large number of grayscale blocks in the
training dictionary, resulting in some unsatisfying results of
the reconstructed image, such as color is not rich enough
and the color saturation is significantly reduced. In contrast,
the learned dictionary based on K-GASVD method captures
more color information since both the relationship of spectral
channels and the spatial coherence are retained better.

FR =



E0(F) · · · Et (F) · · · −Ets(F) · · · (−1)n(n−1)/2E1···n(F)
...

...
...

...
...

...
...

Et (F) · · · E0(F) · · · −Es(F) · · · (−1)(t−1)+(n(n−1)/2)E1···n(F)
...

...
...

...
...

...
...

Ets(F) · · · −Es(F) · · · E0(F) · · · (−1)(t−1)+(s−2)+(n(n−1)/2)Ex(F)
...

...
...

...
...

...
...

E1···n(F) · · · (−1)(n−t)Ey(F) · · · (−1)(2n−t−s+1)Ex(F) · · · E0(F)


where x = 1 · · · (t − 1)(t + 1) · · · (s− 1)(s+ 1) · · · n; y = 1 · · · (t − 1)(t + 1) · · · n;

t = 1 · · · n; i 6= t, t 6= s, j 6= t, j 6= s; j > i, s > t;Eij = Eji and FR ∈ R2nM×2nN . (22)
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FIGURE 2. Examples of multispectral images. (a), (g), (m) band 2 images; (b), (h), (n) band 5 images; (c), (i), (o) band 7 images; (d), (j), (p) band
12 images; (e), (k), (q) band 20 images; (f), (l), (r) band 25 images; (s), (u), (w) the pseudo color images using 2, 5, and 7 band images as the RGB
input; (t), (v), (x) the pseudo color images using 12, 20, and 25 band images as the RGB input.

V. EXPERIMENTAL ANALYSIS
To demonstrate the effectiveness and powerfulness of the
proposed multivector sparse representation model for multi-
spectral image processing, we perform both reconstruction
and denoising experiments on both Columbia Multispectral
Image Database [37] and Hyperspectral Image Database of
Real-world Scenes [38] and compare the experimental results
both quantitatively and visually.

A. DATA SETS
1) MULTISPECTRAL IMAGE DATASETS
The Columbia Multispectral Image Database [37] is uti-
lized in our experiments. In this multispectral image data
set, there are 32 real-world scenes consisting of various
real objects and materials, each with spectral resolution 31
and spatial resolution 512 × 512, which includes full
spectral resolution reflectance data collected from 400nm
to 700nm in 10nm steps. More details can be found in
http://www.cs.columbia.edu/CAVE/databases/multispectral/.

In our experiments, several arbitrary multispectral images
are selected from the data set above to evaluate the
performance of our K-GASVD method. Due to the

limitation of the existing sparse models which can only
deal with an ordinary gray-scale image or color image,
we randomly select 6 bands from the chosen multispec-
tral images to form 20 pseudo color images, respectively.
Fig. 2(a)-(f), (g)-(l) and (m)-(r) show the images of band 2,
5, 7, 12, 20 and 25 belong to three multispectral images,
respectively. Fig. 2(s)-(t), (u)-(v) and (w)-(x) show the two
pseudo color images in which band 2, 5, and 7 images and
are 12, 20, and 25 images input as the R, G and B channels,
respectively.

2) HYPERSPECTRAL IMAGE DATASETS
Since hyperspectral images include per-pixel irradiance mea-
surements in a number of narrow bands of wavelength in the
visible spectrum, they provide higher spectral resolution and
more spectral channels than multispectral images. Therefore,
Hyperspectral Image Database of Real-world Scenes [38]
is involved in this paper to further validate the advantages
and good performance of the proposed sparse representation
model. Hyperspectral Image Database of Real-world Scenes
collected fifty images under daylight illumination, both out-
doors and indoors, using a commercial hyperspectral camera
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FIGURE 3. Examples of hyperspectral images. (a) and (g) band 8 images; (b) and (h) band 9 images; (c) and (i) band 15 images; (d) and (j) band
19 images; (e) and (k) band 25 images; (f) and (l) band 30 images; (m) and (o) the pseudo color images using 8, 9, and 15 band images as the
RGB input; (n) and (p) the pseudo color images using 15, 19, and 30 band images as the RGB input.

FIGURE 4. Comparison of K-GASVD and K-SVD based sparse models for
multispectral images reconstruction-PSNR values vs. the number of
dictionary atoms M.

(Nuance FX, CRI Inc.) The camera uses an integrated liquid
crystal tunable filter and is capable of acquiring a hyperspec-
tral image by sequentially tuning the filter through a series
of thirty-one narrow wavelength bands, each with approxi-
mately 10nm bandwidth and centered at steps of 10nm from
420nm to 720nm.

In our experiments, we arbitrarily select several hyper-
spectral images from the data set above to evaluate
the performance of the proposed K-GASVD method.
Fig. 3 shows two hyperspectral images with 6 spectral bands

FIGURE 5. Comparison of K-GASVD and K-SVD sparse models for
multispectral images reconstruction-PSNR values vs. sparse parameter T .

(band 8, 9, 15, 19, 25 and 30) respectively, and some pseudo
color images formed by those bands.

B. MULTISPECTRAL IMAGES RECONSTRUCTION
As described above, the K-SVD based model [11] has
achieved excellent results for gray-scale images processing,
but for multispectral images, it just applies K-SVD method
independently onto each spectral channel, leading to unsatis-
fying reconstruction results.

Therefore, in this section, we mainly prove the recon-
struction results of the proposed K-GASVD based sparse
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FIGURE 6. Denoising results of multispectral images. (a) Original Images, (b) Noisy Images (δ = 30), (c) K-SVD [11], (d) improved K-SVD [16], (e) K-GASVD.

model experimentally, and compare it with the results of
K-SVD based model under the same parameter condition.
Considering reasonable computational complexity and the
fairness of comparison, we set the size of multispectral image
patches to 8× 8.

As shown in Fig. 4, the proposed K-GASVD based sparse
model significantly improves the reconstruction performance
and the improvement becomes even more remarkable with
respect to the increasing number of selected atoms. We fur-
ther compare the number of atoms used of the two sparse
models under the same PSNR. For example, it is clearly
that, when the PSNR value get to nearly 34, the num-
bers of atoms corresponding to the K-SVD and K-GASVD
models are about 450 and 150 respectively. That is to say,
only approximate 1/3 number of atoms are needed in the
K-GASVD model than that in K-SVD model [11] for
similar reconstruction performance achievement with a
reasonable sparse parameter. Clearly, the GA-based dic-
tionary shows its capability in more colorful structures
presentation, which manifests lower intra-redundancy of
spectral channels of each atom in the multispectral
images. Moreover, while using more dictionary, the pro-
posed K-GASVD model reveals great performance more
obviously.

Then, the influence of sparse parameter is considered for
both models by computing the PSNR (dB) values under

different sparse parameter T , and the results are shown as two
curves in Fig.5.

It can be clearly seen from Fig. 5 that with the increas-
ing number of sparse parameter T , the growth trends of
the two curves are basically the same. Moreover, under the
same sparse parameter T , the proposed K-GASVD model
can obtain much higher PSNR values compared to the
K-SVD model [11].

C. MULTISPECTRAL IMAGE DENOISING
Then, another application for multispectral images-denoising
experiments are conducted on various multispectral images at
different noise levels. First, let F0 be a clean multispectral
image represented in the GA form, denoted as a column
vector of length N . Then the noisy version is

Y = F0 + w (25)

where F0 =
{
f0i ∈ (Gn)N , 1 6 i 6 K

}
∈ (Gn)N×K and w

is a white Gaussian noise in the GA form (zero means and
deviation δ). Then we consider the image patches of size
√
N ×
√
N , which are overlapping extracted from the noisy

multispectral images, ordered as column vectors y ∈ (Gn)N ,
and Y = {yi, 1 6 i 6 K } ∈ (Gn)N×K . Handling the mul-
tispectral images denoising problem using a sparse decom-
position technique per overlapped patch is then converted to
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FIGURE 7. Denoising results of hyperspectral images. (a) Original Images, (b) Noisy Images (δ = 30), (c) K-SVD [11], (d) improved K-SVD [16], (e) K-GASVD.

TABLE 3. PSNR values (dB) obtained by different denoising methods at each noisy level based on multispectral image datasets[37].

solve the following minimization problem:{
D̂, âkl, F̂

}
= minD̂,âkl ,F̂0γ ‖Y − F‖

2
2 +

∑
k,l

ηkl ‖akl‖0

+

∑
k,l

‖Dakl − JklY‖22 (26)

where F̂ and the GA dictionary D̂ ∈ (Gn)N×M withM atoms
denote estimators of F0 and the optimal dictionary, respec-
tively. Here, the optimal dictionary makes representation of
recovered image patches to be sparsest. The indices [k, l]
indicates the location of the patch in the image. The vectors
âkl are the sparse representations for the [k, l] -th patch in F̂
using the dictionary D̂. The operator Jkl extracts the patch of
coordinates [k, l] from the image.

Clearly, the first term in (26) indicates the probability that
requires a proximity between F̂ and Y . The image prior
are exactly posed by both the second and the third terms,
in which the sparsest representation and the consistency of the
decomposition are provided and ensured by the second and
third terms respectively. This regularization term provides

an assumption that good-characterized natural images are to
exhibit the sparse representation for every patch in the image
over the learned dictionary D̂.

Considering reasonable computational complexity and the
fairness of comparison, we set, the number of iterations
J = 30, the size of multispectral image patches to 8× 8 and
the number of both dictionary atoms M = 256.

Firstly, we validate the results achieved by applying
the monochromatic model based on K-SVD method [11],
the concatenation model based on improved K-SVD
method [16] and our multivector model based on
K-GASVD method, on the testing multispectral images
shown in Fig.2 and hyperspectral images shown in Fig.3 with
the noise deviation δ = 30, in order to enable a fair
comparison. Fig. 6 and Fig. 7 show the comparison of the
K-SVD, the improved K-SVD and our proposed K-GASVD
models in terms of denoising results. Notice that, for the
multispectral and hyperspectral images, there is no existing
sparse model, the general method is to regard each single-
band image of the multispectral or hyperspectral image as a
gray-scale image to process them respectively, such as the
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TABLE 4. SSIM values obtained by different denoising methods at each noisy level based on hyperspectral image datasets[38].

K-SVD method, or concatenate all the spectral channels into
a single vector using a shared sparse coefficient, such as the
improved K-SVD method. As shown in Fig. 6 and Fig. 7,
the K-SVD based model is performed in a monochromatic
way, which ignores the correlation among these spectral
channels and loses the inherent spectral structures, which
introduces a hue bias and leads to a lack of details. The
improved K-SVD based sparse model reduces some hue bias,
but still loses channel interrelationship and produces some
false colors and artifacts.

In the high-frequency texture areas, our K-GASVD sparse
model that regards a multispectral or hyperspectral image as
a GA multivector, has a clear advantage over the K-SVD
and the improved K-SVD methods that either represent each
single-band image as a scalar or concatenate all the spectral
channels into a single channel.

We now turn to study the influence of different noise
levels. To evaluate the superiority of our K-GASVD method
objectively, the denoising results represented by PSNR and
SSIM, which are achieved by applying our proposed method,

f = Da⇔ 0+
∑

16i6n

Ei(f )ei +
∑

16i<j6n

Eij(f )eij + · · · + E1···n(f )e1···n

=

E0(D)E0(a)+ ∑
16i6n

Ei(D)Ei(a)−
∑

16i<j6n

Eij(D)Eij(a)+ · · · + (−1)n(n−1)/2E1···n(D)E1···n(a)

 e0

+ · · · +

 Et (D)E0(a)+ i−t
|i−t|

∑
16i6n Eti(D)Ei(a)

+E0(D)Et (a)+ t−i
|t−i|

∑
16i6n Ei(D)Eit (a)

[3pt]+ · · · + (−1)(t−1)+(n(n−1)/2)E1···(t−1)(t+1)···n(D)E1···n(a)

 et

+ · · · +

 Ets(D)E0(a)+
(i−t)(i−s)
|i−t||i−s|

∑
16i6n Etsi(D)Ei(a)+ Et (D)Es(a)− Es(D)Et (a)

+
(i−t)(i−s)(j−t)(j−s)
|i−t||i−s||j−s||j−t|

∑
16i<j6n Etsij(D)Ejs(a)+

(j−t)(s−j)
|j−t||s−j|

∑
16j6n Etj(D)Ejs(a)

+ · · · + (−1)(t−1)+(s−2)+(n(n−1)/2)E1···(t−1)(t+1)···(s−1)(s+1)···n(D)E1···n(a)

 ets

+ · · · +

(
E1···n(D)E0(a)+ (−1)(n−i)

∑
16i6n E1···(i−1)(i+1)···n(D)Ei(a)

+(−1)(2n−i−j+1)
∑

16i<j6n E1···(i−1)(i+1)···(j−1)(j+1)···n(D)Eij(a)+ E0(D)E1···n(a)

)
e1···n

where e0 = 1; t = 1, · · · , n; i 6= t, i 6= s, j 6= t, j 6= s; j > i, s > t;E(D)ij = E(D)ji;E(Da)ij = E(Da)ji. (28)

ã =



E0(a) · · · Et (a) · · · −Ets(a) · · · (−1)n(n−1)/2E1···n(a)
...

...
...

...
...

...
...

Et (a) · · · E0(a) · · · −Es(a) · · · (−1)(t−1)+(n(n−1)/2)E1···n(a)
...

...
...

...
...

...
...

Ets(a) · · · −Es(a) · · · E0(a) · · · (−1)(t−1)+(s−2)+(n(n−1)/2)Ex(a)
...

...
...

...
...

...
...

E1···n(a) · · · (−1)(n−t)Ey(a) · · · (−1)(2n−t−s+1)Ex(a) · · · E0(a)


where x = 1 · · · (t − 1)(t + 1) · · · (s− 1)(s+ 1) · · · n; y = 1 · · · (t − 1)(t + 1) · · · n; t = 1 · · · n;

i 6= t, t 6= s, j 6= t, j 6= s; j > i, s > t;Eij = Eji. (29)

VOLUME 7, 2019 12765



R. Wang et al.: Multivector Sparse Representation for Multispectral Images Using GA

the improved K-SVD method and the K-SVD method over
several noise levels on the same testing multispectral and
hyperspectral images are collected in Table 3 and 4. The
noise deviation δ are set to be 15, 20, 25 and 30. It is shown
in Table 3 and 4, the improved K-SVD method shows better
denoising results compared to the K-SVD method, for it
partly reserves the inherent spectral structure with the use
of concatenated channel. However, it still produces some
hue bias and artifacts. Our proposed method outperforms the
results of the K-SVD and the improved K-SVD methods,
better results are achieved with small values of δ and vice
versa. In fact, this is expected because relatively ‘‘clean’’
images have a greater impact on the outcome, on the contrary,
very noisy images have a weak influence on the results,
if any. It is mainly because our proposed K-GASVD method
attains the inherent spectral structure of multispectral images
to reserve more details and avoid the artifacts.

VI. CONCLUSION
This work has put forward a new sparse representation
model based on geometric algebra (GA) for multispectral
images processing, resulting in state-of-the-art performance
and exceeding recent leading alternatives. The proposed
sparse model treats a multispectral image as a GA mul-
tivector, totally preserves the relationships of the spectral
channels to avoid the loss of inherent spectral structures.
Besides, we provide a GA-based dictionary learning method,
called K-GASVD method, which can capture the impor-
tant spectral space-related information while capturing the
important spectral structure information, and replace the
sparse dictionary of several channels with a GA dictionary.
The reconstruction and denoising experiments demonstrate
the superiority of the proposed model and show its potential
in multispectral images processing and analysis.

APPENDIX
A. DERIVATION OF THE GENERALIZED FORM OF SPARSE
REPRESENTATION MODEL BASED ON GA
Then, the generalized form of representation model for mul-
tispectral images can be obtained as follows[
0 · · · Ei(f ) · · · Eij(f ) · · · E1···n(f )

]
=
[
E0(D) · · · Ei(D) · · · Eij(D) · · · E1···n(D)

]
ã (27)

According to the relationship of a multispectral image
F ∈ (Gn)N×K , the GA dictionary D ∈ (Gn)N×M and the
sparse coefficient vector a ∈ (Gn)M shown in (28), shown at
the bottom of the previous page.

Therefore, we can obtain the generalized sparse coefficient
matrix ã ∈ R2nM×2nN shown in (29), as shown at the bottom
of the previous page.
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