
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

C3C: A New Static Content-Based
Three-Level Web Cache
THANH TRINH, DINGMING WU, AND JOSHUA ZHEXUE HUANG
College of Computer Science and Software Engineering, Shenzhen University, China

Corresponding author: DingMing Wu (e-mail: dingming@szu.edu.cn).

ABSTRACT One way of improving the performance of a search engine is increasing the hit ratio of the
search engine cache. A common and widely used approach for increasing the hit ratio is a combination of
the result cache, the posting list cache and the intersection cache, yielding a three-level cache architecture.
However, the existing multi-level cache architectures do not consider the dependencies among the content
cached in different parts. Thus, the same content might be stored multiple times in the architectures, resulting
in duplicate hits. In other words, a large amount of space in the cache is wasted. In this paper, we propose a
new static content-based three-level cache architecture that adopts a new C3C filling algorithm that takes into
account the dependencies among the content cached in different parts. In the proposed cache architecture,
duplicate hits are reduced and the hit ratio increases. Extensive experiments were conducted on a real
data set. The results have shown a significant improvement on the hit ratios compared with two existing
approaches.

INDEX TERMS Cache Design, Intersection Cache, List Cache, Result Cache

I. INTRODUCTION

Search engines are used as a prevalent way to find infor-
mation on the Internet by submitting a query to the en-
gines. Nowadays, search engines process tremendous queries
hourly. The volume of queries increases steadily over time, so
how to process a large number of queries over a huge amount
of data in a short execution time is a real challenge. To en-
hance the performance of search engines, caching techniques
are frequently used.

A number of caching techniques used in search engines
have been studied so far. Current search engines often use
five popular caching techniques, namely result cache [1]–[5],
posting list cache [6], [7], intersection cache [8], [9], snippet
cache [10], and document cache [11]. The well-known cache
replacement strategies include LRU, LFU and LCU [12]. Re-
garding the cache filling strategies, well-known ones include
Freq-Based [1], Freq/Size [6], Cost-based, Freq×Cost/Size
and Freq×Cost2.5. In order to achieve further performance
gains, different multi-level cache architectures are proposed,
for example the two-level, the three-level, as well as the five-
level architectures [13]–[19], which are combinations of sev-
eral caching techniques. However, the caching mechanisms
of these cache architectures often ignore the relationships of
the cached contents in the separate caches. For instance, the
result cache stores the results of a query with some terms that

are also stored in the posting list cache. In this case, we have
duplicates in both caches and the cache space is wasted.

The cache architectures that adopt different static caching
mechanisms affect the performance of query processing in
different ways. Currently, there are two kinds of caching
mechanisms used to fill up the content of separate caches.
One caching mechanism fills the contents of separate caches
independently without considering the relations of the con-
tents [6], [8], [13]–[15], [20]. The order of filling separate
caches is not considered in this caching mechanism. Another
caching mechanism was proposed in the five-level cache
architecture [17]. In this caching mechanism, the relations
of the contents in separate caches are evaluated by the scores
of the cached items. The score of an item is calculated from
the frequency of the item, the time to fetch the item from
the inverted index, and the cache space needed to store the
item. Since an item is chosen for storing, the scores of all
remaining items that are affected are recalculated. Although
this mechanism improves query latency, it does not reduce
duplicate hits.

In this paper, we propose a new static three-level cache ar-
chitecture that uses a new content-based caching mechanism
to make best use of the cache space and remove duplicate
hits. The proposed web cache consists of three parts, i.e.,
the result cache (RC), the posting list cache (PC), and the

VOLUME 4, 2016 1



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

intersection cache (IC). In the proposed cache architecture,
we propose three cache filling algorithms to fill RC and PC
to reduce duplicate hits. In addition, we propose a new term
set generation algorithm (TSG) that generates sets of terms
from the queries in the query log. The generated term sets
are sorted in the descending order of their scores, where the
score of each term set is calculated based on the frequency of
the term set and the size of the cache space needed to store
the intersection of the posting lists of the terms in the set. The
term sets with high scores are cached in IC. We propose four
ways of filling IC that choose different lengths of the term
sets.

Experiments were conducted on a real AOL query log
and the document collections of Wikipedia 1. The cache
sizes of 200MB and 500MB were used in the experiments.
The experimental results have shown that the proposed web
architecture has improved the hit ratio by 7% over the two
existing methods.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Section III presents the
architecture of the proposed web cache. Section IV proposes
three algorithms for establishing the dependency between
RC and PC, the term set generation algorithm that provides
candidates for the intersection cache (IC), and the C3C fill-
ing algorithm that establishes the dependencies among RC,
PC, and IC. Experiment results are included in Section V.
Section VI provides conclusions of this work.

II. RELATED WORK
Result Cache. It is used to cache the results of previously
submitted queries. When a new query is issued to the search
engine and if the results of this query are cached, the search
engine will return these results immediately. Markatos [1]
studied queries from EXCITE search engine and found that
there are a considerable number of these queries with similar
terms. The study also shows that the results of queries with
high frequency could be stored in medium cache sizes, and
a small cache is effectively for static caching techniques.
Static dynamic cache that contains static cache and dynamic
cache parts was proposed by Fagni et al. [2], in which the
only-read static part caches the submitted queries with high
frequency and the other part is used for a chosen replacement
strategy. Altingovde et al. [3] proposed a cost-aware caching
strategy for the static caching based on results of queries and
their execution time. Gan and Suel [4] studied the weighted
problem of caching results in order to maximize cost savings
instead of hit ratios, and proposed a feature-based method
that provides improved results. Ozcan et al. [5] studied a
query frequency problem to maximize the hit ratio for the re-
sult cache, then provided a more accurate feature established
based on the stability of query frequency over several given
time intervals. Kucukyilmaz et al. [21] studied the feature
extraction problem from Yahoo query log and proposed a

1https://dumps.wikimedia.org/enwiki/20161201

machine learning model to improve the hit ratio of the result
cache.
Posting List Cache. This cache is another way to retrieve the
results of a submitted query if not found in the result cache.
The posting list cache is used to store the lists of terms of
submitted queries. Since a new submitting query is formed
by several cached terms, the cache returns result identifiers of
the query intermediately. Baeza-Yates et al. [6], [20] studied
the trade-off problem, and found that storing posting lists of
terms would achieve a higher hit ratio compared to cache
query results in medium-size caches. They also proposed a
new static caching method to store posting lists which yields
improved results. Zhang et al. [7] studied inverted index com-
pression and index caching problems. Machine parameters
that affect the performance of combing the two techniques
are discovered, such as CPU speed and disk speed.
Intersection Cache. The intersection cache (IC) works sim-
ilar to the posting list cache. However, IC stores the intersec-
tions of the posting lists for some term sets formed by several
terms. If a submitting query is made by the cached term
sets, IC will return result identifiers of the query. Therefore,
the execution time of the query is decreased. Search engines
integrated with IC can improve their performance. Zhou et
al. [8] explored the item sets that appear frequently in queries,
and suggested a new replacement policy for the intersec-
tion cache. A three-level cache that contains the proposed
intersection cache was proposed, and improved results were
obtained. Tolosa et al. [9] studied the integrated cache that
combines the posting list cache and the intersection cache in
a single stored space. The term pairs are structured to make
an efficient use of the cached space in order to maximize the
hit ratio.
Snippet Cache. Document servers often use two types of
caches in order to return queries results, i.e., Snippet cache
and Document cache [22]. In general, each result of a query
contains a summary related to the search keywords, i.e., a
snippet. The snippets that have been produced from previous
queries are stored in the snippet cache. Ceccarelli et al. [10]
defined a concept of supersippets, which were formed by sev-
eral sentences in documents, and were presented to answer
coming queries.
Document Cache. This cache is used in documents servers
to store several previously retrieved documents. Next time
when the document is requested again, the time of retrieving
it from the disk is saved. Ozcan et al. [11] proposed a hybrid
dynamic result cache consisting of two sections: a docID
cache and an HTML cache.
Multiple Level Cache. To take the advantages of storing
results and storing posting lists, Saraiva et al. [13] designed a
two-level caching architecture that was formed by these two
caches. Baeza-Yates and Jonassen [14] suggested an optimal
way to split a given stored space for the result cache and the
list cache. Dong et al. [18] proposed new data selection for
caching results and posting lists, and designed a two-level
cache architecture. SSD was used as a secondary memory
in this architecture in order to improve the performance

2 VOLUME 4, 2016



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

of search engines. Detti et al. [19] studied the impact of
invalidation mechanisms on the LRU caches and proposed
the hit probability model based on Poisson distribution. Then
this model was used in the two-level hierarchical cache. In
the work of Long and Suel [15], the high frequent term
sets appeared in queries are first exploited to be stored in
the intersection cache, and a three-level cache was proposed
to combine the result cache, the posting list cache and the
static intersection cache. Marín et al. [16] designed a cache
hierarchy architecture to efficiently process user queries. The
different caches in this architecture store diverse cached
items which address frequent queries effectively, such as seg-
ments of index and query answers. Ozcan et al. [17] proposed
a multi-level static cache architecture that combines five
different caches, i.e., the result cache, the posting list cache,
the scored cache, the intersection cache and the document
cache. They then provided an optimal way to split a given
memory for the five caches.
Cache Replacement Strategy. Based on an overview
of different cache replacement proposals, Podlipnig and
Böszörményi [12] defined five main groups, namely
frequency-based (e.g., LFU), recency-based (e.g., LRU),
recency/frequency-based (e.g., LRU*), randomized strate-
gies and function-based. Ma et al. [23] proposed a new
weighting size and cost replacement policy (WSCRP), which
was an extension of LFU. Hasslinger et al. [24] proposed
a class of score gate least recently used (SG-LRU) for web
caching strategies. The hit ratios achieved by SG-LRU were
better than that of LRU. Bechmann et al. [25] studied the
hit density problem and proposed a new cache replacement,
namely Least Hit Density.
Cache Filling Strategy. Each filling strategy uses a different
algorithm to compute a score for each item. The items
with high scores are selected to fill up the caches. The five
following popular strategies are listed .
• FB (Freq-Based): This strategy adds popular items, such

as queries or terms, to corresponding caches.
• FS (Freq/Size): Each item is assigned a score by a

fraction of its frequency and its size, then the items with
high scores are selected to fill up the caches [6].

• Cost (Computation Time): To reduce the execution
times of items (queries or terms) to load results from
servers, the items with high computed time are cached
in this strategy [26].

• FC (FB ∗Cost2.5): It computes score FB ∗Cost2.5 for
each item, then the items with high scores are put into
the caches.

• FCS (Freq*Cost/Size): It calculates score Freq*Cost/Size
for each item, then the items with high scores are stored
in the caches.

III. ARCHITECTURE OF CONTENT-BASED
THREE-LEVEL WEB CACHE
The Content-based three-level web Cache (C3C) architecture
consists of three components (illustrated in Fig. 1), i.e, a
result cache (RC), an intersection cache (IC), and a posting

list cache (PC). The RC stores the results of some queries
previously submitted, where for a query, each of its results
includes the title, URL, and the snippet of the corresponding
web page. The PC stores the posting lists L(ti) of some
terms ti that appear in submitted queries. The intersection
cache stores the IDs of the intermediate results of some
previous queries. The intermediate results refer to the list
of IDs of the web pages that contain a set of terms T that
appear in previous queries. There exist dependencies among
the content cached in these three components. The methods
to establish the dependencies is presented in Section IV. The
C3C is the main memory resident. When a query Q arrives,
it works in the following way:
Step 1: Result Cache Checking: If the query is stored in the

result cache, The query’s results are returned to the
client; otherwise, go to the next step.

Step 2: Intersection Cache Checking: If a set of term sets
T = {Ti} can be found in the intersection cache,
such that

⋃
Ti∈T Ti = Q, the result web pages are

determined using
⋂

Ti∈T L(Ti) and returned to the
client; otherwise, let Qm be the set of missed terms,
Qh be the set of hit terms in the intersection cache,
and L(Qh) be the list of web page IDs that contain
Qh. Go to the next step.

Step 3: Posting List Cache Checking: If all the terms
in Qm can be found in the posting list cache,
the result web pages are determined using⋂

ti∈Qm
L(ti)

⋂
L(Qh) and returned to the client;

otherwise, the missed terms will be passed to the next
step.

Step 4: Inverted Index Reading: Fetch the posting lists of
the missed terms from the inverted index.

IV. DEPENDENCIES ESTABLISHMENT IN C3C
This section presents the algorithms for establishing the
dependencies among the three components in the C3C.

A. DEPENDENCY BETWEEN RC AND PC
In this section, we propose three cache filling algorithms that
establish the dependency between the result cache and the
posting list cache. These algorithms differ in terms of the
ways of considering the dependencies.

1) Query Oriented Filling (QOF)
Algorithm QOF aims at reducing the response time of fre-
quent queries with small size of results. It chooses the cache
where less space is used. For instance, given a query q, if
the space used to store the results of q is less than the space
used to store the posting lists of all terms in q, the RC will
be chosen to store the results. Otherwise, the posing lists of
all terms are put into the PC. In addition, the content of RC
depends on the content of PC, which means that if PC has
stored all the terms of a query, the algorithm will not store its
results in RC any more. Algorithm 1 describes the pseudo
code of algorithm QOF. It consists of the following three
steps.

VOLUME 4, 2016 3



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

FIGURE 1: Content-based Cache Architecture.

Step 1: Scoring: For each distinct query q and each distinct
term t, a score is computed as score = freq/size,
where freq is the frequency of query q or term t
in the query log and size is the cache space needed
for storing the results of query q in RC or the cache
space needed for storing the posting list of term t in
PC. All the queries and all the terms are sorted in
the descending order of their scores, respectively.

Step 2: Filling RC and PC: While the RC is not full, algo-
rithm QOF processes the queries in the descending
order of their scores. For the current query under
processing, if all the terms in the query have been
cached in the PC, this query is discarded. Other-
wise, algorithm QOF calculates the space needed for
caching the results of the query in RC, denoted by
W and the space needed for caching the posting lists
of the missed terms of the query in PC, denoted
by T . The algorithm chooses the cache with less
space needed. In other words, if W ≥ T , the posting
lists of the missed terms of the query will be cached
in PC, otherwise, the results of the query will be
cached in RC.

Step 3: Filling PC: This step is optional and is only needed
when RC is full, but PC still has an amount of free

space. The PC is filled up with the posting lists of
terms with high scores.

Algorithm 1 QOF
Result cache RC ← ∅
Posting list cache PC ← ∅
Compute scoreQ ← freqQ/sizeQ for distinct query
Compute scoreT ← freqT/sizeT for distinct term
while RC is not full do

q ← getNextQuery()
if PC stored the posting lists of all terms in q then

continue
end
T ← cache space used to store the posting list of missed
terms in PC
W ← cache space used to store the query’s results in RC
if W ≥ T then

PC stores the posting lists of missed terms
else

add the results of q to RC
end

end
while PC is not full do

t← getNextTerm()
add the posting list of t to PC

end

Example 1. Tables 1 and 2 are used to illustrate how algo-
rithm QOF fills RC and PC. The scores of the queries and
terms are shown in the tables. Fig. 2 shows the cache filling
process of algorithm QOF. The first query to be processed is
q1. In the beginning, the content of PC is blank, hence all the
terms in q1 are not stored. PC uses the size of T = 60KB
to cache the whole posting lists of these terms. To store the
results of q1, RC uses W = 30KB. Since W < T , RC is
selected to store the results of q1. The following query q2 is
now processed. Because PC uses less space than RC , PC
is used to store the posting lists of the terms in q2. The next
query to be processed is q3. Since PC stored all the terms in
q3, it does not make sense to store q3 and q3 is discarded.
Finally, for query q4, PC does not store any term in q4.
More cache space is used in PC , compared with RC , i.e.,
W = 20KB < T = 35KB, RC is then chosen to store the
results of q4.

FIGURE 2: Running Example of Algorithm QOF.

4 VOLUME 4, 2016



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

TABLE 1: Example Queries and Scores.
Queries Frequency Size

(KB)
Score Normalized

Score

q1: (apple, banana, lemon) 250 30 8.33 1
q2: (toy, blue, orange) 249 30 8.3 0.98
q3: (orange, blue) 200 30 6.67 0.8
q4: (green, car) 120 20 6.0 0.7

TABLE 2: Example Terms and Scores.
Terms Frequency Size

(KB)
Score Normalized

Score

t1: blue 5000 2 2500 1
t2: car 9500 10 950 0.9
t3: orange 7200 8 900 0.85
t4: mouse 8800 10 880 0.79
t5: toy 4000 5 800 0.69
t6: green 19500 25 780 0.67
t7: apple 11400 15 760 0.63
t8: banana 17500 25 700 0.59
t9: lemon 13000 20 650 0.55
tn: ... ... ... ... 0.0

2) Term Oriented Filling (TOF)
Algorithm TOF firstly stores the posting lists of the terms
with high frequency and small storing space in PC. Accord-
ing to the literature, caching posting lists of frequent terms
would achieve a higher hit ratio compared to caching the
results of frequent queries. When PC is full, the algorithm
continues to fill RC. In order to better utilize the space, when
deciding whether or not storing the query’s results in RC, the
content of PC is referred. Similar to algorithm QOF, if PC
has stored all the terms in the query, this one is discarded.
The pseudo code of algorithm TOF is briefly described in
Algorithm 2, which includes the following three steps.
Step 1: Scoring: The scores of terms and queries are calcu-

lated in the same way as the first step in algorithm
QOF. All the terms and queries are sorted in the
descending order of their scores, respectively.

Step 2: Filling PC: PC is filled up with the posting lists of
terms with high scores.

Step 3: Filling RC: The queries are processed in the de-
scending order of their scores. For each query under
processing, the content of PC is examined to verify
how many terms of the query have been cached. If
all the terms in the query are found in PC, this query
is discarded. Otherwise, the results of the query are
added to RC .

Example 2. Tables 1 and 2 are still used to demonstrate the
process of Algorithm TOF. The process is shown in Fig. 3.
Firstly, PC is filled up with the posting lists of the four terms
with high scores, i.e., ‘blue’, ‘car’, ‘orange’, and ‘mouse’.
Next, the queries are respectively processed. For q1, its terms
are missed in PC , RC is then selected to store its results.
Similar to query q2, thus the results of q2 are put into RC .

Algorithm 2 TOF
Query result cache RC ← ∅
Posting list cache PC ← ∅
Compute scoreQ ← freqQ/sizeQ for distinct query
Compute scoreT ← freqT/sizeT for distinct term
while PC is not full do

t← getNextTerm()
add the posting list of t to PC

end
while RC is not full do

q ← getNextQuery()
if PC stored the posting lists of all terms in q then

continue
else

add the results of q to RC
end

end

Because PC stores all the terms in q3, q3 is discarded. Due
to the same reason as q1 and q2, RC stores the results of q4.

FIGURE 3: Running Example of Algorithm TOF.

VOLUME 4, 2016 5



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

3) Score Oriented Filling (SOF)
Different from algorithms QOF and TOF that sort queries and
terms separately, algorithm SOF poses a unified order on both
queries and terms according to their scores. All the queries
and terms are put into a list in the descending order of their
scores (normalized into range [0, 1]). In this algorithm, we
use an entry to refer to either a query or a term in the sorted
list. If the retrieved entry from the list is a term and the PC
is still not full, PC will store the posting list of this term. If
the retrieved entry from the list is a query, the algorithm first
checks whether PC stores all the terms in the query. If yes,
the query is discarded, otherwise, the space used to store it
in both PC and RC is calculated. The cache with less space
used is selected. If the selected cache is full, the other one is
chosen. The algorithm stops when both RC and PC are full.
Algorithm 3 describes the pseudo code of algorithm SOF. It
includes the following two steps.

Algorithm 3 SOF
Query result cache RC ← ∅
Posting list cache PC ← ∅
Compute scoreQ ← freqQ/sizeQ for distinct query
Compute scoreT ← freqT/sizeT for distinct term
Normalize the scores of terms into range [0, 1]
Normalize the scores of queries into range [0, 1]
L ← Add all the terms and queries to a sorted list in the
descending order of their normalized scores
while RC is not full ∨ PC is not full do

e← getNextEntry()
if e refers to a query then

if not all the terms in e are found in PC then
if PC is full then

add the results of query q to RC
continue

end
if RC is full then

add the posting lists of the terms in e to PC
continue

end
T ← space used to store the posting lists of
missed terms in PC
W ← space used to store the query’s results q in
RC
if W ≥ T then

add the posting lists of the missed terms to
PC

else
add the results of query q to RC

end
end

end
if e refers to a term then

if PC is not full then
add the posting list of e to PC

end
end

end

Step 1: Scoring: The scores of queries and terms are com-
puted in the same way as those in algorithms QOF
and TOF. The scores of each query and term are
normalized into range [0, 1]. The queries and terms
are sorted in the descending order of their normalized
scores.

Step 2: Filling: Each time the algorithm removes the first
entry from the sorted list containing queries and
terms. If the entry refers to a term and PC is not
full, the posting list of the term is added to PC. If
the entry refers to a query and not all the terms in the
entry are cached in PC, the algorithm will choose
either PC or RC. If PC is full and RC is not full,
the results of the query are added to RC. If RC is full
and PC is not full, the posting lists of the terms in
the query are added to PC. If both PC and RC are
not full, the cache with less space needed is chosen.
The algorithm terminates when both PC and RC are
full.

Example 3. Tables 1 and 2 are used to explain the process of
Algorithm SOF. Fig. 4 shows how PC and RC are filled by
using algorithm SOF. The queries and terms are put into one
list in the descending order of their normalized scores. The
algorithm processes entries (queries and terms) in the sorted
list one by one. If multiple entries have the same normalized
score, we just arbitrarily decide their order. In this example,
the first entry under consideration is term ‘blue’. The posting
list of ‘blue’ is put into PC. The next entry removed from the
list is query q1. Since all the terms in q1 are not stored in PC,
RC stores the results of q1. Similarly, RC stores the results
of q2 and the posting lists of ‘car’ and ‘orange’ are stored in
PC. When q3 is removed from the list, the algorithm finds
that all the terms in q3 have been existed in PC, so that q3 is
discarded. Finally, the posting list of ‘mouse’ is put into PC.

FIGURE 4: Running Example of Algorithm SOF.

B. DISCUSSIONS
Three filling algorithms, i.e., QOF, TOF, and SOF are pro-
posed to establish the dependency between RC and PC with
the same purpose of reducing the duplicate hits in RC and
PC. If considering a baseline filling algorithm that fills RC

6 VOLUME 4, 2016



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

and PC separately without considering their content, RC
will cache the results of queries q1, q2, and q3 according to
the scores of the queries in Table 1 and PC will cache the
posting lists of terms ‘blue’, ‘car’, ‘orange’, ‘mouse’, and
‘toy’ according to the scores of the terms in Table 2. Given
two testing queries (toy, blue, orange) and (orange, blue),
there exist duplicate hits in the cache filled by the baseline
algorithm. However, no duplicate hit is found in the caches
filled by our proposed algorithms.

Among the three proposed algorithms, TOF is the most
effective algorithm, since it does not have any duplicate hit.
Algorithms QOF and SOF may yield caches with duplicate
hits.

C. TERM SET GENERATION
In the C3C architecture, the intersection cache (IC) stores
the intersections of the posting lists for some term sets.
Each term set contains several terms that have appeared in
some queries. Previously, frequent itemset mining has been
applied for generating term sets for the intersection cache [8].
However, this method only considers the frequency of the
term sets. The space needed for storing the intersection of
the posting lists is ignored. This section proposes a new
algorithm that considers both the frequency and the space
needed for caching when generating term sets. Algorithm 4
describes the pseudo code of term set generation algorithm
TSG. It consists of the following three steps.

Algorithm 4 TSG
TS ← ∅
for each distinct query q in the query log Q do

S ← GenerateTermSets(q)
for each set s in S do

s.size← Space(s)
end
sm ← choose the set with the smallest s.size in S
sm.fre← 0
Add sm to TS

end
for each query q in the query log Q do

S ← GenerateTermSets(q)
for each set s in S do

if TS contains an entry for s then
s.fre++

end
end

end
return TS

Step 1: Initialization: The generated term sets are stored in
a list TS, where each element s represents a term
set. Let s.size be the space needed for storing the
intersection of the posting lists of the terms in s
and s.fre be the frequency of the term set. In the
beginning, TS is empty.

Step 2: Generating Term Sets: For each distinct query in
the query log, algorithm TSG firstly generates all

possible term sets from the query by calling func-
tion GenerateTermSets(q). In this algorithm, we
only consider the term sets that contain no less than 2
terms. For each generated term set, the space needed
for storing the intersection of the posting lists of the
terms in the term set is calculated by calling function
Space(s). Then the term set with the smallest space
needed is added to TS and its frequency is initialized
as 0.

Step 3: Updating Frequency: Having the generated term
sets in TS from the previous step, algorithm TSG
scans the query log and calculates the frequency of
each term set in TS. Specifically, for each query
in the query log, function GenerateTermSets(q)
is called to generate all possible term sets from the
query. For each generated term set, if it is found in
TS, the frequency of the term set is increased by
1. After all the queries in the query log have been
processed, algorithm TSG returns TS.

D. DEPENDENCIES AMONG RC, PC AND IC

This section presents the filling algorithm of the content-
based three-level web cache (C3C). The C3C consists of
three caches, i.e., RC, PC, and IC. In previous sections,
three algorithms for establishing the dependency between
RC and PC are proposed. According to empirical study
in Section V, algorithm TOF outperforms the other two
algorithms. Motivated by algorithm TOF, the C3C filling
algorithm proposed in the section fills the three caches in
the order of PC, IC, and RC. The cache to be filled later
will consider the contents of the caches filled before. In other
words, the content of IC depends on the content of PC and
the content of RC depends on both the contents of PC and
IC. The C3C filling algorithm tries to avoid cached duplicate
data, so that the cache space is better used. Algorithm 5
describes the pseudo code of the C3C filling algorithm. It
consists of the following four steps.
Step 1: Scoring: the algorithm calculates the score for each

term, each generated term set and each query, by di-
viding its frequency by the space needed for caching
it, i.e., score = freq/size. Terms, term sets, and
queries are sorted in the descending order of their
scores, respectively.

Step 2: Filling PC: PC is filled up with the posting lists of
terms with high scores.

Step 3: Filling IC: This algorithm fills up IC with the
intersection of the posting lists of the generated term
sets with high scores. For each term set under con-
sideration, if all the terms in this term set have been
cached in PC, this term set is discarded. Otherwise,
it is added to IC.

Step 4: Filling RC: RC is filled up with the results of
queries with high scores. For each retrieved query,
the algorithm first checks whether the union of some
term sets cached in IC equals to the query. If yes,
the query is discarded, otherwise, the missed terms

VOLUME 4, 2016 7



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

are calculated. Then the algorithm tries to find the
missed terms in PC. If all missed terms are found,
the query is discarded. Otherwise, the results of the
query are added to RC.

Algorithm 5 C3C Filling Algorithm
Posting list cache PC ← ∅
Result cache RC ← ∅
Intersection Cache IC ← ∅
For each term, compute scoreT ← freqT/sizeT
For each query, compute scoreQ ← freqQ/sizeQ
For each term set, compute scoreS ← freqS/sizeS
while PC is not full do

t← getNextTerm()
add term t into PC

end
while IC is not full do

s← getNextTermSet(TS)
if PC stored the posting list of all terms in s then

continue
else

add s into IC
end

end
while RC is not full do

q ← getNextQuery()
S ← GenerateTermSets(q)
FoundTerm← ∅
foreach s ∈ S do

if s is found in IC then
Add s to FoundTerm

end
end
if FoundTerm == q then

continue
else

MissedTerm← q − FoundTerm
if PC stored the posting list of MissedTerm then

continue
else

add the results of query q to RC
end

end
end

TABLE 3: Example Terms, Term Sets, and Queries.

Term List Term Set List Query List
t1 s1 = {t5, t6} q1 = {t2, t4, t7}
t2 s2 = {t2, t3} q2 = {t4, t5, t6, t7}
t3 s3 = {t4, t7} q3 = {t2, t3, t5}
t4

Example 4. Table 3 shows example lists of sorted terms,
term sets, and queries. Fig. 5 illustrates how the C3C filling
algorithm works. Firstly, PC is filled up with the posting lists
of 4 terms t1, t2, t3, t4. Then the algorithm starts to fill IC.

FIGURE 5: Running Example of the C3C Filling Algorithm.

For each term set in the sorted list, if all the terms are found
in PC, the term set will not be cached in IC. In this example,
term sets s1 and s3 are added to IC, while s2 is discarded,
since all the terms in s2 are found in PC. Next, the algorithm
starts to fill RC. For query q1, term set {t4, t7} is found in
IC and term t2 is found in PC, so q1 is not cached in RC.
For query q2, there exist two term sets {t4, t7} and {t5, t6} in
IC, such that the union set equals to q2. Thus, q2 is discarded.
Query q3 is added to RC, because there is no way to construct
q3 by only using the cached data in PC and IC.

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
Data. A real AOL query log with 36 million queries issued in
2016, from March to May, was used in the experiments. Stop-
ping words and punctuations in all queries were eliminated,
and queries which were only issued onces were also removed.
The cleaned query log was then sorted in the ascending order
of the issued times of the queries. This log was divided into
two parts: the first 70% for training and the second 30%
for testing. A collection of around 8.8 million Wikipedia2

documents was applied as the documents results to be queried
in the experiments. These documents were indexed by using
Apache Lucene3. Tables 4 and 5 summarize the detailed
information of the data.

The top 50 results [13] were retrieved for each query in
the cleaned query log to be stored in RC, and these results
take about 30KB. Each result covers all the keywords in the
query and stores a title, an URL and a snippet. In general, the
posting list of a given term that is stored in PC is a list of
L entries. Each entry consists of a document identifier and a
frequency of the term in the document, and it uses 8 bytes.

2https://dumps.wikimedia.org/enwiki/20161201
3https://lucene.apache.org

8 VOLUME 4, 2016



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

The size of the term’s posting list in PC is 8 × L. We also
set up the same entry of intersection list of an itemset as the
posting list of a term.
Platform. All algorithms were written in Java and executed
on a Window 10 machine with 3.4 GHz dual-core CPU and
12 GB memory.

TABLE 4: Statistics of Cleaned AOL Query Log.

Query Log Training Set Testing Set
Number of queries 24,201,747 16,941,221 7,260,526
Number of unique
queries

2,989,815 2,289,475 1,195,689

Average length of
queries

3.1

The longest length
of queries

46 46 33

Number of terms 314,831 274,969 190,216

TABLE 5: Statistics of Document Collection.

Document Collection
Document Size 64.5 GB
Index Size 36.7 GB
Number of documents 8,859,888
Number of terms 57,903,421
Number of tokens 5,402,701,012

B. EVALUATING THE ALGORITHMS OF FILLING RC
AND PC
Caching Polices. The five prevalent caching policies are
reviewed in Section II, namely FB, FS, Cost, FC and FCS.
In order to investigate one caching policy that improves the
hit ratios in our experimental setting, an empirical study was
conducted on the result cache (RC) and the posting list cache
(PC). We applied the five polices to both the two caches.
Fig. 6 plots the hit ratios as a function of cache size for the
five caching policies. Consistently, policy FS beats the other
polices on both RC and PC. Hence, FS is taken as the default
caching policy in the following experiments.
The Hit Ratios. We report the hit ratios of the proposed
three caching filling algorithms, i.e., QOF, TOF, and SOF and
compare them with a baseline algorithm that fills RC and PC
separately. The filling algorithm of RC and PC proposed in
a five-level cache architecture [17] is also taken as a com-
parison. Fig. 7 illustrates the hit ratios achieved by the five
methods when the total cache sizes of 200MB and 500MB
were used. The x-axis presents the ratio of the cache space
of RC to the cache space of PC . We can observe that the
three proposed algorithms perform better than the comparing
methods and Algorithm TOF achieves the best performance.
When the space size of RC varies from 10% to 40%, the hit
ratio increases. However, it decreases as the RC ’s space size
changes from 50% to 90%. Fig. 8 presents the duplicate hit
ratios resulted from the five methods. Because TOF produces

(a) Result Cache.

(b) Posting List Cache.

FIGURE 6: Hit Ratios of Five Caching Polices.

0 duplicate hit ratio from caching, this algorithm is the best
one.

C. EVALUATION OF C3C
In the previous experiments, it has been shown that algo-
rithm TOF achieves the best performance in the dependency
establishment between RC and PC. Hence, the proposed
C3C filling algorithm adopts the idea of algorithm TOF.
In this section, we evaluate the performance of C3C where
dependencies are established among RC, PC, and IC.
Term Set Generation. We generate two-term and three-term
sets using algorithm TSG and evaluate the following four
variants of IC in C3C architecture.
• IC3: only the intersections of the posting lists of three-

term sets are cached.
• IC2: only the intersections of the posting lists of two-

term sets are cached.
• IC23: both the intersections of the posting lists of two-

term and three-term sets are cached. The term sets are
chosen according to strategy FS described in Section II.

• IC2-IC3: IC is split into two parts. One part caches the
intersections of the posting lists of two-term sets. The
other part caches the intersections of the posting lists of
three-term sets.

Hit Ratios Comparisons. Fig. 9 shows the hit ratio of IC2-

VOLUME 4, 2016 9



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

(a) Cache Size 200 MB.

(b) Cache Size 500 MB.

FIGURE 7: Hit Ratios of Five Methods.

IC3 when varying the ratio of the sizes of IC2 and IC3 in
an intersection cache. We observe that when the size of IC2
is set to 90% and the size of IC3 is set to 10%, the hit
ratio of the intersection cache is the highest. In the following
experiments, we fix the ratio of the sizes of IC2 and IC3 at
90% to 10% for IC2-IC3 intersection cache. Fig. 10 shows
the hit ratios of C3C where IC takes the form of IC2, IC3,
IC23, and IC2-IC3. The x-axis is the ratio of the sizes of RC,
PC, and IC in C3C. The total size of C3C is set to 200MB
and 500MB. We observe that IC2-IC3 achieves the best
performance compared with other variants of the intersection
cache. The best way of allocating space for RC, PC, and IC
is 30%, 20%, and 50%. Fig. 11 and Fig. 12 show the hit ratios
and the duplicate hit ratios of C3C, Five-Level cache [17],
and TLMCA [8]. C3C is the best in terms of both the hit
ratio and the duplicate hit ratio. The reason is that the other
two caches do not consider the content stored in each part, so
that the cache space is under utilized, resulting in duplicate
hits.
Query Processing Time. We evaluate the performance of
the three methods (C3C, Five-Level and TLMCA) in terms
of the total query processing time. Fig. 13 shows the total
query processing time of the three methods versus the two
cache sizes, 200MB and 500MB. As expected, avoiding

(a) Cache Size 200 MB.

(b) Cache Size 500 MB.

FIGURE 8: Duplicate Hit Ratios of Five Methods.

duplicated contents of the three parts (RC, PC and IC)
also improves the performance of C3C about the total query
processing time. We observe that C3C is more efficient than
the two existing methods. In other words, the total query
processing time achieved by C3C is better than that of Five-
Level, and TLMCA is the worst.

VI. CONCLUSION

In this work, we have proposed the new static content-based
three-level web cache (C3C) that consists of three parts, i.e.,
a result cache, a posting list cache, and an intersection cache.
In order to better use the cache space, we propose the C3C
filling algorithm that establishes dependencies among the
three parts. In other words, what to be cached in one part
depends on the content of another parts, so that the three parts
will not cache the same content. By using the proposed algo-
rithm, the duplicate hits occurring in the existing methods are
reduced and the hit ratio increases. We also propose a term set
generation algorithm that provides the content to be cached
in the intersection cache. The C3C filling algorithm takes the
term sets as the source of the intersection cache. Extensive
experiments were conducted on a real data set. The results
prove the effectiveness of the proposed cache architecture
and the corresponding filling algorithms.

10 VOLUME 4, 2016



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

(a) Cache size 200 MB.

(b) Cache size 500 MB.

FIGURE 9: Hit ratios of C3C used IC2-IC3, cache space
allocated RC, PC and IC is 30%, 20% and 50% respectively.

REFERENCES
[1] E. P. Markatos, “On Caching Search Engine Query Results,” Computer

Communications, vol. 24, no. 2, pp. 137–143, 2001.
[2] T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the perfor-

mance of Web search engines: Caching and prefetching query results by
exploiting historical usage data,” {ACM} Trans. Inf. Syst., vol. 24, no. 1,
pp. 51–78, 2006.

[3] I. S. Altingövde, R. Ozcan, and Ö. Ulusoy, “A Cost-Aware Strategy for
Query Result Caching in Web Search Engines,” in ECIR, 2009, pp. 628–
636.

[4] Q. Gan and T. Suel, “Improved techniques for result caching in web search
engines,” in WWW, 2009, pp. 431–440.

[5] R. Ozcan, I. S. Altingovde, and Ö. Ulusoy, “Static query
result caching revisited,” in Proceeding of the 17th international
conference on World Wide Web - WWW ’08. New York,
New York, USA: ACM Press, 2008, p. 1169. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1367497.1367710

[6] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and
F. Silvestri, “The impact of caching on search engines,” in Proceedings
of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval - SIGIR ’07. New York,
New York, USA: ACM Press, 2007, p. 183. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1277741.1277775

[7] J. Zhang, X. Long, and T. Suel, “Performance of Compressed Inverted List
Caching in Search Engines,” Refereed Track: Search - Corpus Characteri-
zation & Search Performance, pp. 387–396, 2008.

[8] W. Zhou, R. Li, X. Dong, Z. Xu, and W. Xiao, “An Intersection Cache
Based on Frequent Itemset Mining in Large Scale Search Engines,” in
IEEE Workshop on Hot Topics in Web Systems and Technologies, 2015,
pp. 19–24.

(a) Cache size 200 MB.

(b) Cache size 500 MB.

FIGURE 10: Hit ratios of C3C used IC3, IC2, IC23 and IC2-
IC3.

[9] G. Tolosa, L. Becchetti, E. Feuerstein, and A. Marchetti-Spaccamela,
“Performance Improvements for Search Systems Using an Integrated
Cache of Lists+Intersections,” in SPIRE, 2014, pp. 227–235.

[10] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and F. Silvestri,
“Caching query-biased snippets for efficient retrieval,” Proceedings of the
14th International Conference on Extending Database Technology, pp. 93–
104, 2011.

[11] R. Ozcan, I. S. Altingövde, B. B. Cambazoglu, and Ö. Ulusoy, “Second
Chance: {A} Hybrid Approach for Dynamic Result Caching and Prefetch-
ing in Search Engines,” TWEB, vol. 8, no. 1, pp. 3:1—-3:22, 2013.

[12] S. Podlipnig and L. Böszörményi, “A survey of Web cache replacement
strategies,” {ACM} Comput. Surv., vol. 35, no. 4, pp. 374–398, 2003.

[13] P. C. Saraiva, E. Silva de Moura, N. Ziviani, W. Meira, R. Fonseca,
and B. Riberio-Neto, “Rank-preserving two-level caching for scalable
search engines,” in Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in information retrieval
- SIGIR ’01. New York, New York, USA: ACM Press, 2001, pp. 51–
58. [Online]. Available: http://dl.acm.org/citation.cfm?id=383952.383959
http://portal.acm.org/citation.cfm?doid=383952.383959

[14] R. A. Baeza-Yates and S. Jonassen, “Modeling Static Caching in Web
Search Engines,” in ECIR, 2012, pp. 436–446.

[15] X. Long and T. Suel, “Three-Level Caching for Efficient Query Processing
in Large Web Search Engines,” World Wide Web, vol. 9, no. 4, pp. 369–
395, dec 2006.

[16] M. Marin, V. G. Costa, and C. Gómez-Pantoja, “New caching techniques
for web search engines,” in HPDC, 2010, pp. 215–226.

[17] R. Ozcan, I. S. Altingövde, B. B. Cambazoglu, F. P. Junqueira, and
Ö. Ulusoy, “A five-level static cache architecture for web search engines,”
Inf. Process. Manage., vol. 48, no. 5, pp. 828–840, 2012.

[18] X. Dong, R. Li, H. He, X. Gu, M. Sarem, M. Qiu, and K. Li,
“EDS: An Efficient Data Selection policy for search engine storage

VOLUME 4, 2016 11



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

(a) Cache size 200 MB.

(b) Cache size 500 MB.

FIGURE 11: Hit Ratio.

architectures,” Future Generation Computer Systems, 2015. [Online].
Available: http://dx.doi.org/10.1016/j.future.2016.02.014

[19] A. Detti, L. Bracciale, P. Loreti, and N. B. Melazzi, “Modeling LRU
cache with invalidation,” Computer Networks, vol. 134, pp. 55–65, 2018.
[Online]. Available: https://doi.org/10.1016/j.comnet.2018.01.029

[20] R. Baeza-Yates, A. Gionis, F. P. Junqueira, V. Murdock, V. Plachouras,
and F. Silvestri, “Design trade-offs for search engine caching,” ACM
Transactions on the Web, vol. 2, no. 4, pp. 1–28, 2008.

[21] T. Kucukyilmaz, B. B. Cambazoglu, C. Aykanat, and R. Baeza-Yates, “A
machine learning approach for result caching in web search engines,”
Information Processing and Management, vol. 53, no. 4, pp. 834–850,
2017.

[22] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu, “The impact of
solid state drive on search engine cache management,” Proceedings of the
36th international ACM SIGIR conference on Research and development
in information retrieval - SIGIR ’13, p. 693, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2484028.2484046

[23] T. Ma, Y. Hao, W. Shen, Y. Tian, and M. Al-Rodhaan, “An Improved
Web Cache Replacement Algorithm Based on Weighting and Cost,” IEEE
Access, vol. 6, pp. 27 010–27 017, 2018.

[24] G. Hasslinger, K. Ntougias, F. Hasslinger, and O. Hohlfeld, “Performance
evaluation for new web caching strategies combining LRU with score
based object selection,” Computer Networks, vol. 125, pp. 172–186, 2017.
[Online]. Available: http://dx.doi.org/10.1016/j.comnet.2017.04.044

[25] N. Bechmann, H. Chen, and A. Cidon, “LHD: Improving Cache Hit Rate
by Maximizing Hit Density,” USENIX Symposium on Networked Systems
Design and Implementation, no. 18, pp. 389–403, 2018.

[26] R. Ozcan, I. S. Altingövde, and Ö. Ulusoy, “Cost-Aware Strategies for
Query Result Caching in Web Search Engines,” TWEB, vol. 5, no. 2, pp.
9:1—-9:25, 2011.

(a) Cache size 200 MB.

(b) Cache size 500 MB.

FIGURE 12: Duplicate Hit Ratio.

THANH TRINH is from Vietnam. He received the
MSc degree in Information Systems Design from
University of Central Lancashire, UK. He is cur-
rently pursuing the Ph.D. degree with Shenzhen
university, China. He has authored several con-
ference papers on his research topic. His research
includes efficient query, database, social network,
classification, forecasting disasters.

DINGMING WU received the PhD degree in
computer science from Aalborg University, Den-
mark, in 2011. She is an assistant professor in the
College of Computer Science & Software Engi-
neering, Shenzhen University, China. Her general
research area is data management and mining, in-
cluding data modeling, database design, and query
languages, efficient query and update processing,
indexing, and mining algorithms.

12 VOLUME 4, 2016



T. Trinh et al.: C3C: A New Static Content-Based Three-Level Web Cache

(a) Cache size 200 MB.

(b) Cache size 500 MB.

FIGURE 13: Total Query Processing Time.

JOSHUA ZHEXUE HUANG received the PhD
degree from the Royal Institute of Technology,
Sweden. He is now a professor in the College
of Computer Science and Software, Shenzhen
University, and professor and chief scientist in
the Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, and honorary pro-
fessor in the Department of Mathematics, The
University of Hong Kong. His research interests
include data mining, machine learning, and clus-

tering algorithms.

VOLUME 4, 2016 13


